/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup ReceiverModule Manual Control Module * @brief Provide manual control or allow it alter flight mode. * @{ * * Reads in the ManualControlCommand from receiver then * pass it to ManualControl * * @file receiver.c * @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2015. * The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014. * @brief Receiver module. Handles safety R/C link and flight mode. * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #ifndef PIOS_EXCLUDE_ADVANCED_FEATURES #include #include #endif #include #include #include #include #if defined(PIOS_INCLUDE_USB_RCTX) #include "pios_usb_rctx.h" #endif /* PIOS_INCLUDE_USB_RCTX */ // Private constants #if defined(PIOS_RECEIVER_STACK_SIZE) #define STACK_SIZE_BYTES PIOS_RECEIVER_STACK_SIZE #else #define STACK_SIZE_BYTES 1152 #endif #define TASK_PRIORITY (tskIDLE_PRIORITY + 3) // 3 = flight control #define UPDATE_PERIOD_MS 20 #define THROTTLE_FAILSAFE -0.1f #define ARMED_THRESHOLD 0.50f // safe band to allow a bit of calibration error or trim offset (in microseconds) #define CONNECTION_OFFSET 250 #define ASSISTEDCONTROL_DEADBAND_MINIMUM 2 // minimum value for a well bahaved Tx, in percent. // Private types // Private variables static xTaskHandle taskHandle; static portTickType lastSysTime; static FrameType_t frameType = FRAME_TYPE_MULTIROTOR; #ifdef USE_INPUT_LPF static portTickType lastSysTimeLPF; static float inputFiltered[MANUALCONTROLSETTINGS_RESPONSETIME_NUMELEM]; #endif // Private functions static void receiverTask(void *parameters); static float scaleChannel(int16_t value, int16_t max, int16_t min, int16_t neutral); static uint32_t timeDifferenceMs(portTickType start_time, portTickType end_time); static bool validInputRange(int16_t min, int16_t max, uint16_t value); static void applyDeadband(float *value, uint8_t deadband); static void SettingsUpdatedCb(UAVObjEvent *ev); #ifndef PIOS_EXCLUDE_ADVANCED_FEATURES static uint8_t isAssistedFlightMode(uint8_t position); #endif #ifdef USE_INPUT_LPF static void applyLPF(float *value, ManualControlSettingsResponseTimeElem channel, ManualControlSettingsResponseTimeData *responseTime, uint8_t deadband, float dT); #endif #define RCVR_ACTIVITY_MONITOR_CHANNELS_PER_GROUP 12 #define RCVR_ACTIVITY_MONITOR_MIN_RANGE 10 struct rcvr_activity_fsm { ManualControlSettingsChannelGroupsOptions group; uint16_t prev[RCVR_ACTIVITY_MONITOR_CHANNELS_PER_GROUP]; uint8_t sample_count; uint8_t quality; }; static struct rcvr_activity_fsm activity_fsm; static void resetRcvrActivity(struct rcvr_activity_fsm *fsm); static bool updateRcvrActivity(struct rcvr_activity_fsm *fsm); static void resetRcvrStatus(struct rcvr_activity_fsm *fsm); static bool updateRcvrStatus( struct rcvr_activity_fsm *fsm, ManualControlSettingsChannelGroupsOptions group); #define assumptions \ ( \ ((int)MANUALCONTROLCOMMAND_CHANNEL_NUMELEM == (int)MANUALCONTROLSETTINGS_CHANNELGROUPS_NUMELEM) && \ ((int)MANUALCONTROLCOMMAND_CHANNEL_NUMELEM == (int)MANUALCONTROLSETTINGS_CHANNELNUMBER_NUMELEM) && \ ((int)MANUALCONTROLCOMMAND_CHANNEL_NUMELEM == (int)MANUALCONTROLSETTINGS_CHANNELMIN_NUMELEM) && \ ((int)MANUALCONTROLCOMMAND_CHANNEL_NUMELEM == (int)MANUALCONTROLSETTINGS_CHANNELMAX_NUMELEM) && \ ((int)MANUALCONTROLCOMMAND_CHANNEL_NUMELEM == (int)MANUALCONTROLSETTINGS_CHANNELNEUTRAL_NUMELEM)) /** * Module starting */ int32_t ReceiverStart() { // Start main task xTaskCreate(receiverTask, "Receiver", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &taskHandle); PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_RECEIVER, taskHandle); #ifdef