/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_SYS System Functions * @brief PIOS System Initialization code * @{ * * @file pios_sys.c * @author Michael Smith Copyright (C) 2011 * The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief Sets up basic STM32 system hardware, functions are called from Main. * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "pios.h" #ifdef PIOS_INCLUDE_SYS __IO uint32_t VectorTable[48] __attribute__((section(".ram_vector_table"))); /* Private Function Prototypes */ void NVIC_Configuration(void); void stopHandler(); /* Local Macros */ #define MEM8(addr) (*((volatile uint8_t *)(addr))) #define MEM16(addr) (*((volatile uint16_t *)(addr))) #define MEM32(addr) (*((volatile uint32_t *)(addr))) /** * Initialises all system peripherals */ void PIOS_SYS_Init(void) { /* Setup STM32 system (RCC, clock, PLL and Flash configuration) - CMSIS Function */ SystemInit(); SystemCoreClockUpdate(); /* update SystemCoreClock for use elsewhere */ /* * @todo might make sense to fetch the bus clocks and save them somewhere to avoid * having to use the clunky get-all-clocks API everytime we need one. */ /* Initialise Basic NVIC */ /* do this early to ensure that we take exceptions in the right place */ NVIC_Configuration(); /* * Turn on all the peripheral clocks. * Micromanaging clocks makes no sense given the power situation in the system, so * light up everything we might reasonably use here and just leave it on. */ RCC_AHBPeriphClockCmd( RCC_AHBPeriph_GPIOA | RCC_AHBPeriph_GPIOB | RCC_AHBPeriph_GPIOC | RCC_AHBPeriph_FLITF | RCC_AHBPeriph_SRAM | RCC_AHBPeriph_DMA1 | RCC_AHBPeriph_CRC , ENABLE); RCC_APB1PeriphClockCmd( RCC_APB1Periph_USART2 | RCC_APB1Periph_USART3 | RCC_APB1Periph_WWDG | RCC_APB1Periph_PWR | RCC_APB1Periph_TIM2 | RCC_APB1Periph_TIM3 | RCC_APB1Periph_I2C1 | RCC_APB1Periph_I2C2 | RCC_APB1Periph_SPI2 , ENABLE); RCC_APB2PeriphClockCmd( RCC_APB2Periph_SYSCFG | RCC_APB2Periph_USART1 | RCC_APB2Periph_SPI1 | RCC_APB2Periph_TIM1 | 0, ENABLE); /* Init the delay system */ PIOS_DELAY_Init(); /* * Configure all pins as input / pullup to avoid issues with * uncommitted pins, excepting special-function pins that we need to * remain as-is. */ GPIO_InitTypeDef GPIO_InitStructure; GPIO_StructInit(&GPIO_InitStructure); GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; // default is un-pulled input GPIO_InitStructure.GPIO_Pin = GPIO_Pin_All; GPIO_InitStructure.GPIO_Pin &= ~(GPIO_Pin_13 | GPIO_Pin_14); // leave SWD pins alone GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_All; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_All; GPIO_Init(GPIOC, &GPIO_InitStructure); } /** * Shutdown PIOS and reset the microcontroller:
* * \return < 0 if reset failed */ int32_t PIOS_SYS_Reset(void) { /* Disable all RTOS tasks */ #if defined(PIOS_INCLUDE_FREERTOS) /* port specific FreeRTOS function to disable tasks (nested) */ portENTER_CRITICAL(); #endif // disable all interrupts PIOS_IRQ_Disable(); // turn off all board LEDs #ifdef PIOS_INCLUDE_LED # ifdef PIOS_LED_HEARTBEAT PIOS_LED_Off(PIOS_LED_HEARTBEAT); # endif /* PIOS_LED_HEARTBEAT */ # ifdef PIOS_LED_ALARM PIOS_LED_Off(PIOS_LED_ALARM); # endif /* PIOS_LED_ALARM */ # ifdef PIOS_BUZZER_ALARM PIOS_LED_Off(PIOS_BUZZER_ALARM); # endif /* PIOS_BUZZER_ALARM */ #endif /* PIOS_INCLUDE_LED */ /* Reset STM32 */ NVIC_SystemReset(); while (1) { ; } /* We