/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup TelemetryModule Telemetry Module * @brief Main telemetry module * Starts three tasks (RX, TX, and priority TX) that watch event queues * and handle all the telemetry of the UAVobjects * @{ * * @file telemetry.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2015. * @brief Telemetry module, handles telemetry and UAVObject updates * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Telemetry uses four tasks. Two are created for the main telemetry * stream called "TelTx" and "TelRx". Two are created to handle the OPLink * radio connection, called "RadioTx" and "RadioRx", the latter being * overridden by USB if connected. * * The following code uses a "local" prefix to refer to the telemetry channel * associated with a port on the FC and a "radio" prefix to refer to the * telemetry channel associated with the OPLink/USB. * * The "local" telemetry port to use is defined by PIOS_COM_TELEM_RF in * PIOS_Board_Init(). * * A UAVTalk connection instance, telemUavTalkCon, is associated with the * "local" channel and another, radioUavTalkCon, with the "radio" channel. * Associated with each instance is a transmit routine which will send data * to the appropriate port. * * Data is passed on the telemetry channels using queues. If * PIOS_TELEM_PRIORITY_QUEUE is defined then two queues are created, one normal * priority and the other high priority. * * The "Tx" tasks read events first from the priority queue and then from * the normal queue, passing each event to processObjEvent() which ultimately * passes each event to the UAVTalk library which results in the appropriate * transmit routine being called to send the data back to the recipient on * the "local" or "radio" link. */ #include #include "telemetry.h" #include "flighttelemetrystats.h" #include "gcstelemetrystats.h" #include "hwsettings.h" #include "taskinfo.h" // Private constants #define MAX_QUEUE_SIZE TELEM_QUEUE_SIZE // Three different stack size parameter are accepted for Telemetry(RX PIOS_TELEM_RX_STACK_SIZE) // Tx(PIOS_TELEM_TX_STACK_SIZE) and Radio RX(PIOS_TELEM_RADIO_RX_STACK_SIZE) #ifdef PIOS_TELEM_RX_STACK_SIZE #define STACK_SIZE_RX_BYTES PIOS_TELEM_RX_STACK_SIZE #define STACK_SIZE_TX_BYTES PIOS_TELEM_TX_STACK_SIZE #else #define STACK_SIZE_RX_BYTES PIOS_TELEM_STACK_SIZE #define STACK_SIZE_TX_BYTES PIOS_TELEM_STACK_SIZE #endif #ifdef PIOS_TELEM_RADIO_RX_STACK_SIZE #define STACK_SIZE_RADIO_RX_BYTES PIOS_TELEM_RADIO_RX_STACK_SIZE #define STACK_SIZE_RADIO_TX_BYTES PIOS_TELEM_RADIO_TX_STACK_SIZE #else #define STACK_SIZE_RADIO_RX_BYTES STACK_SIZE_RX_BYTES #define STACK_SIZE_RADIO_TX_BYTES STACK_SIZE_TX_BYTES #endif #define TASK_PRIORITY_RX (tskIDLE_PRIORITY + 2) #define TASK_PRIORITY_TX (tskIDLE_PRIORITY + 2) #define TASK_PRIORITY_RADRX (tskIDLE_PRIORITY + 2) #define TASK_PRIORITY_RADTX (tskIDLE_PRIORITY + 2) #define REQ_TIMEOUT_MS 250 #define MAX_RETRIES 2 #define STATS_UPDATE_PERIOD_MS 4000 #define CONNECTION_TIMEOUT_MS 8000 // Private types typedef struct { // Determine port on which to communicate telemetry information uint32_t (*getPort)(); // Main telemetry queue xQueueHandle queue; #ifdef PIOS_TELEM_PRIORITY_QUEUE // Priority telemetry queue xQueueHandle priorityQueue; #endif /* PIOS_TELEM_PRIORITY_QUEUE */ // Transmit/receive task handles xTaskHandle txTaskHandle; xTaskHandle rxTaskHandle; // Telemetry stream UAVTalkConnection uavTalkCon; } channelContext; // Main telemetry channel static channelContext localChannel; static int32_t transmitLocalData(uint8_t *data, int32_t length); static void