PIOS_INCLUDE_WDG PIOS_WDG_RegisterFlag(PIOS_WDG_MANUAL); #endif SettingsUpdatedCb(NULL); return 0; } /** * Module initialization */ int32_t ReceiverInitialize() { /* Check the assumptions about uavobject enum's are correct */ PIOS_STATIC_ASSERT(assumptions); AccessoryDesiredInitialize(); ManualControlCommandInitialize(); ReceiverActivityInitialize(); ReceiverStatusInitialize(); ManualControlSettingsInitialize(); #ifndef PIOS_EXCLUDE_ADVANCED_FEATURES StabilizationSettingsInitialize(); VtolPathFollowerSettingsInitialize(); VtolPathFollowerSettingsConnectCallback(&SettingsUpdatedCb); #endif SystemSettingsInitialize(); SystemSettingsConnectCallback(&SettingsUpdatedCb); return 0; } MODULE_INITCALL(ReceiverInitialize, ReceiverStart); static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev) { frameType = GetCurrentFrameType(); #ifndef PIOS_EXCLUDE_ADVANCED_FEATURES uint8_t TreatCustomCraftAs; VtolPathFollowerSettingsTreatCustomCraftAsGet(&TreatCustomCraftAs); if (frameType == FRAME_TYPE_CUSTOM) { switch (TreatCustomCraftAs) { case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_FIXEDWING: frameType = FRAME_TYPE_FIXED_WING; break; case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_VTOL: frameType = FRAME_TYPE_MULTIROTOR; break; case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_GROUND: frameType = FRAME_TYPE_GROUND; break; } } #endif } /** * Module task */ static void receiverTask(__attribute__((unused)) void *parameters) { ManualControlSettingsData settings; ManualControlCommandData cmd; FlightStatusData flightStatus; uint8_t disconnected_count = 0; uint8_t connected_count = 0; // For now manual instantiate extra instances of Accessory Desired. In future should be done dynamically // this includes not even registering it if not used AccessoryDesiredCreateInstance(); AccessoryDesiredCreateInstance(); AccessoryDesiredCreateInstance(); // Whenever the configuration changes, make sure it is safe to fly ManualControlCommandGet(&cmd); FlightStatusGet(&flightStatus); /* Initialize the RcvrActivty FSM */ portTickType lastActivityTime = xTaskGetTickCount(); resetRcvrActivity(&activity_fsm); resetRcvrStatus(&activity_fsm); // Main task loop lastSysTime = xTaskGetTickCount(); float scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_NUMELEM] = { 0 }; SystemSettingsThrustControlOptions thrustType; while (1) { // Wait until next update vTaskDelayUntil(&lastSysTime, UPDATE_PERIOD_MS / portTICK_RATE_MS); #ifdef PIOS_INCLUDE_WDG PIOS_WDG_UpdateFlag(PIOS_WDG_MANUAL); #endif // Read settings ManualControlSettingsGet(&settings); SystemSettingsThrustControlGet(&thrustType); /* Update channel activity monitor */ if (flightStatus.Armed == FLIGHTSTATUS_ARMED_DISARMED) { if (updateRcvrActivity(&activity_fsm)) { /* Reset the aging timer because activity was detected */ lastActivityTime = lastSysTime; } /* Read signal quality from the group used for the throttle */ (void)updateRcvrStatus(&activity_fsm, settings.ChannelGroups.Throttle); } if (timeDifferenceMs(lastActivityTime, lastSysTime) > 5000) { resetRcvrActivity(&activity_fsm); resetRcvrStatus(&activity_fsm); lastActivityTime = lastSysTime; } if (ManualControlCommandReadOnly()) { FlightTelemetryStatsData flightTelemStats; FlightTelemetryStatsGet(&flightTelemStats); if (flightTelemStats.Status != FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) { /* trying to fly via GCS and lost connection. fall back to transmitter */ UAVObjMetadata metadata; ManualControlCommandGetMetadata(&metadata); UAVObjSetAccess(&metadata, ACCESS_READWRITE); ManualControlCommandSetMetadata(&metadata); } AlarmsSet(SYSTEMALARMS_ALARM_RECEIVER, SYSTEMALARMS_ALARM_WARNING); continue; } bool