/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_RFM22B Radio Functions * @brief PIOS interface for for the RFM22B radio * @{ * * @file pios_rfm22b.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief Implements a driver the the RFM22B driver * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ // ***************************************************************** // RFM22B hardware layer // // This module uses the RFM22B's internal packet handling hardware to // encapsulate our own packet data. // // The RFM22B internal hardware packet handler configuration is as follows .. // // 4-byte (32-bit) preamble .. alternating 0's & 1's // 4-byte (32-bit) sync // 1-byte packet length (number of data bytes to follow) // 0 to 255 user data bytes // // Our own packet data will also contain it's own header and 32-bit CRC // as a single 16-bit CRC is not sufficient for wireless comms. // // ***************************************************************** #include "pios.h" #ifdef PIOS_INCLUDE_RFM22B #include #include #include #include #include /* Local Defines */ #define STACK_SIZE_BYTES 200 #define TASK_PRIORITY (tskIDLE_PRIORITY + 2) #define ISR_TIMEOUT 2 // ms #define EVENT_QUEUE_SIZE 5 #define RFM22B_DEFAULT_RX_DATARATE RFM22_datarate_9600 #define RFM22B_DEFAULT_FREQUENCY 434000000 #define RFM22B_DEFAULT_MIN_FREQUENCY (RFM22B_DEFAULT_FREQUENCY - 2000000) #define RFM22B_DEFAULT_MAX_FREQUENCY (RFM22B_DEFAULT_FREQUENCY + 2000000) #define RFM22B_DEFAULT_TX_POWER RFM22_tx_pwr_txpow_7 #define RFM22B_LINK_QUALITY_THRESHOLD 20 // The maximum amount of time since the last message received to consider the connection broken. #define DISCONNECT_TIMEOUT_MS 1000 // ms // The maximum amount of time without activity before initiating a reset. #define PIOS_RFM22B_SUPERVISOR_TIMEOUT 100 // ms // The time between connection attempts when not connected #define CONNECT_ATTEMPT_PERIOD_MS 250 // ms // The time between updates for sending stats the radio link. #define RADIOSTATS_UPDATE_PERIOD_MS 250 // The number of stats updates that a modem can miss before it's considered disconnected #define MAX_RADIOSTATS_MISS_COUNT 3 // The time between PPM updates #define PPM_UPDATE_PERIOD_MS 40 // this is too adjust the RF module so that it is on frequency #define OSC_LOAD_CAP 0x7F // cap = 12.5pf .. default #define OSC_LOAD_CAP_1 0x7D // board 1 #define OSC_LOAD_CAP_2 0x7B // board 2 #define OSC_LOAD_CAP_3 0x7E // board 3 #define OSC_LOAD_CAP_4 0x7F // board 4 // ************************************ #define TX_PREAMBLE_NIBBLES 12 // 7 to 511 (number of nibbles) #define RX_PREAMBLE_NIBBLES 6 // 5 to 31 (number of nibbles) // the size of the rf modules internal FIFO buffers #define FIFO_SIZE 64 #define TX_FIFO_HI_WATERMARK 62 // 0-63 #define TX_FIFO_LO_WATERMARK 32 // 0-63 #define RX_FIFO_HI_WATERMARK 32 // 0-63 #define PREAMBLE_BYTE 0x55 // preamble byte (preceeds SYNC_BYTE's) #define SYNC_BYTE_1 0x2D // RF sync bytes (32-bit in all) #define SYNC_BYTE_2 0xD4 // #define SYNC_BYTE_3 0x4B // #define SYNC_BYTE_4 0x59 // #ifndef RX_LED_ON #define RX_LED_ON #define RX_LED_OFF #define TX_LED_ON #define TX_LED_OFF #define LINK_LED_ON #define LINK_LED_OFF #define USB_LED_ON #define USB_LED_OFF #endif // ************************************ // Normal data streaming // GFSK modulation // no manchester encoding // data whitening // FIFO mode // 5-nibble rx preamble length detection // 10-nibble tx preamble length // AFC enabled /* Local type definitions */ struct pios_rfm22b_transition { enum pios_rfm22b_event (*entry_fn) (struct pios_rfm22b_dev *rfm22b_dev); enum pios_rfm22b_state next_state[RFM22B_EVENT_NUM_EVENTS]; }; // Must ensure these prefilled arrays match the define sizes static const uint8_t FULL_PREAMBLE[FIFO_SIZE] = {PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE,PREAMBLE_BYTE}; // 64 bytes static const uint8_t HEADER[(TX_PREAMBLE_NIBBLES + 1)/2 + 2] = {PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE,PREAMBLE_BYTE, PREAMBLE_BYTE, SYNC_BYTE_1, SYNC_BYTE_2}; static const uint8_t OUT_FF[64] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF}; /* Local function forwared declarations */ static void PIOS_RFM22B_Task(void *parameters); static bool rfm22_readStatus(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_setDatarate(struct pios_rfm22b_dev * rfm22b_dev, enum rfm22b_datarate datarate, bool data_whitening); static enum pios_rfm22b_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_setRxMode(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_detectPreamble(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_detectSync(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_rxData(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_rxFailure(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_receiveStatus(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_receiveAck(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_receiveNack(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_sendAck(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_sendNack(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_requestConnection(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_initConnection(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_acceptConnection(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_txStart(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_txData(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_txFailure(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_process_state_transition(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event); static void rfm22_process_event(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event); static enum pios_rfm22b_event rfm22_timeout(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_error(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_rfm22b_event rfm22_fatal_error(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_sendStatus(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_sendPPM(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22b_add_rx_status(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_rx_packet_status status); static bool rfm22_receivePacket(struct pios_rfm22b_dev *rfm22b_dev, PHPacketHandle p, uint16_t rx_len); static void rfm22_setNominalCarrierFrequency(struct pios_rfm22b_dev *rfm22b_dev, uint32_t frequency_hz); static void rfm22_calculateLinkQuality(struct pios_rfm22b_dev *rfm22b_dev); static bool rfm22_ready_to_send(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_setConnectionParameters(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_clearLEDs(); // SPI read/write functions static void rfm22_assertCs(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_deassertCs(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_claimBus(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_releaseBus(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_write(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr, uint8_t data); static uint8_t rfm22_read(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr); static uint8_t rfm22_read_noclaim(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr); /* Te state transition table */ const static struct pios_rfm22b_transition rfm22b_transitions[RFM22B_STATE_NUM_STATES] = { // Initialization thread [RFM22B_STATE_UNINITIALIZED] = { .entry_fn = 0, .next_state = { [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, }, }, [RFM22B_STATE_INITIALIZING] = { .entry_fn = rfm22_init, .next_state = { [RFM22B_EVENT_INITIALIZED] = RFM22B_STATE_INITIATING_CONNECTION, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_INITIATING_CONNECTION] = { .entry_fn = rfm22_initConnection, .next_state = { [RFM22B_EVENT_REQUEST_CONNECTION] = RFM22B_STATE_REQUESTING_CONNECTION, [RFM22B_EVENT_WAIT_FOR_CONNECTION] = RFM22B_STATE_RX_MODE, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_REQUESTING_CONNECTION] = { .entry_fn = rfm22_requestConnection, .next_state = { [RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_ACCEPTING_CONNECTION] = { .entry_fn = rfm22_acceptConnection, .next_state = { [RFM22B_EVENT_CONNECTION_ACCEPTED] = RFM22B_STATE_SENDING_ACK, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_RX_MODE] = { .entry_fn = rfm22_setRxMode, .next_state = { [RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_WAIT_PREAMBLE, [RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START, [RFM22B_EVENT_ACK_TIMEOUT] = RFM22B_STATE_RECEIVING_NACK, [RFM22B_EVENT_FAILURE] = RFM22B_STATE_RX_FAILURE, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_WAIT_PREAMBLE] = { .entry_fn = rfm22_detectPreamble, .next_state = { [RFM22B_EVENT_PREAMBLE_DETECTED] = RFM22B_STATE_WAIT_SYNC, [RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START, [RFM22B_EVENT_ACK_TIMEOUT] = RFM22B_STATE_RECEIVING_NACK, [RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_WAIT_PREAMBLE, [RFM22B_EVENT_FAILURE] = RFM22B_STATE_RX_FAILURE, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_WAIT_SYNC] = { .entry_fn = rfm22_detectSync, .next_state = { [RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_WAIT_SYNC, [RFM22B_EVENT_SYNC_DETECTED] = RFM22B_STATE_RX_DATA, [RFM22B_EVENT_FAILURE] = RFM22B_STATE_RX_FAILURE, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_RX_DATA] = { .entry_fn = rfm22_rxData, .next_state = { [RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_RX_DATA, [RFM22B_EVENT_RX_COMPLETE] = RFM22B_STATE_SENDING_ACK, [RFM22B_EVENT_RX_ERROR] = RFM22B_STATE_SENDING_NACK, [RFM22B_EVENT_STATUS_RECEIVED] = RFM22B_STATE_RECEIVING_STATUS, [RFM22B_EVENT_CONNECTION_REQUESTED] = RFM22B_STATE_ACCEPTING_CONNECTION, [RFM22B_EVENT_PACKET_ACKED] = RFM22B_STATE_RECEIVING_ACK, [RFM22B_EVENT_PACKET_NACKED] = RFM22B_STATE_RECEIVING_NACK, [RFM22B_EVENT_FAILURE] = RFM22B_STATE_RX_FAILURE, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_RX_FAILURE] = { .entry_fn = rfm22_rxFailure, .next_state = { [RFM22B_EVENT_RX_MODE] = RFM22B_STATE_RX_MODE, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_RECEIVING_ACK] = { .entry_fn = rfm22_receiveAck, .next_state = { [RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START, [RFM22B_EVENT_RX_MODE] = RFM22B_STATE_RX_MODE, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_RECEIVING_NACK] = { .entry_fn = rfm22_receiveNack, .next_state = { [RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_RECEIVING_STATUS] = { .entry_fn = rfm22_receiveStatus, .next_state = { [RFM22B_EVENT_RX_COMPLETE] = RFM22B_STATE_SENDING_ACK, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_TX_START] = { .entry_fn = rfm22_txStart, .next_state = { [RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_TX_DATA, [RFM22B_EVENT_RX_MODE] = RFM22B_STATE_RX_MODE, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_TX_DATA] = { .entry_fn = rfm22_txData, .next_state = { [RFM22B_EVENT_INT_RECEIVED] = RFM22B_STATE_TX_DATA, [RFM22B_EVENT_RX_MODE] = RFM22B_STATE_RX_MODE, [RFM22B_EVENT_FAILURE] = RFM22B_STATE_TX_FAILURE, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_TX_FAILURE] = { .entry_fn = rfm22_txFailure, .next_state = { [RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START, [RFM22B_EVENT_TIMEOUT] = RFM22B_STATE_TIMEOUT, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_SENDING_ACK] = { .entry_fn = rfm22_sendAck, .next_state = { [RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_SENDING_NACK] = { .entry_fn = rfm22_sendNack, .next_state = { [RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_TIMEOUT] = { .entry_fn = rfm22_timeout, .next_state = { [RFM22B_EVENT_TX_START] = RFM22B_STATE_TX_START, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_ERROR] = { .entry_fn = rfm22_error, .next_state = { [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_ERROR] = RFM22B_STATE_ERROR, [RFM22B_EVENT_INITIALIZE] = RFM22B_STATE_INITIALIZING, [RFM22B_EVENT_FATAL_ERROR] = RFM22B_STATE_FATAL_ERROR, }, }, [RFM22B_STATE_FATAL_ERROR] = { .entry_fn = rfm22_fatal_error, .next_state = { }, }, }; // xtal 10 ppm, 434MHz #define LOOKUP_SIZE 14 static const uint32_t data_rate[] = { 500, 1000, 2000, 4000, 8000, 9600, 16000, 19200, 24000, 32000, 64000, 128000, 192000, 256000}; static const uint8_t modulation_index[] = { 16, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; static const uint32_t freq_deviation[] = { 4000, 4000, 4000, 4000, 4000, 4800, 8000, 9600, 12000, 16000, 32000, 64000, 96000, 128000}; static const uint32_t rx_bandwidth[] = { 17500, 17500, 17500, 17500, 17500, 19400, 32200, 38600, 51200, 64100, 137900, 269300, 420200, 518800}; static const int8_t est_rx_sens_dBm[] = { -118, -118, -117, -116, -115, -115, -112, -112, -110, -109, -106, -103, -101, -100}; // estimated receiver sensitivity for BER = 1E-3 static const uint8_t reg_1C[] = { 0x37, 0x37, 0x37, 0x37, 0x3A, 0x3B, 0x26, 0x28, 0x2E, 0x16, 0x07, 0x83, 0x8A, 0x8C}; // rfm22_if_filter_bandwidth static const uint8_t reg_1D[] = { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44}; // rfm22_afc_loop_gearshift_override static const uint8_t reg_1E[] = { 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x02}; // rfm22_afc_timing_control static const uint8_t reg_1F[] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; // rfm22_clk_recovery_gearshift_override static const uint8_t reg_20[] = { 0xE8, 0xF4, 0xFA, 0x70, 0x3F, 0x34, 0x3F, 0x34, 0x2A, 0x3F, 0x3F, 0x5E, 0x3F, 0x2F}; // rfm22_clk_recovery_oversampling_ratio static const uint8_t reg_21[] = { 0x60, 0x20, 0x00, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x02, 0x02, 0x01, 0x02, 0x02}; // rfm22_clk_recovery_offset2 static const uint8_t reg_22[] = { 0x20, 0x41, 0x83, 0x06, 0x0C, 0x75, 0x0C, 0x75, 0x12, 0x0C, 0x0C, 0x5D, 0x0C, 0xBB}; // rfm22_clk_recovery_offset1 static const uint8_t reg_23[] = { 0xC5, 0x89, 0x12, 0x25, 0x4A, 0x25, 0x4A, 0x25, 0x6F, 0x4A, 0x4A, 0x86, 0x4A, 0x0D}; // rfm22_clk_recovery_offset0 static const uint8_t reg_24[] = { 0x00, 0x00, 0x00, 0x02, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x05, 0x07, 0x07}; // rfm22_clk_recovery_timing_loop_gain1 static const uint8_t reg_25[] = { 0x0A, 0x23, 0x85, 0x0E, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x74, 0xFF, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0 static const uint8_t reg_2A[] = { 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0E, 0x12, 0x17, 0x31, 0x50, 0x50, 0x50}; // rfm22_afc_limiter .. AFC_pull_in_range = �AFCLimiter[7:0] x (hbsel+1) x 625 Hz static const uint8_t reg_6E[] = { 0x04, 0x08, 0x10, 0x20, 0x41, 0x4E, 0x83, 0x9D, 0xC4, 0x08, 0x10, 0x20, 0x31, 0x41}; // rfm22_tx_data_rate1 static const uint8_t reg_6F[] = { 0x19, 0x31, 0x62, 0xC5, 0x89, 0xA5, 0x12, 0x49, 0x9C, 0x31, 0x62, 0xC5, 0x27, 0x89}; // rfm22_tx_data_rate0 