registerLocalObject(UAVObjHandle obj); static uint32_t localPort(); // OPLink telemetry channel static channelContext radioChannel; static int32_t transmitRadioData(uint8_t *data, int32_t length); static void registerRadioObject(UAVObjHandle obj); static uint32_t radioPort(); static uint32_t radio_port = PIOS_COM_RF; // Telemetry stats static uint32_t txErrors; static uint32_t txRetries; static uint32_t timeOfLastObjectUpdate; static void telemetryTxTask(void *parameters); static void telemetryRxTask(void *parameters); static void updateObject( channelContext *channel, UAVObjHandle obj, int32_t eventType); static void processObjEvent( channelContext *channel, UAVObjEvent *ev); static int32_t setUpdatePeriod( channelContext *channel, UAVObjHandle obj, int32_t updatePeriodMs); static int32_t setLoggingPeriod( channelContext *channel, UAVObjHandle obj, int32_t updatePeriodMs); static void updateTelemetryStats(); static void gcsTelemetryStatsUpdated(); static void updateSettings(channelContext *channel); /** * Initialise the telemetry module * \return -1 if initialisation failed * \return 0 on success */ int32_t TelemetryStart(void) { // Only start the local telemetry tasks if needed if (localPort()) { UAVObjIterate(®isterLocalObject); // Listen to objects of interest #ifdef PIOS_TELEM_PRIORITY_QUEUE GCSTelemetryStatsConnectQueue(localChannel.priorityQueue); #else /* PIOS_TELEM_PRIORITY_QUEUE */ GCSTelemetryStatsConnectQueue(localChannel.queue); #endif /* PIOS_TELEM_PRIORITY_QUEUE */ // Start telemetry tasks xTaskCreate(telemetryTxTask, "TelTx", STACK_SIZE_TX_BYTES / 4, &localChannel, TASK_PRIORITY_TX, &localChannel.txTaskHandle); PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_TELEMETRYTX, localChannel.txTaskHandle); xTaskCreate(telemetryRxTask, "TelRx", STACK_SIZE_RX_BYTES / 4, &localChannel, TASK_PRIORITY_RX, &localChannel.rxTaskHandle); PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_TELEMETRYRX, localChannel.rxTaskHandle); } // Start the telemetry tasks associated with Radio/USB UAVObjIterate(®isterRadioObject); // Listen to objects of interest #ifdef PIOS_TELEM_PRIORITY_QUEUE GCSTelemetryStatsConnectQueue(radioChannel.priorityQueue); #else /* PIOS_TELEM_PRIORITY_QUEUE */ GCSTelemetryStatsConnectQueue(radioChannel.queue); #endif /* PIOS_TELEM_PRIORITY_QUEUE */ xTaskCreate(telemetryTxTask, "RadioTx", STACK_SIZE_RADIO_TX_BYTES / 4, &radioChannel, TASK_PRIORITY_RADTX, &radioChannel.txTaskHandle); PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_RADIOTX, radioChannel.txTaskHandle); xTaskCreate(telemetryRxTask, "RadioRx", STACK_SIZE_RADIO_RX_BYTES / 4, &radioChannel, TASK_PRIORITY_RADRX, &radioChannel.rxTaskHandle); PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_RADIORX, radioChannel.rxTaskHandle); return 0; } /* Intialise a telemetry channel */ void TelemetryInitializeChannel(channelContext *channel) { // Create object queues channel->queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent)); #if defined(PIOS_TELEM_PRIORITY_QUEUE) channel->priorityQueue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent)); #endif /* PIOS_TELEM_PRIORITY_QUEUE */ // Initialise UAVTalk channel->uavTalkCon = UAVTalkInitialize(&transmitLocalData); // Create periodic event that will be used to update the telemetry stats UAVObjEvent ev; memset(&ev, 0, sizeof(UAVObjEvent)); #ifdef PIOS_TELEM_PRIORITY_QUEUE EventPeriodicQueueCreate(&ev, channel->priorityQueue, STATS_UPDATE_PERIOD_MS); #else /* PIOS_TELEM_PRIORITY_QUEUE */ EventPeriodicQueueCreate(&ev, channel->queue, STATS_UPDATE_PERIOD_MS); #endif /* PIOS_TELEM_PRIORITY_QUEUE */ } /** * Initialise the telemetry module * \return -1 if initialisation failed * \return 0 on success */ int32_t TelemetryInitialize(void) { HwSettingsInitialize(); #ifdef PIOS_INCLUDE_RFM22B OPLinkSettingsInitialize(); OPLinkSettingsData data; OPLinkSettingsGet(&data); if (data.PPMOnly) { radio_port = 0; } else { radio_port = PIOS_COM_RF; } #else /* PIOS_INCLUDE_RFM22B */ radio_port = 0; #endif /* PIOS_INCLUDE_RFM22B */ FlightTelemetryStatsInitialize(); GCSTelemetryStatsInitialize(); // Initialize vars timeOfLastObjectUpdate = 0; // Reset link stats txErrors = 0; txRetries = 0; // Set channel port handlers localChannel.getPort = localPort; radioChannel.getPort = radioPort; // Set the local telemetry baud rate updateSettings(&localChannel); // Only initialise local channel if telemetry port enabled if (localPort()) { // Initialise channel TelemetryInitializeChannel(&localChannel); // Initialise UAVTalk localChannel.uavTalkCon = UAVTalkInitialize(&transmitLocalData); } // Initialise channel TelemetryInitializeChannel(&radioChannel); // Initialise UAVTalk radioChannel.uavTalkCon = UAVTalkInitialize(&transmitRadioData); return 0; } MODULE_INITCALL(TelemetryInitialize, TelemetryStart); /** * Register a new object, adds object to local list and connects the queue depending on the object's * telemetry settings. * \param[in] obj Object to connect */ static void registerLocalObject(UAVObjHandle obj) { if (UAVObjIsMetaobject(obj)) { // Only connect change notifications for meta objects. No periodic updates #ifdef PIOS_TELEM_PRIORITY_QUEUE UAVObjConnectQueue(obj, localChannel.priorityQueue, EV_MASK_ALL_UPDATES); #else /* PIOS_TELEM_PRIORITY_QUEUE */ UAVObjConnectQueue(obj, localChannel.queue, EV_MASK_ALL_UPDATES); #endif /* PIOS_TELEM_PRIORITY_QUEUE */ } else { // Setup object for periodic updates updateObject( &localChannel, obj, EV_NONE); } } static void registerRadioObject(UAVObjHandle obj) { if (UAVObjIsMetaobject(obj)) { // Only connect change notifications for meta objects. No periodic updates #ifdef PIOS_TELEM_PRIORITY_QUEUE UAVObjConnectQueue(obj, radioChannel.priorityQueue, EV_MASK_ALL_UPDATES); #else /* PIOS_TELEM_PRIORITY_QUEUE */ UAVObjConnectQueue(obj, radioChannel.queue, EV_MASK_ALL_UPDATES); #endif /* PIOS_TELEM_PRIORITY_QUEUE */ } else { // Setup object for periodic updates updateObject( &radioChannel, obj, EV_NONE); } } /** * Update object's queue connections and timer, depending on object's settings * \param[in] telemetry channel context * \param[in] obj Object to updates */ static void updateObject( channelContext *channel, UAVObjHandle obj, int32_t eventType) { UAVObjMetadata metadata; UAVObjUpdateMode updateMode, loggingMode; int32_t eventMask; if (UAVObjIsMetaobject(obj)) { // This function updates the periodic updates for the object. // Meta Objects cannot have periodic updates. PIOS_Assert(false); return; } // Get metadata UAVObjGetMetadata(obj, &metadata); updateMode = UAVObjGetTelemetryUpdateMode(&metadata); loggingMode = UAVObjGetLoggingUpdateMode(&metadata); // Setup object depending on update mode eventMask = 0; switch (updateMode) { case UPDATEMODE_PERIODIC: // Set update period setUpdatePeriod(channel, obj, metadata.telemetryUpdatePeriod); // Connect queue eventMask |= EV_UPDATED_PERIODIC | EV_UPDATED_MANUAL | EV_UPDATE_REQ; break; case UPDATEMODE_ONCHANGE: // Set update period setUpdatePeriod(channel, obj, 0); // Connect queue eventMask |= EV_UPDATED | EV_UPDATED_MANUAL | EV_UPDATE_REQ; break; case UPDATEMODE_THROTTLED: if ((eventType == EV_UPDATED_PERIODIC) || (eventType == EV_NONE)) { // If we