valid_input_detected = true; // Read channel values in us for (uint8_t n = 0; n < MANUALCONTROLSETTINGS_CHANNELGROUPS_NUMELEM && n < MANUALCONTROLCOMMAND_CHANNEL_NUMELEM; ++n) { extern uint32_t pios_rcvr_group_map[]; if (ManualControlSettingsChannelGroupsToArray(settings.ChannelGroups)[n] >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { cmd.Channel[n] = PIOS_RCVR_INVALID; } else { cmd.Channel[n] = PIOS_RCVR_Read(pios_rcvr_group_map[ ManualControlSettingsChannelGroupsToArray(settings.ChannelGroups)[n]], ManualControlSettingsChannelNumberToArray(settings.ChannelNumber)[n]); } // If a channel has timed out this is not valid data and we shouldn't update anything // until we decide to go to failsafe if (cmd.Channel[n] == (uint16_t)PIOS_RCVR_TIMEOUT) { valid_input_detected = false; } else { scaledChannel[n] = scaleChannel(cmd.Channel[n], ManualControlSettingsChannelMaxToArray(settings.ChannelMax)[n], ManualControlSettingsChannelMinToArray(settings.ChannelMin)[n], ManualControlSettingsChannelNeutralToArray(settings.ChannelNeutral)[n]); } } /* Read signal quality from the group used for the throttle */ (void)updateRcvrStatus(&activity_fsm, settings.ChannelGroups.Throttle); // Sanity Check Throttle and Yaw if (settings.ChannelGroups.Yaw >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE || settings.ChannelGroups.Throttle >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE || // Check all channel mappings are valid cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] == (uint16_t)PIOS_RCVR_INVALID || cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE] == (uint16_t)PIOS_RCVR_INVALID || // Check the driver exists cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW] == (uint16_t)PIOS_RCVR_NODRIVER || cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE] == (uint16_t)PIOS_RCVR_NODRIVER || // Check collective if required (thrustType == SYSTEMSETTINGS_THRUSTCONTROL_COLLECTIVE && ( settings.ChannelGroups.Collective >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE || cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] == (uint16_t)PIOS_RCVR_INVALID || cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] == (uint16_t)PIOS_RCVR_NODRIVER)) || // Check the FlightModeNumber is valid settings.FlightModeNumber < 1 || settings.FlightModeNumber > FLIGHTMODESETTINGS_FLIGHTMODEPOSITION_NUMELEM || // Similar checks for FlightMode channel but only if more than one flight mode has been set. Otherwise don't care ((settings.FlightModeNumber > 1) && (frameType != FRAME_TYPE_GROUND) && (settings.ChannelGroups.FlightMode >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE || cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_FLIGHTMODE] == (uint16_t)PIOS_RCVR_INVALID || cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_FLIGHTMODE] == (uint16_t)PIOS_RCVR_NODRIVER))) { AlarmsSet(SYSTEMALARMS_ALARM_RECEIVER, SYSTEMALARMS_ALARM_CRITICAL); cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_FALSE; ManualControlCommandSet(&cmd); continue; } if (frameType != FRAME_TYPE_GROUND) { // Sanity Check Pitch and Roll if (settings.ChannelGroups.Roll >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE || settings.ChannelGroups.Pitch >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE || // Check all channel mappings are valid cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] == (uint16_t)PIOS_RCVR_INVALID || cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] == (uint16_t)PIOS_RCVR_INVALID || // Check the