static const uint8_t reg_70[] = { 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D}; // rfm22_modulation_mode_control1 static const uint8_t reg_71[] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23}; // rfm22_modulation_mode_control2 static const uint8_t reg_72[] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x08, 0x0D, 0x0F, 0x13, 0x1A, 0x33, 0x66, 0x9A, 0xCD}; // rfm22_frequency_deviation // ************************************ // Scan Spectrum settings // GFSK modulation // no manchester encoding // data whitening // FIFO mode // 5-nibble rx preamble length detection // 10-nibble tx preamble length #define SS_LOOKUP_SIZE 2 // xtal 1 ppm, 434MHz static const uint32_t ss_rx_bandwidth[] = { 2600, 10600}; static const uint8_t ss_reg_1C[] = { 0x51, 0x32}; // rfm22_if_filter_bandwidth static const uint8_t ss_reg_1D[] = { 0x00, 0x00}; // rfm22_afc_loop_gearshift_override static const uint8_t ss_reg_20[] = { 0xE8, 0x38}; // rfm22_clk_recovery_oversampling_ratio static const uint8_t ss_reg_21[] = { 0x60, 0x02}; // rfm22_clk_recovery_offset2 static const uint8_t ss_reg_22[] = { 0x20, 0x4D}; // rfm22_clk_recovery_offset1 static const uint8_t ss_reg_23[] = { 0xC5, 0xD3}; // rfm22_clk_recovery_offset0 static const uint8_t ss_reg_24[] = { 0x00, 0x07}; // rfm22_clk_recovery_timing_loop_gain1 static const uint8_t ss_reg_25[] = { 0x0F, 0xFF}; // rfm22_clk_recovery_timing_loop_gain0 static const uint8_t ss_reg_2A[] = { 0xFF, 0xFF}; // rfm22_afc_limiter .. AFC_pull_in_range = �AFCLimiter[7:0] x (hbsel+1) x 625 Hz static const uint8_t ss_reg_70[] = { 0x24, 0x2D}; // rfm22_modulation_mode_control1 static const uint8_t ss_reg_71[] = { 0x2B, 0x23}; // rfm22_modulation_mode_control2 static inline uint32_t timeDifferenceMs(portTickType start_time, portTickType end_time) { if(end_time >= start_time) return (end_time - start_time) * portTICK_RATE_MS; // Rollover return ((portMAX_DELAY - start_time) + end_time) * portTICK_RATE_MS; } bool PIOS_RFM22B_validate(struct pios_rfm22b_dev * rfm22b_dev) { return (rfm22b_dev != NULL && rfm22b_dev->magic == PIOS_RFM22B_DEV_MAGIC); } #if defined(PIOS_INCLUDE_FREERTOS) static struct pios_rfm22b_dev * PIOS_RFM22B_alloc(void) { struct pios_rfm22b_dev * rfm22b_dev; rfm22b_dev = (struct pios_rfm22b_dev *)pvPortMalloc(sizeof(*rfm22b_dev)); rfm22b_dev->spi_id = 0; if (!rfm22b_dev) return(NULL); rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC; return(rfm22b_dev); } #else static struct pios_rfm22b_dev pios_rfm22b_devs[PIOS_RFM22B_MAX_DEVS]; static uint8_t pios_rfm22b_num_devs; static struct pios_rfm22b_dev * PIOS_RFM22B_alloc(void) { struct pios_rfm22b_dev * rfm22b_dev; if (pios_rfm22b_num_devs >= PIOS_RFM22B_MAX_DEVS) return NULL; rfm22b_dev = &pios_rfm22b_devs[pios_rfm22b_num_devs++]; rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC; return (rfm22b_dev); } #endif static struct pios_rfm22b_dev * g_rfm22b_dev = NULL; /** * Initialise an RFM22B device */ int32_t PIOS_RFM22B_Init(uint32_t *rfm22b_id, uint32_t spi_id, uint32_t slave_num, const struct pios_rfm22b_cfg *cfg) { PIOS_DEBUG_Assert(rfm22b_id); PIOS_DEBUG_Assert(cfg); // Allocate the device structure. struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *) PIOS_RFM22B_alloc(); if (!rfm22b_dev) return(-1); *rfm22b_id = (uint32_t)rfm22b_dev; g_rfm22b_dev = rfm22b_dev; // Store the SPI handle rfm22b_dev->slave_num = slave_num; rfm22b_dev->spi_id = spi_id; // Initialize our configuration parameters rfm22b_dev->coordinator = false; rfm22b_dev->send_ppm = false; rfm22b_dev->datarate = RFM22B_DEFAULT_RX_DATARATE; // Initialize the com callbacks. rfm22b_dev->com_config_cb = NULL; rfm22b_dev->rx_in_cb = NULL; rfm22b_dev->tx_out_cb = NULL; // Initialize the stats. rfm22b_dev->stats.packets_per_sec = 0; rfm22b_dev->stats.rx_good = 0; rfm22b_dev->stats.rx_corrected = 0; rfm22b_dev->stats.rx_error = 0; rfm22b_dev->stats.rx_missed = 0; rfm22b_dev->stats.tx_dropped = 0; rfm22b_dev->stats.tx_resent = 0; rfm22b_dev->stats.resets = 0; rfm22b_dev->stats.timeouts = 0; rfm22b_dev->stats.link_quality = 0; rfm22b_dev->stats.rssi = 0; // Create the event queue rfm22b_dev->eventQueue = xQueueCreate(EVENT_QUEUE_SIZE, sizeof(enum pios_rfm22b_event)); // Bind the configuration to the device instance rfm22b_dev->cfg = *cfg; // Create a semaphore to know if an ISR needs responding to vSemaphoreCreateBinary( rfm22b_dev->isrPending ); // Create our (hopefully) unique 32 bit id from the processor serial number. uint8_t crcs[] = { 0, 0, 0, 0 }; { char serial_no_str[33]; PIOS_SYS_SerialNumberGet(serial_no_str); // Create a 32 bit value using 4 8 bit CRC values. for (uint8_t i = 0; serial_no_str[i] != 0; ++i) crcs[i % 4] = PIOS_CRC_updateByte(crcs[i % 4], serial_no_str[i]); } rfm22b_dev->deviceID = crcs[0] | crcs[1] << 8 | crcs[2] << 16 | crcs[3] << 24; DEBUG_PRINTF(2, "RF device ID: %x\n\r", rfm22b_dev->deviceID); // Initialize the external interrupt. PIOS_EXTI_Init(cfg->exti_cfg); // Register the watchdog timer for the radio driver task #ifdef PIOS_WDG_RFM22B PIOS_WDG_RegisterFlag(PIOS_WDG_RFM22B); #endif /* PIOS_WDG_RFM22B */ // Initialize the ECC library. initialize_ecc(); // Set the state to initializing. rfm22b_dev->state = RFM22B_STATE_UNINITIALIZED; // Initialize the radio device. PIOS_RFM22B_InjectEvent(rfm22b_dev, RFM22B_EVENT_INITIALIZE, false); // Start the driver task. This task controls the radio state machine and removed all of the IO from the IRQ handler. xTaskCreate(PIOS_RFM22B_Task, (signed char *)"PIOS_RFM22B_Task", STACK_SIZE_BYTES, (void*)rfm22b_dev, TASK_PRIORITY, &(rfm22b_dev->taskHandle)); return(0); } /** * The RFM22B external interrupt routine. */ bool PIOS_RFM22_EXT_Int(void) { if (!PIOS_RFM22B_validate(g_rfm22b_dev)) return false; // Inject an interrupt event into the state machine. PIOS_RFM22B_InjectEvent(g_rfm22b_dev, RFM22B_EVENT_INT_RECEIVED, true); return false; } /** * Inject an event into the RFM22B state machine. * \param[in] rfm22b_dev The device structure * \param[in] event The event to inject * \param[in] inISR Is this being called from an interrrup service routine? */ void PIOS_RFM22B_InjectEvent(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event, bool inISR) { // Store the event. if (xQueueSend(rfm22b_dev->eventQueue, &event, portMAX_DELAY) != pdTRUE) return; // Signal the semaphore to wake up the handler thread. if (inISR) { portBASE_TYPE pxHigherPriorityTaskWoken; if (xSemaphoreGiveFromISR(rfm22b_dev->isrPending, &pxHigherPriorityTaskWoken) != pdTRUE) { // Something went fairly seriously wrong rfm22b_dev->errors++; } portEND_SWITCHING_ISR(pxHigherPriorityTaskWoken); } else { if (xSemaphoreGive(rfm22b_dev->isrPending) != pdTRUE) { // Something went fairly seriously wrong rfm22b_dev->errors++; } } } /** * Returns the unique device ID for the RFM22B device. * \param[in] rfm22b_id The RFM22B device index. * \return The unique device ID */ uint32_t PIOS_RFM22B_DeviceID(uint32_t rfm22b_id) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (PIOS_RFM22B_validate(rfm22b_dev)) return rfm22b_dev->deviceID; else return 0; } /** * Sets the radio device transmit power. * \param[in] rfm22b_id The RFM22B device index. * \param[in] tx_pwr The transmit power. */ void PIOS_RFM22B_SetTxPower(uint32_t rfm22b_id, enum rfm22b_tx_power tx_pwr) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_validate(rfm22b_dev)) return; rfm22b_dev->tx_power = tx_pwr; } /** * Sets the radio frequency range and value. * \param[in] rfm22b_id The RFM22B device index. * \param[in] min_frequency The minimum frequency. * \param[in] max_frequency The maximum frequency. */ void PIOS_RFM22B_SetFrequencyRange(uint32_t rfm22b_id, uint32_t min_frequency, uint32_t max_frequency) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_validate(rfm22b_dev)) return; rfm22b_dev->min_frequency = min_frequency; rfm22b_dev->max_frequency = max_frequency; rfm22_setNominalCarrierFrequency(rfm22b_dev, (max_frequency - min_frequency) / 2); } /** * Sets the radio destination ID. * \param[in] rfm22b_id The RFM22B device index. * \param[in] dest_id The destination ID. */ void PIOS_RFM22B_SetDestinationId(uint32_t rfm22b_id, uint32_t dest_id) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_validate(rfm22b_dev)) return; rfm22b_dev->destination_id = (dest_id == 0) ? 