received a periodic update, we can change back to update on change eventMask |= EV_UPDATED | EV_UPDATED_MANUAL | EV_UPDATE_REQ; // Set update period on initialization and metadata change if (eventType == EV_NONE) { setUpdatePeriod(channel, obj, metadata.telemetryUpdatePeriod); } } else { // Otherwise, we just received an object update, so switch to periodic for the timeout period to prevent more updates eventMask |= EV_UPDATED_PERIODIC | EV_UPDATED_MANUAL | EV_UPDATE_REQ; } break; case UPDATEMODE_MANUAL: // Set update period setUpdatePeriod(channel, obj, 0); // Connect queue eventMask |= EV_UPDATED_MANUAL | EV_UPDATE_REQ; break; } switch (loggingMode) { case UPDATEMODE_PERIODIC: // Set update period setLoggingPeriod(channel, obj, metadata.loggingUpdatePeriod); // Connect queue eventMask |= EV_LOGGING_PERIODIC | EV_LOGGING_MANUAL; break; case UPDATEMODE_ONCHANGE: // Set update period setLoggingPeriod(channel, obj, 0); // Connect queue eventMask |= EV_UPDATED | EV_LOGGING_MANUAL; break; case UPDATEMODE_THROTTLED: if ((eventType == EV_LOGGING_PERIODIC) || (eventType == EV_NONE)) { // If we received a periodic update, we can change back to update on change eventMask |= EV_UPDATED | EV_LOGGING_MANUAL; // Set update period on initialization and metadata change if (eventType == EV_NONE) { setLoggingPeriod(channel, obj, metadata.loggingUpdatePeriod); } } else { // Otherwise, we just received an object update, so switch to periodic for the timeout period to prevent more updates eventMask |= EV_LOGGING_PERIODIC | EV_LOGGING_MANUAL; } break; case UPDATEMODE_MANUAL: // Set update period setLoggingPeriod(channel, obj, 0); // Connect queue eventMask |= EV_LOGGING_MANUAL; break; } // note that all setting objects have implicitly IsPriority=true #ifdef PIOS_TELEM_PRIORITY_QUEUE if (UAVObjIsPriority(obj)) { UAVObjConnectQueue(obj, channel->priorityQueue, eventMask); } else #endif /* PIOS_TELEM_PRIORITY_QUEUE */ UAVObjConnectQueue(obj, channel->queue, eventMask); } /** * Processes queue events */ static void processObjEvent( channelContext *channel, UAVObjEvent *ev) { UAVObjMetadata metadata; UAVObjUpdateMode updateMode; int32_t retries; int32_t success; if (ev->obj == 0) { updateTelemetryStats(); } else if (ev->obj == GCSTelemetryStatsHandle()) { gcsTelemetryStatsUpdated(); } else { // Get object metadata UAVObjGetMetadata(ev->obj, &metadata); updateMode = UAVObjGetTelemetryUpdateMode(&metadata); // Act on event retries = 0; success = -1; if ((ev->event == EV_UPDATED && (updateMode == UPDATEMODE_ONCHANGE || updateMode == UPDATEMODE_THROTTLED)) || ev->event == EV_UPDATED_MANUAL || (ev->event == EV_UPDATED_PERIODIC && updateMode != UPDATEMODE_THROTTLED)) { // Send update to GCS (with retries) while (retries < MAX_RETRIES && success == -1) { // call blocks until ack is received or timeout success = UAVTalkSendObject(channel->uavTalkCon, ev->obj, ev->instId, UAVObjGetTelemetryAcked(&metadata), REQ_TIMEOUT_MS); if (success == -1) { ++retries; } } // Update stats txRetries += retries; if (success == -1) { ++txErrors; } } else if (ev->event == EV_UPDATE_REQ) { // Request object update from GCS (with retries) while (retries < MAX_RETRIES && success == -1) { // call blocks until update is received or timeout success = UAVTalkSendObjectRequest(channel->uavTalkCon, ev->obj, ev->instId, REQ_TIMEOUT_MS); if (success == -1) { ++retries; } } // Update stats txRetries += retries; if (success == -1) { ++txErrors; } } // If this is a metaobject then make necessary telemetry updates if (UAVObjIsMetaobject(ev->obj)) { // linked object will be the actual object