driver exists cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL] == (uint16_t)PIOS_RCVR_NODRIVER || cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH] == (uint16_t)PIOS_RCVR_NODRIVER) { AlarmsSet(SYSTEMALARMS_ALARM_RECEIVER, SYSTEMALARMS_ALARM_CRITICAL); cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_FALSE; ManualControlCommandSet(&cmd); continue; } } // decide if we have valid manual input or not valid_input_detected &= validInputRange(settings.ChannelMin.Throttle, settings.ChannelMax.Throttle, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE]) && validInputRange(settings.ChannelMin.Yaw, settings.ChannelMax.Yaw, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW]); if (frameType != FRAME_TYPE_GROUND) { valid_input_detected &= validInputRange(settings.ChannelMin.Roll, settings.ChannelMax.Roll, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL]) && validInputRange(settings.ChannelMin.Pitch, settings.ChannelMax.Pitch, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH]); } if (settings.ChannelGroups.Collective != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { valid_input_detected &= validInputRange(settings.ChannelMin.Collective, settings.ChannelMax.Collective, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE]); } if (settings.ChannelGroups.Accessory0 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { valid_input_detected &= validInputRange(settings.ChannelMin.Accessory0, settings.ChannelMax.Accessory0, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY0]); } if (settings.ChannelGroups.Accessory1 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { valid_input_detected &= validInputRange(settings.ChannelMin.Accessory1, settings.ChannelMax.Accessory1, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY1]); } if (settings.ChannelGroups.Accessory2 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { valid_input_detected &= validInputRange(settings.ChannelMin.Accessory2, settings.ChannelMax.Accessory2, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY2]); } if (settings.ChannelGroups.Accessory3 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { valid_input_detected &= validInputRange(settings.ChannelMin.Accessory3, settings.ChannelMax.Accessory3, cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY3]); } // Implement hysteresis loop on connection status if (valid_input_detected && (++connected_count > 10)) { cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_TRUE; connected_count = 0; disconnected_count = 0; } else if (!valid_input_detected && (++disconnected_count > 10)) { cmd.Connected = MANUALCONTROLCOMMAND_CONNECTED_FALSE; connected_count = 0; disconnected_count = 0; } if (cmd.Connected == MANUALCONTROLCOMMAND_CONNECTED_FALSE) { if (frameType != FRAME_TYPE_GROUND) { cmd.Throttle = settings.FailsafeChannel.Throttle; } else { cmd.Throttle = 0.0f; } cmd.Roll = settings.FailsafeChannel.Roll; cmd.Pitch = settings.FailsafeChannel.Pitch; cmd.Yaw = settings.FailsafeChannel.Yaw; cmd.Collective = settings.FailsafeChannel.Collective; switch (thrustType) { case SYSTEMSETTINGS_THRUSTCONTROL_THROTTLE: cmd.Thrust = cmd.Throttle; break; case SYSTEMSETTINGS_THRUSTCONTROL_COLLECTIVE: cmd.Thrust = cmd.Collective; break; default: break; } if (settings.FailsafeFlightModeSwitchPosition >= 0 && settings.FailsafeFlightModeSwitchPosition < settings.FlightModeNumber) { cmd.FlightModeSwitchPosition = (uint8_t)settings.FailsafeFlightModeSwitchPosition; } AlarmsSet(SYSTEMALARMS_ALARM_RECEIVER, SYSTEMALARMS_ALARM_WARNING); AccessoryDesiredData accessory; // Set Accessory 0 if (settings.ChannelGroups.Accessory0 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { accessory.AccessoryVal = settings.FailsafeChannel.Accessory0; if (AccessoryDesiredInstSet(0, &accessory) != 0) { AlarmsSet(SYSTEMALARMS_ALARM_RECEIVER, SYSTEMALARMS_ALARM_WARNING); } } // Set Accessory 1 if (settings.ChannelGroups.Accessory1 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { accessory.AccessoryVal = settings.FailsafeChannel.Accessory1; if (AccessoryDesiredInstSet(1, &accessory) != 0) { AlarmsSet(SYSTEMALARMS_ALARM_RECEIVER, SYSTEMALARMS_ALARM_WARNING); } } // Set Accessory 2 if (settings.ChannelGroups.Accessory2 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { accessory.AccessoryVal = settings.FailsafeChannel.Accessory2; if (AccessoryDesiredInstSet(2, &accessory) != 0) { AlarmsSet(SYSTEMALARMS_ALARM_RECEIVER, SYSTEMALARMS_ALARM_WARNING); } } // Set Accessory 3 if (settings.ChannelGroups.Accessory3 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { accessory.AccessoryVal = settings.FailsafeChannel.Accessory3; if (AccessoryDesiredInstSet(3, &accessory) != 0) { AlarmsSet(SYSTEMALARMS_ALARM_RECEIVER, SYSTEMALARMS_ALARM_WARNING); } } } else if (valid_input_detected) { AlarmsClear(SYSTEMALARMS_ALARM_RECEIVER); // Scale channels to -1 -> +1 range cmd.Roll = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ROLL]; cmd.Pitch = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_PITCH]; cmd.Yaw = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_YAW]; cmd.Throttle = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_THROTTLE]; // Convert flightMode value into the switch position in the range [0..N-1] cmd.FlightModeSwitchPosition = ((int16_t)(scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_FLIGHTMODE] * 256.0f) + 256) * settings.FlightModeNumber >> 9; if (cmd.FlightModeSwitchPosition >= settings.FlightModeNumber) { cmd.FlightModeSwitchPosition = settings.FlightModeNumber - 1; } uint8_t deadband_checked = settings.Deadband; #ifndef PIOS_EXCLUDE_ADVANCED_FEATURES // AssistedControl must have deadband set for pitch/roll hence // we default to a higher value for badly behaved TXs and also enforce a minimum value // for well behaved TXs uint8_t assistedMode = isAssistedFlightMode(cmd.FlightModeSwitchPosition); if (assistedMode) { deadband_checked = settings.DeadbandAssistedControl; if (deadband_checked < ASSISTEDCONTROL_DEADBAND_MINIMUM) { deadband_checked = ASSISTEDCONTROL_DEADBAND_MINIMUM; } // If user has set settings.Deadband to a higher value...we use that. if (deadband_checked < settings.Deadband) { deadband_checked = settings.Deadband; } } #endif // PIOS_EXCLUDE_ADVANCED_FEATURES // Apply deadband for Roll/Pitch/Yaw stick inputs if (deadband_checked > 0) { applyDeadband(&cmd.Roll, deadband_checked); applyDeadband(&cmd.Pitch, deadband_checked); applyDeadband(&cmd.Yaw, deadband_checked); if (frameType == FRAME_TYPE_GROUND) { // assumes reversible motors applyDeadband(&cmd.Throttle, deadband_checked); } } #ifdef USE_INPUT_LPF // Apply Low Pass Filter to input channels, time delta between calls in ms portTickType thisSysTime = xTaskGetTickCount(); float dT = (thisSysTime > lastSysTimeLPF) ? (float)((thisSysTime - lastSysTimeLPF) * portTICK_RATE_MS) : (float)UPDATE_PERIOD_MS; lastSysTimeLPF = thisSysTime; applyLPF(&cmd.Roll, MANUALCONTROLSETTINGS_RESPONSETIME_ROLL, &settings.ResponseTime, deadband_checked, dT); applyLPF(&cmd.Pitch, MANUALCONTROLSETTINGS_RESPONSETIME_PITCH, &settings.ResponseTime, deadband_checked, dT); applyLPF(&cmd.Yaw, MANUALCONTROLSETTINGS_RESPONSETIME_YAW, &settings.ResponseTime, deadband_checked, dT); #endif // USE_INPUT_LPF if (cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] != (uint16_t)PIOS_RCVR_INVALID && cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] != (uint16_t)PIOS_RCVR_NODRIVER && cmd.Channel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE] != (uint16_t)PIOS_RCVR_TIMEOUT) { cmd.Collective = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_COLLECTIVE]; if (settings.Deadband > 0) { applyDeadband(&cmd.Collective, settings.Deadband); } #ifdef USE_INPUT_LPF applyLPF(&cmd.Collective, MANUALCONTROLSETTINGS_RESPONSETIME_COLLECTIVE, &settings.ResponseTime, settings.Deadband, dT); #endif // USE_INPUT_LPF } switch (thrustType) { case SYSTEMSETTINGS_THRUSTCONTROL_THROTTLE: cmd.Thrust = cmd.Throttle; break; case SYSTEMSETTINGS_THRUSTCONTROL_COLLECTIVE: cmd.Thrust = cmd.Collective; break; default: break; } AccessoryDesiredData accessory; // Set Accessory 0 if (settings.ChannelGroups.Accessory0 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { accessory.AccessoryVal = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY0]; #ifdef USE_INPUT_LPF applyLPF(&accessory.AccessoryVal, MANUALCONTROLSETTINGS_RESPONSETIME_ACCESSORY0, &settings.ResponseTime, settings.Deadband, dT); #endif if (AccessoryDesiredInstSet(0, &accessory) != 0) { AlarmsSet(SYSTEMALARMS_ALARM_RECEIVER, SYSTEMALARMS_ALARM_WARNING); } } // Set Accessory 1 if (settings.ChannelGroups.Accessory1 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { accessory.AccessoryVal = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY1]; #ifdef USE_INPUT_LPF applyLPF(&accessory.AccessoryVal, MANUALCONTROLSETTINGS_RESPONSETIME_ACCESSORY1, &settings.ResponseTime, settings.Deadband, dT); #endif if (AccessoryDesiredInstSet(1, &accessory) != 0) { AlarmsSet(SYSTEMALARMS_ALARM_RECEIVER, SYSTEMALARMS_ALARM_WARNING); } } // Set Accessory 2 if (settings.ChannelGroups.Accessory2 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { accessory.AccessoryVal = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY2]; #ifdef USE_INPUT_LPF applyLPF(&accessory.AccessoryVal, MANUALCONTROLSETTINGS_RESPONSETIME_ACCESSORY2, &settings.ResponseTime, settings.Deadband, dT); #endif if (AccessoryDesiredInstSet(2, &accessory) != 0) { AlarmsSet(SYSTEMALARMS_ALARM_RECEIVER, SYSTEMALARMS_ALARM_WARNING); } } // Set Accessory 3 if (settings.ChannelGroups.Accessory3 != MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { accessory.AccessoryVal = scaledChannel[MANUALCONTROLSETTINGS_CHANNELGROUPS_ACCESSORY3]; #ifdef USE_INPUT_LPF applyLPF(&accessory.AccessoryVal, MANUALCONTROLSETTINGS_RESPONSETIME_ACCESSORY3, &settings.ResponseTime, settings.Deadband, dT); #endif if (AccessoryDesiredInstSet(3, &accessory) != 0) { AlarmsSet(SYSTEMALARMS_ALARM_RECEIVER, SYSTEMALARMS_ALARM_WARNING); } } } // Update cmd object ManualControlCommandSet(&cmd); #if defined(PIOS_INCLUDE_USB_RCTX) if (pios_usb_rctx_id) { PIOS_USB_RCTX_Update(pios_usb_rctx_id, cmd.Channel, ManualControlSettingsChannelMinToArray(settings.ChannelMin), ManualControlSettingsChannelMaxToArray(settings.ChannelMax), NELEMENTS(cmd.Channel)); } #endif /* PIOS_INCLUDE_USB_RCTX */ } } static void resetRcvrActivity(struct rcvr_activity_fsm *fsm) { ReceiverActivityData data; bool updated = false; /* Clear all channel activity flags */ ReceiverActivityGet(&data); if (data.ActiveGroup != RECEIVERACTIVITY_ACTIVEGROUP_NONE && data.ActiveChannel != 255) { data.ActiveGroup = RECEIVERACTIVITY_ACTIVEGROUP_NONE; data.ActiveChannel = 255; updated = true; } if (updated) { ReceiverActivitySet(&data); } /* Reset the FSM state */ fsm->group = 0; fsm->sample_count = 0; } static void resetRcvrStatus(struct rcvr_activity_fsm *fsm) { /* Reset the state */ fsm->quality = 0; } static void updateRcvrActivitySample(uint32_t rcvr_id, uint16_t samples[], uint8_t max_channels) { for (uint8_t channel = 1; channel <= max_channels; channel++) { // Subtract 1 because channels are 1 indexed samples[channel - 1] = PIOS_RCVR_Read(rcvr_id, channel); } } static bool updateRcvrActivityCompare(uint32_t rcvr_id, struct rcvr_activity_fsm *fsm) { bool activity_updated = false; /* Compare the current value to the previous sampled value */ for (uint8_t channel = 1; channel <= RCVR_ACTIVITY_MONITOR_CHANNELS_PER_GROUP; channel++) { uint16_t delta; uint16_t prev = fsm->prev[channel - 1]; // Subtract 1 because channels are 1 indexed uint16_t curr = PIOS_RCVR_Read(rcvr_id, channel); if (curr > prev) { delta = curr - prev; } else { delta = prev - curr; } if (delta > RCVR_ACTIVITY_MONITOR_MIN_RANGE) { /* Mark this channel as active */ ReceiverActivityActiveGroupOptions group; /* Don't assume manualcontrolsettings and receiveractivity are in the same order. */ switch (fsm->group) { case MANUALCONTROLSETTINGS_CHANNELGROUPS_PWM: group = RECEIVERACTIVITY_ACTIVEGROUP_PWM; break; case MANUALCONTROLSETTINGS_CHANNELGROUPS_PPM: group = RECEIVERACTIVITY_ACTIVEGROUP_PPM; break; case MANUALCONTROLSETTINGS_CHANNELGROUPS_DSMMAINPORT: group = RECEIVERACTIVITY_ACTIVEGROUP_DSMMAINPORT; break; case MANUALCONTROLSETTINGS_CHANNELGROUPS_DSMFLEXIPORT: group = RECEIVERACTIVITY_ACTIVEGROUP_DSMFLEXIPORT; break; case MANUALCONTROLSETTINGS_CHANNELGROUPS_SBUS: group = RECEIVERACTIVITY_ACTIVEGROUP_SBUS; break; case MANUALCONTROLSETTINGS_CHANNELGROUPS_HOTTFLEXIPORT: group = RECEIVERACTIVITY_ACTIVEGROUP_HOTTFLEXIPORT; break; case MANUALCONTROLSETTINGS_CHANNELGROUPS_SRXL: group = RECEIVERACTIVITY_ACTIVEGROUP_SRXL; break; case MANUALCONTROLSETTINGS_CHANNELGROUPS_GCS: group = RECEIVERACTIVITY_ACTIVEGROUP_GCS; break; case MANUALCONTROLSETTINGS_CHANNELGROUPS_OPLINK: group = RECEIVERACTIVITY_ACTIVEGROUP_OPLINK; break; default: PIOS_Assert(0); break; } ReceiverActivityActiveGroupSet((uint8_t *)&group); ReceiverActivityActiveChannelSet(&channel); activity_updated = true; } } return activity_updated; } static bool updateRcvrActivity(struct rcvr_activity_fsm *fsm) { bool activity_updated = false; if (fsm->group >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { /* We're out of range, reset things */ resetRcvrActivity(fsm); resetRcvrStatus(fsm); } extern uint32_t pios_rcvr_group_map[]; if (!pios_rcvr_group_map[fsm->group]) { /* Unbound group, skip it */ goto group_completed; } if (fsm->sample_count == 0) { /* Take a sample of each channel in this group */ updateRcvrActivitySample(pios_rcvr_group_map[fsm->group], fsm->prev, NELEMENTS(fsm->prev)); fsm->sample_count++; return false; } /* Compare with previous sample */ activity_updated = updateRcvrActivityCompare(pios_rcvr_group_map[fsm->group], fsm); group_completed: /* Reset the sample counter */ fsm->sample_count = 0; /* Find the next active group, but limit search so we can't loop forever here */ for (uint8_t i = 0; i < MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE; i++) { /* Move to the next group */ fsm->group++; if (fsm->group >= MANUALCONTROLSETTINGS_CHANNELGROUPS_NONE) { /* Wrap back to the first group */ fsm->group = 0; } if (pios_rcvr_group_map[fsm->group]) { /* * Found an active group, take a sample here to avoid an * extra 20ms delay in the main thread so we can speed up * this algorithm. */ updateRcvrActivitySample(pios_rcvr_group_map[fsm->group], fsm->prev, NELEMENTS(fsm->prev)); fsm->sample_count++; break; } } return