0xffffffff : dest_id; // The first slot is reserved for our current pairID rfm22b_dev->pair_stats[0].pairID = dest_id; rfm22b_dev->pair_stats[0].rssi = -127; rfm22b_dev->pair_stats[0].afc_correction = 0; rfm22b_dev->pair_stats[0].lastContact = 0; } /** * Configures the radio as a coordinator or not. * \param[in] rfm22b_id The RFM22B device index. * \param[in] coordinator Sets as coordinator if true. */ void PIOS_RFM22B_SetCoordinator(uint32_t rfm22b_id, bool coordinator) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_validate(rfm22b_dev)) return; rfm22b_dev->coordinator = coordinator; // Re-initialize the radio device. PIOS_RFM22B_InjectEvent(rfm22b_dev, RFM22B_EVENT_INITIALIZE, false); } /** * Set the remote com port configuration parameters. * \param[in] rfm22b_id The rfm22b device. * \param[in] com_port The remote com port * \param[in] com_speed The remote com port speed */ void PIOS_RFM22B_SetRemoteComConfig(uint32_t rfm22b_id, OPLinkSettingsOutputConnectionOptions com_port, OPLinkSettingsComSpeedOptions com_speed) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if(!PIOS_RFM22B_validate(rfm22b_dev)) return; rfm22b_dev->con_packet.port = com_port; rfm22b_dev->con_packet.com_speed = com_speed; } /** * Set the com port configuration callback (to receive com configuration over the air) * \param[in] rfm22b_id The rfm22b device. * \param[in] cb A pointer to the callback function */ void PIOS_RFM22B_SetComConfigCallback(uint32_t rfm22b_id, PIOS_RFM22B_ComConfigCallback cb) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if(!PIOS_RFM22B_validate(rfm22b_dev)) return; rfm22b_dev->com_config_cb = cb; } /** * Returns the device statistics RFM22B device. * \param[in] rfm22b_id The RFM22B device index. * \param[out] stats The stats are returned in this structure */ void PIOS_RFM22B_GetStats(uint32_t rfm22b_id, struct rfm22b_stats *stats) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if(!PIOS_RFM22B_validate(rfm22b_dev)) return; // Calculate the current link quality rfm22_calculateLinkQuality(rfm22b_dev); // We are connected if our destination ID is in the pair stats. if (rfm22b_dev->destination_id != 0xffffffff) for (uint8_t i = 0; i < OPLINKSTATUS_PAIRIDS_NUMELEM; ++i) { if ((rfm22b_dev->pair_stats[i].pairID == rfm22b_dev->destination_id) && (rfm22b_dev->pair_stats[i].rssi > -127)) { rfm22b_dev->stats.rssi = rfm22b_dev->pair_stats[i].rssi; rfm22b_dev->stats.afc_correction = rfm22b_dev->pair_stats[i].afc_correction; break; } } *stats = rfm22b_dev->stats; } /** * Get the stats of the oter radio devices that are in range. * \param[out] device_ids A pointer to the array to store the device IDs. * \param[out] RSSIs A pointer to the array to store the RSSI values in. * \param[in] mx_pairs The length of the pdevice_ids and RSSIs arrays. * \return The number of pair stats returned. */ uint8_t PIOS_RFM2B_GetPairStats(uint32_t rfm22b_id, uint32_t *device_ids, int8_t *RSSIs, uint8_t max_pairs) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_validate(rfm22b_dev)) return 0; uint8_t mp = (max_pairs >= OPLINKSTATUS_PAIRIDS_NUMELEM) ? max_pairs : OPLINKSTATUS_PAIRIDS_NUMELEM; for (uint8_t i = 0; i < mp; ++i) { device_ids[i] = rfm22b_dev->pair_stats[i].pairID; RSSIs[i] = rfm22b_dev->pair_stats[i].rssi; } return mp; } /** * Check the radio device for a valid connection * \param[in] rfm22b_id The rfm22b device. * Returns true if there is a valid connection to paired radio, false otherwise. */ bool PIOS_RFM22B_LinkStatus(uint32_t rfm22b_id) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if(!PIOS_RFM22B_validate(rfm22b_dev)) return false; return (rfm22b_dev->stats.link_state == OPLINKSTATUS_LINKSTATE_CONNECTED) && (rfm22b_dev->stats.link_quality > RFM22B_LINK_QUALITY_THRESHOLD); } /** * The task that controls the radio state machine. */ static void PIOS_RFM22B_Task(void *parameters) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)parameters; if (!PIOS_RFM22B_validate(rfm22b_dev)) return; portTickType lastEventTicks = xTaskGetTickCount(); portTickType lastStatusTicks = lastEventTicks; portTickType lastPPMTicks = lastEventTicks; while(1) { #ifdef PIOS_WDG_RFM22B // Update the watchdog timer PIOS_WDG_UpdateFlag(PIOS_WDG_RFM22B); #endif /* PIOS_WDG_RFM22B */ // Wait for a signal indicating an external interrupt or a pending send/receive request. if (xSemaphoreTake(rfm22b_dev->isrPending, ISR_TIMEOUT / portTICK_RATE_MS) == pdTRUE) { lastEventTicks = xTaskGetTickCount(); // Process events through the state machine. enum pios_rfm22b_event event; while (xQueueReceive(rfm22b_dev->eventQueue, &event, 0) == pdTRUE) { if ((event == RFM22B_EVENT_INT_RECEIVED) && ((rfm22b_dev->state == RFM22B_STATE_UNINITIALIZED) || (rfm22b_dev->state == RFM22B_STATE_INITIALIZING))) continue; rfm22_process_event(rfm22b_dev, event); } } else { // Has it been too long since the last event? portTickType curTicks = xTaskGetTickCount(); if (timeDifferenceMs(lastEventTicks, curTicks) > PIOS_RFM22B_SUPERVISOR_TIMEOUT) { // Transsition through an error event. rfm22_process_event(rfm22b_dev, RFM22B_EVENT_ERROR); // Clear the event queue. enum pios_rfm22b_event event; while (xQueueReceive(rfm22b_dev->eventQueue, &event, 0) == pdTRUE) ; lastEventTicks = xTaskGetTickCount(); } } portTickType curTicks = xTaskGetTickCount(); // Have we been sending this packet too long? if ((rfm22b_dev->packet_start_ticks > 0) && (timeDifferenceMs(rfm22b_dev->packet_start_ticks, curTicks) > (rfm22b_dev->max_packet_time * 3))) rfm22_process_event(rfm22b_dev, RFM22B_EVENT_TIMEOUT); // Have it been too long since we received a packet else if ((rfm22b_dev->rx_complete_ticks > 0) && (timeDifferenceMs(rfm22b_dev->rx_complete_ticks, curTicks) > DISCONNECT_TIMEOUT_MS)) rfm22_process_event(rfm22b_dev, RFM22B_EVENT_ERROR); else { // Are we waiting for an ACK? if (rfm22b_dev->prev_tx_packet) { // Should we resend the packet? if (timeDifferenceMs(rfm22b_dev->tx_complete_ticks, curTicks) > rfm22b_dev->max_ack_delay) { rfm22b_dev->tx_complete_ticks = curTicks; rfm22_process_event(rfm22b_dev, RFM22B_EVENT_ACK_TIMEOUT); } } else { // Queue up a PPM packet if it's time. if (timeDifferenceMs(lastPPMTicks, curTicks) > PPM_UPDATE_PERIOD_MS) { rfm22_sendPPM(rfm22b_dev); lastPPMTicks = curTicks; } // Queue up a status packet if it's time. if (timeDifferenceMs(lastStatusTicks, curTicks) > RADIOSTATS_UPDATE_PERIOD_MS) { rfm22_sendStatus(rfm22b_dev); lastStatusTicks = curTicks; } } } // Send a packet if it's our time slice rfm22b_dev->time_to_send = (((curTicks - rfm22b_dev->time_to_send_offset) & 0x6) == 0); #ifdef PIOS_RFM22B_DEBUG_ON_TELEM if (rfm22b_dev->time_to_send) D4_LED_ON; else D4_LED_OFF; #endif if (rfm22b_dev->time_to_send) rfm22_process_event(rfm22b_dev, RFM22B_EVENT_TX_START); } } // ************************************ // radio datarate about 19200 Baud // radio frequency deviation 45kHz // radio receiver bandwidth 67kHz. // // Carson's rule: // The signal bandwidth is about 2(Delta-f + fm) .. // // Delta-f = frequency deviation // fm = maximum frequency of the signal // // This gives 2(45 + 9.6) = 109.2kHz. static void rfm22_setDatarate(struct pios_rfm22b_dev * rfm22b_dev, enum rfm22b_datarate datarate, bool data_whitening) { uint32_t datarate_bps = data_rate[datarate]; rfm22b_dev->max_packet_time = (uint16_t)((float)(PIOS_PH_MAX_PACKET * 8 * 1000) / (float)(datarate_bps) + 0.5); if (rfm22b_dev->stats.link_state == OPLINKSTATUS_LINKSTATE_CONNECTED) { // Generate a pseudo-random number from 0-8 to add to the delay uint8_t random = PIOS_CRC_updateByte(0, (uint8_t)(xTaskGetTickCount() & 0xff)) & 0x03; rfm22b_dev->max_ack_delay = (uint16_t)((float)(sizeof(PHPacketHeader) * 8 * 1000) / (float)(datarate_bps) + 0.5) * 4 + random; } else rfm22b_dev->max_ack_delay = CONNECT_ATTEMPT_PERIOD_MS; // rfm22_if_filter_bandwidth rfm22_write(rfm22b_dev, 0x1C, reg_1C[datarate]); // rfm22_afc_loop_gearshift_override rfm22_write(rfm22b_dev, 0x1D, reg_1D[datarate]); // RFM22_afc_timing_control rfm22_write(rfm22b_dev, 0x1E, reg_1E[datarate]); // RFM22_clk_recovery_gearshift_override rfm22_write(rfm22b_dev, 0x1F, reg_1F[datarate]); // rfm22_clk_recovery_oversampling_ratio rfm22_write(rfm22b_dev, 0x20, reg_20[datarate]); // rfm22_clk_recovery_offset2 rfm22_write(rfm22b_dev, 0x21, reg_21[datarate]); // rfm22_clk_recovery_offset1 rfm22_write(rfm22b_dev, 0x22, reg_22[datarate]); // rfm22_clk_recovery_offset0 rfm22_write(rfm22b_dev, 0x23, reg_23[datarate]); // rfm22_clk_recovery_timing_loop_gain1 rfm22_write(rfm22b_dev, 0x24, reg_24[datarate]); // rfm22_clk_recovery_timing_loop_gain0 rfm22_write(rfm22b_dev, 0x25, reg_25[datarate]); // rfm22_afc_limiter rfm22_write(rfm22b_dev, 0x2A, reg_2A[datarate]); // rfm22_tx_data_rate1 rfm22_write(rfm22b_dev, 0x6E, reg_6E[datarate]); // rfm22_tx_data_rate0 rfm22_write(rfm22b_dev, 0x6F, reg_6F[datarate]); if (!data_whitening) // rfm22_modulation_mode_control1 rfm22_write(rfm22b_dev, 0x70, reg_70[datarate] & ~RFM22_mmc1_enwhite); else // rfm22_modulation_mode_control1 rfm22_write(rfm22b_dev, 0x70, reg_70[datarate] | RFM22_mmc1_enwhite); // rfm22_modulation_mode_control2 rfm22_write(rfm22b_dev, 0x71, reg_71[datarate]); // rfm22_frequency_deviation rfm22_write(rfm22b_dev, 0x72, reg_72[datarate]); rfm22_write(rfm22b_dev, RFM22_ook_counter_value1, 0x00); rfm22_write(rfm22b_dev, RFM22_ook_counter_value2, 0x00); } void PIOS_RFM22B_SetDatarate(uint32_t rfm22b_id, enum rfm22b_datarate datarate, bool data_whitening) { struct pios_rfm22b_dev * rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if(!PIOS_RFM22B_validate(rfm22b_dev)) return; rfm22b_dev->datarate = datarate; // Re-initialize the radio device. PIOS_RFM22B_InjectEvent(rfm22b_dev, RFM22B_EVENT_INITIALIZE, false); } // ************************************ // SPI read/write //! Assert the CS line static void rfm22_assertCs(struct pios_rfm22b_dev *rfm22b_dev) { PIOS_DELAY_WaituS(1); if(rfm22b_dev->spi_id != 0) PIOS_SPI_RC_PinSet(rfm22b_dev->spi_id, rfm22b_dev->slave_num, 0); } //! Deassert the CS line static void rfm22_deassertCs(struct pios_rfm22b_dev *rfm22b_dev) { if(rfm22b_dev->spi_id != 0) PIOS_SPI_RC_PinSet(rfm22b_dev->spi_id, rfm22b_dev->slave_num, 1); } //! Claim the SPI bus semaphore static void rfm22_claimBus(struct pios_rfm22b_dev *rfm22b_dev) { if(rfm22b_dev->spi_id != 0) PIOS_SPI_ClaimBus(rfm22b_dev->spi_id); } //! Release the SPI bus semaphore static void rfm22_releaseBus(struct pios_rfm22b_dev *rfm22b_dev) { if(rfm22b_dev->spi_id != 0) PIOS_SPI_ReleaseBus(rfm22b_dev->spi_id); } /** * Claim the semaphore and write a byte to a register * @param[in] addr The address to write to * @param[in] data The datat to write to that address */ static void rfm22_write(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr, uint8_t data) { rfm22_claimBus(rfm22b_dev); rfm22_assertCs(rfm22b_dev); uint8_t buf[2] = {addr | 0x80, data}; PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, buf, NULL, sizeof(buf), NULL); rfm22_deassertCs(rfm22b_dev); rfm22_releaseBus(rfm22b_dev); } /** * Write a byte to a register without claiming the bus. Also * toggle the NSS line * @param[in] addr The address of the RFM22b register to write * @param[in] data The data to write to that register static void rfm22_write_noclaim(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr, uint8_t data) { uint8_t buf[2] = {addr | 0x80, data}; rfm22_assertCs(rfm22b_dev); PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, buf, NULL, sizeof(buf), NULL); rfm22_deassertCs(rfm22b_dev); } */ /** * Read a byte from an RFM22b register * @param[in] addr The address to read from * @return Returns the result of the register read */ static uint8_t rfm22_read(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr) { uint8_t in[2]; uint8_t out[2] = {addr & 0x7f, 0xFF}; rfm22_claimBus(rfm22b_dev); rfm22_assertCs(rfm22b_dev); PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, out, in, sizeof(out), NULL); rfm22_deassertCs(rfm22b_dev); rfm22_releaseBus(rfm22b_dev); return in[1]; } /** * Read a byte from an RFM22b register without claiming the bus * @param[in] addr The address to read from * @return Returns the result of the register read */ static uint8_t rfm22_read_noclaim(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr) { uint8_t out[2] = {addr & 0x7F, 0xFF}; uint8_t in[2]; rfm22_assertCs(rfm22b_dev); PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, out, in, sizeof(out), NULL); rfm22_deassertCs(rfm22b_dev); return in[1]; } // ************************************ static enum pios_rfm22b_event rfm22_process_state_transition(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event) { // No event if (event == RFM22B_EVENT_NUM_EVENTS) return RFM22B_EVENT_NUM_EVENTS; // Don't transition if there is no transition defined enum pios_rfm22b_state next_state = rfm22b_transitions[rfm22b_dev->state].next_state[event]; if (!next_state) return RFM22B_EVENT_NUM_EVENTS; /* * Move to the next state * * This is done prior to calling the new state's entry function to * guarantee that the entry function never depends on the previous * state. This way, it cannot ever know what the previous state was. */ enum pios_rfm22b_state prev_state = rfm22b_dev->state; if (prev_state) ; rfm22b_dev->state = next_state; /* Call the entry function (if any) for the next state. */ if (rfm22b_transitions[rfm22b_dev->state].entry_fn) return rfm22b_transitions[rfm22b_dev->state].entry_fn(rfm22b_dev); return RFM22B_EVENT_NUM_EVENTS; } static void rfm22_process_event(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_event event) { // Process all state transitions. while(event != RFM22B_EVENT_NUM_EVENTS) event = rfm22_process_state_transition(rfm22b_dev, event); } // ************************************ static void rfm22_setNominalCarrierFrequency(struct