will never reach this point */ return -1; } /** * Returns the CPU's flash size (in bytes) */ uint32_t PIOS_SYS_getCPUFlashSize(void) { return (uint32_t)MEM16(0x1fff7a22) * 1024; // it might be possible to locate in the OTP area, but haven't looked and not documented } /** * Returns the serial number as a string * param[out] str pointer to a string which can store at least 32 digits + zero terminator! * (24 digits returned for STM32) * return < 0 if feature not supported */ int32_t PIOS_SYS_SerialNumberGetBinary(uint8_t *array) { int i; /* Stored in the so called "electronic signature" */ for (i = 0; i < PIOS_SYS_SERIAL_NUM_BINARY_LEN; ++i) { uint8_t b = MEM8(0x1FFFF7AC + i); array[i] = b; } /* No error */ return 0; } /** * Returns the serial number as a string * param[out] str pointer to a string which can store at least 32 digits + zero terminator! * (24 digits returned for STM32) * return < 0 if feature not supported */ int32_t PIOS_SYS_SerialNumberGet(char *str) { int i; /* Stored in the so called "electronic signature" */ for (i = 0; i < PIOS_SYS_SERIAL_NUM_ASCII_LEN; ++i) { uint8_t b = MEM8(0x1FFFF7AC + (i / 2)); if (!(i & 1)) { b >>= 4; } b &= 0x0f; str[i] = ((b > 9) ? ('A' - 10) : '0') + b; } str[i] = '\0'; /* No error */ return 0; } /** * Configures Vector Table base location and SysTick */ void NVIC_Configuration(void) { /* Relocate by software the vector table to the internal SRAM at 0x20000000 ***/ extern uint32_t pios_isr_vector_table_base; uint32_t *romTable = &pios_isr_vector_table_base; /* Copy the vector table from the Flash (mapped at the base of the application load address 0x0800X000) to the base address of the SRAM at 0x20000000. */ for (uint32_t i = 0; i < 48; i++) { VectorTable[i] = romTable[i]; } // Ensure all memory operation completes prior the remap __DSB(); /* Enable the SYSCFG peripheral clock*/ RCC_APB2PeriphResetCmd(RCC_APB2Periph_SYSCFG, ENABLE); /* Remap SRAM at 0x00000000 */ SYSCFG_MemoryRemapConfig(SYSCFG_MemoryRemap_SRAM); /* Configure HCLK clock as SysTick clock source. */ SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK); } #ifdef USE_FULL_ASSERT /** * Reports the name of the source file and the source line number * where the assert_param error has occurred. * \param[in] file pointer to the source file name * \param[in] line assert_param error line source number * \retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* When serial debugging is implemented, use something like this. */ /* printf("Wrong parameters value: file %s on line %d\r\n", file, line); */ /* Setup the LEDs to Alternate */ #if defined(PIOS_LED_HEARTBEAT) PIOS_LED_On(PIOS_LED_HEARTBEAT); #endif /* PIOS_LED_HEARTBEAT */ #if defined(PIOS_LED_ALARM) PIOS_LED_Off(PIOS_LED_ALARM); #endif /* PIOS_LED_ALARM */ /* Infinite loop */ while (1) { #if defined(PIOS_LED_HEARTBEAT) PIOS_LED_Toggle(PIOS_LED_HEARTBEAT); #endif /* PIOS_LED_HEARTBEAT */ #if defined(PIOS_LED_ALARM) PIOS_LED_Toggle(PIOS_LED_ALARM); #endif /* PIOS_LED_ALARM */ for (int i = 0; i < 1000000; i++) { ; } } } #endif /* ifdef USE_FULL_ASSERT */ void NMI_Handler(void) { stopHandler(); } void HardFault_Handler(void) { stopHandler(); } void MemManage_Handler(void) { stopHandler(); } void BusFault_Handler(void) { stopHandler(); } void UsageFault_Handler(void) { stopHandler(); } void stopHandler() { while (1) {} } #endif /* PIOS_INCLUDE_SYS */ /** * @} * @} */