activity_updated; } /* Read signal quality from the specified group */ static bool updateRcvrStatus( struct rcvr_activity_fsm *fsm, ManualControlSettingsChannelGroupsOptions group) { extern uint32_t pios_rcvr_group_map[]; bool activity_updated = false; int8_t quality; quality = PIOS_RCVR_GetQuality(pios_rcvr_group_map[group]); /* If no driver is detected or any other error then return */ if (quality < 0) { return activity_updated; } /* Compare with previous sample */ if (quality != fsm->quality) { fsm->quality = quality; ReceiverStatusQualitySet(&fsm->quality); activity_updated = true; } return activity_updated; } /** * Convert channel from servo pulse duration (microseconds) to scaled -1/+1 range. */ static float scaleChannel(int16_t value, int16_t max, int16_t min, int16_t neutral) { float valueScaled; // Scale if ((max > min && value >= neutral) || (min > max && value <= neutral)) { if (max != neutral) { valueScaled = (float)(value - neutral) / (float)(max - neutral); } else { valueScaled = 0; } } else { if (min != neutral) { valueScaled = (float)(value - neutral) / (float)(neutral - min); } else { valueScaled = 0; } } // Bound if (valueScaled > 1.0f) { valueScaled = 1.0f; } else if (valueScaled < -1.0f) { valueScaled = -1.0f; } return valueScaled; } static uint32_t timeDifferenceMs(portTickType start_time, portTickType end_time) { return (end_time - start_time) * portTICK_RATE_MS; } /** * @brief Determine if the manual input value is within acceptable limits * @returns return TRUE if so, otherwise return FALSE */ bool validInputRange(int16_t min, int16_t max, uint16_t value) { if (min > max) { int16_t tmp = min; min = max; max = tmp; } return value >= min - CONNECTION_OFFSET && value <= max + CONNECTION_OFFSET; } /** * @brief Apply deadband to Roll/Pitch/Yaw channels */ static void applyDeadband(float *value, uint8_t deadband) { float floatDeadband = ((float)deadband) * 0.01f; if (fabsf(*value) < floatDeadband) { *value = 0.0f; } else if (*value > 0.0f) { *value = (*value - floatDeadband) / (1.0f - floatDeadband); } else { *value = (*value + floatDeadband) / (1.0f - floatDeadband); } } #ifdef USE_INPUT_LPF /** * @brief Apply Low Pass Filter to Throttle/Roll/Pitch/Yaw or Accessory channel */ static void applyLPF(float *value, ManualControlSettingsResponseTimeElem channel, ManualControlSettingsResponseTimeData *responseTime, uint8_t deadband, float dT) { float rt = (float)ManualControlSettingsResponseTimeToArray((*responseTime))[channel]; if (rt > 0.0f) { inputFiltered[channel] = ((rt * inputFiltered[channel]) + (dT * (*value))) / (rt + dT); float floatDeadband = ((float)deadband) * 0.01f; // avoid a long tail of non-zero data. if we have deadband, once the filtered result reduces to 1/10th // of deadband revert to 0. We downstream rely on this to know when sticks are centered. if (floatDeadband > 0.0f && fabsf(inputFiltered[channel]) < floatDeadband * 0.1f) { inputFiltered[channel] = 0.0f; } *value = inputFiltered[channel]; } } #endif // USE_INPUT_LPF /** * Check and set modes for gps assisted stablised flight modes */ #ifndef PIOS_EXCLUDE_ADVANCED_FEATURES static uint8_t isAssistedFlightMode(uint8_t position) { uint8_t isAssistedFlag = STABILIZATIONSETTINGS_FLIGHTMODEASSISTMAP_NONE; uint8_t FlightModeAssistMap[STABILIZATIONSETTINGS_FLIGHTMODEASSISTMAP_NUMELEM]; StabilizationSettingsFlightModeAssistMapGet(FlightModeAssistMap); if (position < STABILIZATIONSETTINGS_FLIGHTMODEASSISTMAP_NUMELEM) { isAssistedFlag = FlightModeAssistMap[position]; } return isAssistedFlag; } #endif /** * @} * @} */