pios_rfm22b_dev *rfm22b_dev, uint32_t frequency_hz) { if (frequency_hz < rfm22b_dev->min_frequency) frequency_hz = rfm22b_dev->min_frequency; else if (frequency_hz > rfm22b_dev->max_frequency) frequency_hz = rfm22b_dev->max_frequency; // holds the hbsel (1 or 2) uint8_t hbsel; if (frequency_hz < 480000000) hbsel = 1; else hbsel = 2; uint8_t fb = (uint8_t)(frequency_hz / (10000000 * hbsel)); uint32_t fc = (uint32_t)(frequency_hz - (10000000 * hbsel * fb)); fc = (fc * 64u) / (10000ul * hbsel); fb -= 24; if (hbsel > 1) fb |= RFM22_fbs_hbsel; fb |= RFM22_fbs_sbse; // is this the RX LO polarity? // frequency hopping channel (0-255) rfm22b_dev->frequency_step_size = 156.25f * hbsel; // frequency hopping channel (0-255) rfm22_write(rfm22b_dev, RFM22_frequency_hopping_channel_select, rfm22b_dev->frequency_hop_channel); // no frequency offset rfm22_write(rfm22b_dev, RFM22_frequency_offset1, 0); // no frequency offset rfm22_write(rfm22b_dev, RFM22_frequency_offset2, 0); // set the carrier frequency rfm22_write(rfm22b_dev, RFM22_frequency_band_select, fb); rfm22_write(rfm22b_dev, RFM22_nominal_carrier_frequency1, fc >> 8); rfm22_write(rfm22b_dev, RFM22_nominal_carrier_frequency0, fc & 0xff); } /* static void rfm22_setFreqHopChannel(uint8_t channel) { // set the frequency hopping channel g_rfm22b_dev->frequency_hop_channel = channel; rfm22_write(rfm22b_dev, RFM22_frequency_hopping_channel_select, channel); } static uint32_t rfm22_freqHopSize(void) { // return the frequency hopping step size return ((uint32_t)g_rfm22b_dev->frequency_hop_step_size_reg * 10000); } */ static void rfm22_calculateLinkQuality(struct pios_rfm22b_dev *rfm22b_dev) { // Add the RX packet statistics rfm22b_dev->stats.rx_good = 0; rfm22b_dev->stats.rx_corrected = 0; rfm22b_dev->stats.rx_error = 0; rfm22b_dev->stats.tx_resent = 0; for (uint8_t i = 0; i < RFM22B_RX_PACKET_STATS_LEN; ++i) { uint32_t val = rfm22b_dev->rx_packet_stats[i]; for (uint8_t j = 0; j < 16; ++j) { switch ((val >> (j * 2)) & 0x3) { case RFM22B_GOOD_RX_PACKET: rfm22b_dev->stats.rx_good++; break; case RFM22B_CORRECTED_RX_PACKET: rfm22b_dev->stats.rx_corrected++; break; case RFM22B_ERROR_RX_PACKET: rfm22b_dev->stats.rx_error++; break; case RFM22B_RESENT_TX_PACKET: rfm22b_dev->stats.tx_resent++; break; } } } // Calculate the link quality metric, which is related to the number of good packets in relation to the number of bad packets. // Note: This assumes that the number of packets sampled for the stats is 64. // Using this equation, error and resent packets are counted as -2, and corrected packets are counted as -1. // The range is 0 (all error or resent packets) to 128 (all good packets). rfm22b_dev->stats.link_quality = 64 + rfm22b_dev->stats.rx_good - rfm22b_dev->stats.rx_error - rfm22b_dev->stats.tx_resent; } // ************************************ static enum pios_rfm22b_event rfm22_setRxMode(struct pios_rfm22b_dev *rfm22b_dev) { // Are we already in Rx mode? if (rfm22b_dev->in_rx_mode) return RFM22B_EVENT_NUM_EVENTS; rfm22b_dev->packet_start_ticks = 0; #ifdef PIOS_RFM22B_DEBUG_ON_TELEM D2_LED_ON; D3_LED_TOGGLE; #endif // disable interrupts rfm22_write(rfm22b_dev, RFM22_interrupt_enable1, 0x00); rfm22_write(rfm22b_dev, RFM22_interrupt_enable2, 0x00); // Switch to TUNE mode rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); RX_LED_OFF; TX_LED_OFF; // empty the rx buffer rfm22b_dev->rx_buffer_wr = 0; // Clear the TX buffer. rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0; // clear FIFOs rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx); rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl2, 0x00); // enable RX interrupts rfm22_write(rfm22b_dev, RFM22_interrupt_enable1, RFM22_ie1_encrcerror | RFM22_ie1_enpkvalid | RFM22_ie1_enrxffafull | RFM22_ie1_enfferr); rfm22_write(rfm22b_dev, RFM22_interrupt_enable2, RFM22_ie2_enpreainval | RFM22_ie2_enpreaval | RFM22_ie2_enswdet); // enable the receiver rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_rxon); // Indicate that we're in RX mode. rfm22b_dev->in_rx_mode = true; // No event generated return RFM22B_EVENT_NUM_EVENTS; } // ************************************ static bool rfm22_ready_to_send(struct pios_rfm22b_dev *rfm22b_dev) { // Is there a status of PPM packet ready to send? if (rfm22b_dev->prev_tx_packet || rfm22b_dev->send_ppm || rfm22b_dev->send_status) return true; // Is there some data ready to sent? PHPacketHandle dp = &rfm22b_dev->data_packet; if (dp->header.data_size > 0) return true; bool need_yield = false; if (rfm22b_dev->tx_out_cb) dp->header.data_size = (rfm22b_dev->tx_out_cb)(rfm22b_dev->tx_out_context, dp->data, PH_MAX_DATA, NULL, &need_yield); if (dp->header.data_size > 0) return true; return false; } static enum pios_rfm22b_event rfm22_txStart(struct pios_rfm22b_dev *rfm22b_dev) { PHPacketHandle p = NULL; // Don't send if it's not our turn. if (!rfm22b_dev->time_to_send) return RFM22B_EVENT_RX_MODE; // See if there's a packet ready to send. if (rfm22b_dev->tx_packet) p = rfm22b_dev->tx_packet; // Are we waiting for an ACK? else { // Don't send a packet if we're waiting for an ACK if (rfm22b_dev->prev_tx_packet) return RFM22B_EVENT_RX_MODE; if (!p && rfm22b_dev->send_connection_request) { p = (PHPacketHandle)&(rfm22b_dev->con_packet); rfm22b_dev->send_connection_request = false; } #ifdef PIOS_PPM_RECEIVER if (!p && rfm22b_dev->send_ppm) { p = (PHPacketHandle)&(rfm22b_dev->ppm_packet); rfm22b_dev->send_ppm = false; } #endif if (!p && rfm22b_dev->send_status) { p = (PHPacketHandle)&(rfm22b_dev->status_packet); rfm22b_dev->send_status = false; } if (!p) { // Try to get some data to send bool need_yield = false; p = &rfm22b_dev->data_packet; p->header.type = PACKET_TYPE_DATA; p->header.destination_id = rfm22b_dev->destination_id; if (rfm22b_dev->tx_out_cb && (p->header.data_size == 0)) p->header.data_size = (rfm22b_dev->tx_out_cb)(rfm22b_dev->tx_out_context, p->data, PH_MAX_DATA, NULL, &need_yield); // Don't send any data until we're connected. if (rfm22b_dev->stats.link_state != OPLINKSTATUS_LINKSTATE_CONNECTED) p->header.data_size = 0; if (p->header.data_size == 0) p = NULL; } if (p) p->header.seq_num = rfm22b_dev->stats.tx_seq++; } if (!p) return RFM22B_EVENT_RX_MODE; // We're transitioning out of Rx mode. rfm22b_dev->in_rx_mode = false; #ifdef PIOS_RFM22B_DEBUG_ON_TELEM D1_LED_ON; D2_LED_OFF; D3_LED_TOGGLE; #endif // Add the error correcting code. p->header.source_id = rfm22b_dev->deviceID; encode_data((unsigned char*)p, PHPacketSize(p), (unsigned char*)p); rfm22b_dev->tx_packet = p; rfm22b_dev->packet_start_ticks = xTaskGetTickCount(); if (rfm22b_dev->packet_start_ticks == 0) rfm22b_dev->packet_start_ticks = 1; // disable interrupts rfm22_write(rfm22b_dev, RFM22_interrupt_enable1, 0x00); rfm22_write(rfm22b_dev, RFM22_interrupt_enable2, 0x00); // TUNE mode rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); // Queue the data up for sending rfm22b_dev->tx_data_wr = PH_PACKET_SIZE(rfm22b_dev->tx_packet); RX_LED_OFF; // Set the destination address in the transmit header. // The destination address is the first 4 bytes of the message. uint8_t *tx_buffer = (uint8_t*)(rfm22b_dev->tx_packet); rfm22_write(rfm22b_dev, RFM22_transmit_header0, tx_buffer[0]); rfm22_write(rfm22b_dev, RFM22_transmit_header1, tx_buffer[1]); rfm22_write(rfm22b_dev, RFM22_transmit_header2, tx_buffer[2]); rfm22_write(rfm22b_dev, RFM22_transmit_header3, tx_buffer[3]); // FIFO