the metadata are for updateObject( channel, UAVObjGetLinkedObj(ev->obj), EV_NONE); } else { if (updateMode == UPDATEMODE_THROTTLED) { // If this is UPDATEMODE_THROTTLED, the event mask changes on every event. updateObject( channel, ev->obj, ev->event); } } } // Log UAVObject if necessary if (ev->obj) { updateMode = UAVObjGetLoggingUpdateMode(&metadata); if ((ev->event == EV_UPDATED && (updateMode == UPDATEMODE_ONCHANGE || updateMode == UPDATEMODE_THROTTLED)) || ev->event == EV_LOGGING_MANUAL || (ev->event == EV_LOGGING_PERIODIC && updateMode != UPDATEMODE_THROTTLED)) { if (ev->instId == UAVOBJ_ALL_INSTANCES) { success = UAVObjGetNumInstances(ev->obj); for (retries = 0; retries < success; retries++) { UAVObjInstanceWriteToLog(ev->obj, retries); } } else { UAVObjInstanceWriteToLog(ev->obj, ev->instId); } } if (updateMode == UPDATEMODE_THROTTLED) { // If this is UPDATEMODE_THROTTLED, the event mask changes on every event. updateObject( channel, ev->obj, ev->event); } } } /** * Telemetry transmit task, regular priority */ static void telemetryTxTask(void *parameters) { channelContext *channel = (channelContext *)parameters; UAVObjEvent ev; /* Check for a bad context */ if (!channel) { return; } // Loop forever while (1) { /** * Tries to empty the high priority queue before handling any standard priority item */ #ifdef PIOS_TELEM_PRIORITY_QUEUE // empty priority queue, non-blocking while (xQueueReceive(channel->priorityQueue, &ev, 0) == pdTRUE) { // Process event processObjEvent(channel, &ev); } // check regular queue and process update - non-blocking if (xQueueReceive(channel->queue, &ev, 0) == pdTRUE) { // Process event processObjEvent(channel, &ev); // if both queues are empty, wait on priority queue for updates (1 tick) then repeat cycle } else if (xQueueReceive(channel->priorityQueue, &ev, 1) == pdTRUE) { // Process event processObjEvent(channel, &ev); } #else // wait on queue for updates (1 tick) then repeat cycle if (xQueueReceive(channel->queue, &ev, 1) == pdTRUE) { // Process event processObjEvent(channel, &ev); } #endif /* PIOS_TELEM_PRIORITY_QUEUE */ } } /** * Telemetry receive task. Processes queue events and periodic updates. */ static void telemetryRxTask(void *parameters) { channelContext *channel = (channelContext *)parameters; /* Check for a bad context */ if (!channel) { return; } // Task loop while (1) { uint32_t inputPort = channel->getPort(); if (inputPort) { // Block until data are available uint8_t serial_data[16]; uint16_t bytes_to_process; bytes_to_process = PIOS_COM_ReceiveBuffer(inputPort, serial_data, sizeof(serial_data), 500); if (bytes_to_process > 0) { UAVTalkProcessInputStream(channel->uavTalkCon, serial_data, bytes_to_process); } } else { vTaskDelay(5); } } } /** * Determine the port to be used for communication on the telemetry channel * \return com port number */ static uint32_t localPort() { return PIOS_COM_TELEM_RF; } /** * Determine the port to be used for communication on the radio channel * \return com port number */ static uint32_t radioPort() { uint32_t port = radio_port; #ifdef PIOS_INCLUDE_USB // if USB is connected, USB takes precedence for telemetry if (PIOS_COM_Available(PIOS_COM_TELEM_USB)) { port = PIOS_COM_TELEM_USB; } #endif /* PIOS_INCLUDE_USB */ return port; } /** * Transmit data buffer to the modem or USB port. * \param[in] data Data buffer to send * \param[in] length Length of buffer * \return -1 on failure * \return number of bytes transmitted on success */ static int32_t transmitLocalData(uint8_t *data, int32_t length) { uint32_t outputPort = localChannel.getPort(); if (outputPort) { return PIOS_COM_SendBuffer(outputPort, data, length); } return -1; } /** * Transmit data buffer to the radioport. * \param[in] data Data buffer to send * \param[in] length Length of buffer * \return -1 on failure * \return number of bytes transmitted on success */ static int32_t transmitRadioData(uint8_t *data, int32_t length) { uint32_t outputPort = radioChannel.getPort(); if (outputPort) { return PIOS_COM_SendBuffer(outputPort, data, length); } return -1; } /** * Set update period of object (it must be already setup for periodic updates) * \param[in] telemetry channel context * \param[in] obj The object to update * \param[in] updatePeriodMs The update period in ms, if zero then periodic updates are disabled * \return 0 Success * \return -1 Failure */ static int32_t setUpdatePeriod( channelContext *channel, UAVObjHandle obj, int32_t updatePeriodMs) { UAVObjEvent ev; int32_t ret; // Add or update object for periodic updates ev.obj = obj; ev.instId = UAVOBJ_ALL_INSTANCES; ev.event = EV_UPDATED_PERIODIC; ev.lowPriority = true; #ifdef PIOS_TELEM_PRIORITY_QUEUE xQueueHandle targetQueue = UAVObjIsPriority(obj) ? channel->priorityQueue : channel->queue; #else /* PIOS_TELEM_PRIORITY_QUEUE */ xQueueHandle targetQueue = channel->queue; #endif /* PIOS_TELEM_PRIORITY_QUEUE */ ret = EventPeriodicQueueUpdate(&ev, targetQueue, updatePeriodMs); if (ret == -1) { ret = EventPeriodicQueueCreate(&ev, targetQueue, updatePeriodMs); } return ret; } /** * Set logging update period of object (it must be already setup for periodic updates) * \param[in] telemetry channel context * \param[in] obj The object to update * \param[in] updatePeriodMs The update period in ms, if zero then periodic updates are disabled * \return 0 Success * \return -1 Failure */ static int32_t setLoggingPeriod( channelContext *channel, UAVObjHandle obj, int32_t updatePeriodMs) { UAVObjEvent ev; int32_t ret; // Add or update object for periodic updates ev.obj = obj; ev.instId = UAVOBJ_ALL_INSTANCES; ev.event = EV_LOGGING_PERIODIC; ev.lowPriority = true; #ifdef PIOS_TELEM_PRIORITY_QUEUE xQueueHandle targetQueue = UAVObjIsPriority(obj) ? channel->priorityQueue : channel->queue; #else /* PIOS_TELEM_PRIORITY_QUEUE */ xQueueHandle targetQueue = channel->queue; #endif /* PIOS_TELEM_PRIORITY_QUEUE */ ret = EventPeriodicQueueUpdate(&ev, targetQueue, updatePeriodMs); if (ret == -1) { ret = EventPeriodicQueueCreate(&ev, targetQueue, updatePeriodMs); } return ret; } /** * Called each time the GCS telemetry stats object is updated. * Trigger a flight telemetry stats update if a connection is not * yet established. */ static void gcsTelemetryStatsUpdated() { FlightTelemetryStatsData flightStats; GCSTelemetryStatsData gcsStats; FlightTelemetryStatsGet(&flightStats); GCSTelemetryStatsGet(&gcsStats); if (flightStats.Status != FLIGHTTELEMETRYSTATS_STATUS_CONNECTED || gcsStats.Status != GCSTELEMETRYSTATS_STATUS_CONNECTED) { updateTelemetryStats(); } } /** * Update telemetry statistics and handle connection handshake */ static void updateTelemetryStats() { UAVTalkStats utalkStats; FlightTelemetryStatsData flightStats; GCSTelemetryStatsData gcsStats; uint8_t forceUpdate; uint8_t connectionTimeout; uint32_t timeNow; // Get stats UAVTalkGetStats(localChannel.uavTalkCon, &utalkStats, true); UAVTalkAddStats(radioChannel.uavTalkCon, &utalkStats, true); // Get object data FlightTelemetryStatsGet(&flightStats); GCSTelemetryStatsGet(&gcsStats); // Update stats object if (flightStats.Status == FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) { flightStats.TxDataRate = (float)utalkStats.txBytes / ((float)STATS_UPDATE_PERIOD_MS / 1000.0f); flightStats.TxBytes += utalkStats.txBytes; flightStats.TxFailures += txErrors; flightStats.TxRetries += txRetries; flightStats.RxDataRate = (float)utalkStats.rxBytes / ((float)STATS_UPDATE_PERIOD_MS / 1000.0f); flightStats.RxBytes += utalkStats.rxBytes; flightStats.RxFailures += utalkStats.rxErrors; flightStats.RxSyncErrors += utalkStats.rxSyncErrors; flightStats.RxCrcErrors += utalkStats.rxCrcErrors; } else { flightStats.TxDataRate = 0; flightStats.TxBytes = 0; flightStats.TxFailures = 0; flightStats.TxRetries = 0; flightStats.RxDataRate = 0; flightStats.RxBytes = 0; flightStats.RxFailures = 0; flightStats.RxSyncErrors = 0; flightStats.RxCrcErrors = 0; } txErrors = 0; txRetries = 0; // Check for connection timeout timeNow = xTaskGetTickCount() * portTICK_RATE_MS; if (utalkStats.rxObjects > 0) { timeOfLastObjectUpdate = timeNow; } if ((timeNow - timeOfLastObjectUpdate) > CONNECTION_TIMEOUT_MS) { connectionTimeout = 1; } else { connectionTimeout = 0; } // Update connection state forceUpdate = 1; if (flightStats.Status == FLIGHTTELEMETRYSTATS_STATUS_DISCONNECTED) { // Wait for connection request if (gcsStats.Status == GCSTELEMETRYSTATS_STATUS_HANDSHAKEREQ) { flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_HANDSHAKEACK; } } else if (flightStats.Status == FLIGHTTELEMETRYSTATS_STATUS_HANDSHAKEACK) { // Wait for connection if (gcsStats.Status == GCSTELEMETRYSTATS_STATUS_CONNECTED) { flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_CONNECTED; } else if (gcsStats.Status == GCSTELEMETRYSTATS_STATUS_DISCONNECTED) { flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_DISCONNECTED; } } else if (flightStats.Status == FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) { if (gcsStats.Status != GCSTELEMETRYSTATS_STATUS_CONNECTED || connectionTimeout) { flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_DISCONNECTED; } else { forceUpdate = 0; } } else { flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_DISCONNECTED; } // TODO: check whether is there any error condition worth raising an alarm // Disconnection is actually a normal (non)working status so it is not raising alarms anymore. if (flightStats.Status == FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) { AlarmsClear(SYSTEMALARMS_ALARM_TELEMETRY); } // Update object FlightTelemetryStatsSet(&flightStats); // Force telemetry update if not connected if (forceUpdate) { FlightTelemetryStatsUpdated(); } } /** * Update the telemetry settings, called on startup. * FIXME: This should be in the TelemetrySettings object. But objects * have too much overhead yet. Also the telemetry has no any specific * settings, etc. Thus the HwSettings object which contains the * telemetry port speed is used for now. */ static void updateSettings(channelContext *channel) { uint32_t port = channel->getPort(); if (port) { // Retrieve settings HwSettingsTelemetrySpeedOptions speed; HwSettingsTelemetrySpeedGet(&speed); // Set port speed switch (speed) { case HWSETTINGS_TELEMETRYSPEED_2400: PIOS_COM_ChangeBaud(port, 2400); break; case HWSETTINGS_TELEMETRYSPEED_4800: PIOS_COM_ChangeBaud(port, 4800); break; case HWSETTINGS_TELEMETRYSPEED_9600: PIOS_COM_ChangeBaud(port, 9600); break; case HWSETTINGS_TELEMETRYSPEED_19200: PIOS_COM_ChangeBaud(port, 19200); break; case HWSETTINGS_TELEMETRYSPEED_38400: PIOS_COM_ChangeBaud(port, 38400); break; case HWSETTINGS_TELEMETRYSPEED_57600: PIOS_COM_ChangeBaud(port, 57600); break; case HWSETTINGS_TELEMETRYSPEED_115200: PIOS_COM_ChangeBaud(port, 115200); break; } } } /** * @} * @} */