mode, GFSK modulation uint8_t fd_bit = rfm22_read(rfm22b_dev, RFM22_modulation_mode_control2) & RFM22_mmc2_fd; rfm22_write(rfm22b_dev, RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk); // set the tx power rfm22_write(rfm22b_dev, RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_1 | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | rfm22b_dev->tx_power); // clear FIFOs rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx); rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl2, 0x00); // ******************* // add some data to the chips TX FIFO before enabling the transmitter // set the total number of data bytes we are going to transmit rfm22_write(rfm22b_dev, RFM22_transmit_packet_length, rfm22b_dev->tx_data_wr); // add some data rfm22_claimBus(rfm22b_dev); rfm22_assertCs(rfm22b_dev); PIOS_SPI_TransferByte(rfm22b_dev->spi_id, RFM22_fifo_access | 0x80); int bytes_to_write = (rfm22b_dev->tx_data_wr - rfm22b_dev->tx_data_rd); bytes_to_write = (bytes_to_write > FIFO_SIZE) ? FIFO_SIZE: bytes_to_write; PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, &tx_buffer[rfm22b_dev->tx_data_rd], NULL, bytes_to_write, NULL); rfm22b_dev->tx_data_rd += bytes_to_write; rfm22_deassertCs(rfm22b_dev); rfm22_releaseBus(rfm22b_dev); // enable TX interrupts rfm22_write(rfm22b_dev, RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem); // enable the transmitter rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_txon); TX_LED_ON; return RFM22B_EVENT_NUM_EVENTS; } static void rfm22_sendStatus(struct pios_rfm22b_dev *rfm22b_dev) { // Only send status if we're connected if (rfm22b_dev->stats.link_state != OPLINKSTATUS_LINKSTATE_CONNECTED) return; // Update the link quality metric. rfm22_calculateLinkQuality(rfm22b_dev); // Queue the status message if (rfm22b_dev->stats.link_state == OPLINKSTATUS_LINKSTATE_CONNECTED) rfm22b_dev->status_packet.header.destination_id = rfm22b_dev->destination_id; else rfm22b_dev->status_packet.header.destination_id = 0xffffffff; // Broadcast rfm22b_dev->status_packet.header.type = PACKET_TYPE_STATUS; rfm22b_dev->status_packet.header.data_size = PH_STATUS_DATA_SIZE(&(rfm22b_dev->status_packet)); rfm22b_dev->status_packet.link_quality = rfm22b_dev->stats.link_quality; rfm22b_dev->status_packet.received_rssi = rfm22b_dev->rssi_dBm; rfm22b_dev->send_status = true; return; } static void rfm22_sendPPM(struct pios_rfm22b_dev *rfm22b_dev) { #ifdef PIOS_PPM_RECEIVER // Only send PPM if we're connected if (rfm22b_dev->stats.link_state != OPLINKSTATUS_LINKSTATE_CONNECTED) return; // Just return if the PPM receiver is not configured. if (PIOS_PPM_RECEIVER == 0) return; // See if we have any valid channels. bool valid_input_detected = false; for (uint8_t i = 1; i <= PIOS_PPM_NUM_INPUTS; ++i) { rfm22b_dev->ppm_packet.channels[i - 1] = PIOS_RCVR_Read(PIOS_PPM_RECEIVER, i); if(rfm22b_dev->ppm_packet.channels[i - 1] != PIOS_RCVR_TIMEOUT) valid_input_detected = true; } // Send the PPM packet if it's valid if (valid_input_detected) { rfm22b_dev->ppm_packet.header.destination_id = rfm22b_dev->destination_id; rfm22b_dev->ppm_packet.header.type = PACKET_TYPE_PPM; rfm22b_dev->ppm_packet.header.data_size = PH_PPM_DATA_SIZE(&(rfm22b_dev->ppm_packet)); rfm22b_dev->send_ppm = true; } #endif } /** * Read the RFM22B interrupt and device status registers * \param[in] rfm22b_dev The device structure */ static bool rfm22_readStatus(struct pios_rfm22b_dev *rfm22b_dev) { // 1. Read the interrupt statuses with burst read rfm22_claimBus(rfm22b_dev); // Set RC and the semaphore uint8_t write_buf[3] = {RFM22_interrupt_status1 & 0x7f, 0xFF, 0xFF}; uint8_t read_buf[3]; rfm22_assertCs(rfm22b_dev); PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, write_buf, read_buf, sizeof(write_buf), NULL); rfm22_deassertCs(rfm22b_dev); rfm22b_dev->int_status1 = read_buf[1]; rfm22b_dev->int_status2 = read_buf[2]; // Device status rfm22b_dev->device_status = rfm22_read_noclaim(rfm22b_dev, RFM22_device_status); // EzMAC status rfm22b_dev->ezmac_status = rfm22_read_noclaim(rfm22b_dev, RFM22_ezmac_status); // Release the bus rfm22_releaseBus(rfm22b_dev); // the RF module has gone and done a reset - we need to re-initialize the rf module if (rfm22b_dev->int_status2 & RFM22_is2_ipor) return false; return true; } /** * Add a status value to the RX packet status array. * \param[in] rfm22b_dev The device structure * \param[in] status The packet status value */ static void rfm22b_add_rx_status(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_rx_packet_status status) { // Shift the status registers for (uint8_t i = RFM22B_RX_PACKET_STATS_LEN - 1; i > 0; --i) { rfm22b_dev->rx_packet_stats[i] = (rfm22b_dev->rx_packet_stats[i] << 2) | (rfm22b_dev->rx_packet_stats[i - 1] >> 30); } rfm22b_dev->rx_packet_stats[0] = (rfm22b_dev->rx_packet_stats[0] << 2) | status; } static enum pios_rfm22b_event rfm22_detectPreamble(struct pios_rfm22b_dev *rfm22b_dev) { // Read the device status registers if (!rfm22_readStatus(rfm22b_dev)) return RFM22B_EVENT_FAILURE; // Valid preamble detected if (rfm22b_dev->int_status2 & RFM22_is2_ipreaval) { rfm22b_dev->packet_start_ticks = xTaskGetTickCount(); if (rfm22b_dev->packet_start_ticks == 0) rfm22b_dev->packet_start_ticks = 1; RX_LED_ON; #ifdef PIOS_RFM22B_DEBUG_ON_TELEM D3_LED_TOGGLE; #endif return RFM22B_EVENT_PREAMBLE_DETECTED; } return RFM22B_EVENT_NUM_EVENTS; } static enum pios_rfm22b_event rfm22_detectSync(struct pios_rfm22b_dev *rfm22b_dev) { // Read the device status registers if (!rfm22_readStatus(rfm22b_dev)) return RFM22B_EVENT_FAILURE; // Sync word detected if (rfm22b_dev->int_status2 & RFM22_is2_iswdet) { RX_LED_ON; // read the 10-bit signed afc correction value // bits 9 to 2 uint16_t afc_correction = (uint16_t)rfm22_read(rfm22b_dev, RFM22_afc_correction_read) << 8; // bits 1 & 0 afc_correction |= (uint16_t)rfm22_read(rfm22b_dev, RFM22_ook_counter_value1) & 0x00c0; afc_correction >>= 6; // convert the afc value to Hz int32_t afc_corr = (int32_t)(rfm22b_dev->frequency_step_size * afc_correction + 0.5f); rfm22b_dev->afc_correction_Hz = (afc_corr < -127) ? -127 : ((afc_corr > 127) ? 127 : afc_corr); // read rx signal strength .. 45 = -100dBm, 205 = -20dBm uint8_t rssi = rfm22_read(rfm22b_dev, RFM22_rssi); // convert to dBm rfm22b_dev->rssi_dBm = (int8_t)(rssi >> 1) - 122; return RFM22B_EVENT_SYNC_DETECTED; } else if (rfm22b_dev->int_status2 & !RFM22_is2_ipreaval) // Waiting for sync timed out. return RFM22B_EVENT_FAILURE; return RFM22B_EVENT_NUM_EVENTS; } static bool rfm22_receivePacket(struct pios_rfm22b_dev *rfm22b_dev, PHPacketHandle p, uint16_t rx_len) { // Attempt to correct any errors in the packet. decode_data((unsigned char*)p, rx_len); bool good_packet = check_syndrome() == 0; bool corrected_packet = false; // We have an error. Try to correct it. if(!good_packet && (correct_errors_erasures((unsigned char*)p, rx_len, 0, 0) != 0)) // We corrected it corrected_packet = true; // Add any missed packets into the stats. bool ack_nack_packet = ((p->header.type == PACKET_TYPE_ACK) || (p->header.type == PACKET_TYPE_ACK_RTS) || (p->header.type == PACKET_TYPE_NACK)); if (!ack_nack_packet && (good_packet || corrected_packet)) { uint16_t seq_num = p->header.seq_num; if (rfm22b_dev->stats.link_state == OPLINKSTATUS_LINKSTATE_CONNECTED) { static bool first_time = true; uint16_t missed_packets = 0; if (first_time) first_time = false; else { uint16_t prev_seq_num = rfm22b_dev->stats.rx_seq; if (seq_num > prev_seq_num) missed_packets = seq_num - prev_seq_num - 1; else if((seq_num == prev_seq_num) && (p->header.type == PACKET_TYPE_DATA)) p->header.type = PACKET_TYPE_DUPLICATE_DATA; } rfm22b_dev->stats.rx_missed += missed_packets; } rfm22b_dev->stats.rx_seq = seq_num; } // Set the packet status if (good_packet) rfm22b_add_rx_status(rfm22b_dev, RFM22B_GOOD_RX_PACKET); else if(corrected_packet) // We corrected the error. rfm22b_add_rx_status(rfm22b_dev, RFM22B_CORRECTED_RX_PACKET); else // We couldn't correct the error, so drop the packet. rfm22b_add_rx_status(rfm22b_dev, RFM22B_ERROR_RX_PACKET); return (good_packet || corrected_packet); } static enum pios_rfm22b_event rfm22_rxData(struct pios_rfm22b_dev *rfm22b_dev) { // Swap in the next packet buffer if required. uint8_t *rx_buffer = (uint8_t*)&(rfm22b_dev->rx_packet); // Read the device status registers if (!rfm22_readStatus(rfm22b_dev)) return RFM22B_EVENT_FAILURE; // FIFO under/over flow error. Restart RX mode. if (rfm22b_dev->int_status1 & RFM22_is1_ifferr) return RFM22B_EVENT_FAILURE; // RX FIFO almost full, it needs emptying if (rfm22b_dev->int_status1 & RFM22_is1_irxffafull) { // read data from the rf chips FIFO buffer // read the total length of the packet data uint16_t len = rfm22_read(rfm22b_dev, RFM22_received_packet_length); // The received packet is going to be larger than the specified length if ((rfm22b_dev->rx_buffer_wr + RX_FIFO_HI_WATERMARK) > len) return RFM22B_EVENT_FAILURE; // Another packet length error. if (((rfm22b_dev->rx_buffer_wr + RX_FIFO_HI_WATERMARK) >= len) && !(rfm22b_dev->int_status1 & RFM22_is1_ipkvalid)) return RFM22B_EVENT_FAILURE; // Fetch the data from the RX FIFO rfm22_claimBus(rfm22b_dev); rfm22_assertCs(rfm22b_dev); PIOS_SPI_TransferByte(rfm22b_dev->spi_id,RFM22_fifo_access & 0x7F); rfm22b_dev->rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev->spi_id ,OUT_FF, (uint8_t *)&rx_buffer[rfm22b_dev->rx_buffer_wr], RX_FIFO_HI_WATERMARK, NULL) == 0) ? RX_FIFO_HI_WATERMARK : 0; rfm22_deassertCs(rfm22b_dev); rfm22_releaseBus(rfm22b_dev); } // CRC error .. discard the received data if (rfm22b_dev->int_status1 & RFM22_is1_icrerror) return RFM22B_EVENT_FAILURE; // Valid packet received if (rfm22b_dev->int_status1 & RFM22_is1_ipkvalid) { // read the total length of the packet data uint32_t len = rfm22_read(rfm22b_dev, RFM22_received_packet_length); // their must still be data in the RX FIFO we need to get if (rfm22b_dev->rx_buffer_wr < len) { int32_t bytes_to_read = len - rfm22b_dev->rx_buffer_wr; // Fetch the data from the RX FIFO rfm22_claimBus(rfm22b_dev); rfm22_assertCs(rfm22b_dev); PIOS_SPI_TransferByte(rfm22b_dev->spi_id,RFM22_fifo_access & 0x7F); rfm22b_dev->rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev->spi_id,OUT_FF, (uint8_t *)&rx_buffer[rfm22b_dev->rx_buffer_wr], bytes_to_read, NULL) == 0) ? bytes_to_read : 0; rfm22_deassertCs(rfm22b_dev); rfm22_releaseBus(rfm22b_dev); } if (rfm22b_dev->rx_buffer_wr != len) return RFM22B_EVENT_FAILURE; // we have a valid received packet enum pios_rfm22b_event ret_event = RFM22B_EVENT_RX_COMPLETE; if (rfm22b_dev->rx_buffer_wr > 0) { rfm22b_dev->stats.rx_byte_count += rfm22b_dev->rx_buffer_wr; // Check the packet for errors. if (rfm22_receivePacket(rfm22b_dev, &(rfm22b_dev->rx_packet), rfm22b_dev->rx_buffer_wr)) { switch (rfm22b_dev->rx_packet.header.type) { case PACKET_TYPE_STATUS: ret_event = RFM22B_EVENT_STATUS_RECEIVED; break; case PACKET_TYPE_CON_REQUEST: ret_event = RFM22B_EVENT_CONNECTION_REQUESTED; break; case PACKET_TYPE_DATA: { // Send the data to the com port bool rx_need_yield; if (rfm22b_dev->rx_in_cb) (rfm22b_dev->rx_in_cb)(rfm22b_dev->rx_in_context, rfm22b_dev->rx_packet.data, rfm22b_dev->rx_packet.header.data_size, NULL, &rx_need_yield); break; } case PACKET_TYPE_DUPLICATE_DATA: break; case PACKET_TYPE_ACK: case PACKET_TYPE_ACK_RTS: ret_event = RFM22B_EVENT_PACKET_ACKED; break; case PACKET_TYPE_NACK: ret_event = RFM22B_EVENT_PACKET_NACKED; break; case PACKET_TYPE_PPM: { PHPpmPacketHandle ppmp = (PHPpmPacketHandle)&(rfm22b_dev->rx_packet); for (uint8_t i = 0; i < PIOS_RFM22B_RCVR_MAX_CHANNELS; ++i) { rfm22b_dev->ppm_channel[i] = ppmp->channels[i]; #if defined(PIOS_INCLUDE_PPM_OUT) && defined(PIOS_PPM_OUTPUT) if (PIOS_PPM_OUTPUT) PIOS_PPM_OUT_Set(PIOS_PPM_OUTPUT, i, ppmp->channels[i]); #endif /* PIOS_INCLUDE_PPM_OUT && PIOS_PPM_OUTPUT */ } rfm22b_dev->ppm_fresh = true; break; } default: break; } } else ret_event = RFM22B_EVENT_RX_ERROR; rfm22b_dev->rx_buffer_wr = 0; rfm22b_dev->rx_complete_ticks = xTaskGetTickCount(); if (rfm22b_dev->rx_complete_ticks == 0) rfm22b_dev->rx_complete_ticks = 1; #ifdef PIOS_RFM22B_DEBUG_ON_TELEM D2_LED_OFF; D3_LED_TOGGLE; #endif } // We're finished with Rx mode rfm22b_dev->in_rx_mode = false; // Start a new transaction rfm22b_dev->packet_start_ticks = 0; return ret_event; } return RFM22B_EVENT_NUM_EVENTS; } static enum pios_rfm22b_event rfm22_rxFailure(struct pios_rfm22b_dev *rfm22b_dev) { rfm22b_dev->stats.rx_failure++; rfm22b_dev->rx_buffer_wr = 0; rfm22b_dev->rx_complete_ticks = xTaskGetTickCount(); rfm22b_dev->in_rx_mode = false; if (rfm22b_dev->rx_complete_ticks == 0) rfm22b_dev->rx_complete_ticks = 1; return RFM22B_EVENT_RX_MODE; } static enum pios_rfm22b_event rfm22_txData(struct pios_rfm22b_dev *rfm22b_dev) { enum pios_rfm22b_event ret_event = RFM22B_EVENT_NUM_EVENTS; // Read the device status registers if (!rfm22_readStatus(rfm22b_dev)) return RFM22B_EVENT_FAILURE; // FIFO under/over flow error. //if (rfm22b_dev->int_status1 & RFM22_is1_ifferr) //return RFM22B_EVENT_FAILURE; // TX FIFO almost empty, it needs filling up if (rfm22b_dev->int_status1 & RFM22_is1_ixtffaem) { // top-up the rf chips TX FIFO buffer uint8_t *tx_buffer = (uint8_t*)(rfm22b_dev->tx_packet); uint16_t max_bytes = FIFO_SIZE - TX_FIFO_LO_WATERMARK - 1; rfm22_claimBus(rfm22b_dev); rfm22_assertCs(rfm22b_dev); PIOS_SPI_TransferByte(rfm22b_dev->spi_id, RFM22_fifo_access | 0x80); int bytes_to_write = (rfm22b_dev->tx_data_wr - rfm22b_dev->tx_data_rd); bytes_to_write = (bytes_to_write > max_bytes) ? max_bytes: bytes_to_write; PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, &tx_buffer[rfm22b_dev->tx_data_rd], NULL, bytes_to_write, NULL); rfm22b_dev->tx_data_rd += bytes_to_write; rfm22_deassertCs(rfm22b_dev); rfm22_releaseBus(rfm22b_dev); } // Packet has been sent else if (rfm22b_dev->int_status1 & RFM22_is1_ipksent) { rfm22b_dev->stats.tx_byte_count += PH_PACKET_SIZE(rfm22b_dev->tx_packet); // Is this an ACK? bool is_ack = ((rfm22b_dev->tx_packet->header.type == PACKET_TYPE_ACK) || (rfm22b_dev->tx_packet->header.type == PACKET_TYPE_ACK_RTS)); //ret_event = is_ack ? RFM22B_EVENT_TX_START : RFM22B_EVENT_RX_MODE; ret_event = RFM22B_EVENT_RX_MODE; if (is_ack) { // If this is an ACK for a connection request message we need to // configure this modem from the connection request message. if (rfm22b_dev->rx_packet.header.type == PACKET_TYPE_CON_REQUEST) rfm22_setConnectionParameters(rfm22b_dev); } else if (rfm22b_dev->tx_packet->header.type != PACKET_TYPE_NACK) { // We need to wait for an ACK if this packet it not an ACK or NACK. rfm22b_dev->prev_tx_packet = rfm22b_dev->tx_packet; rfm22b_dev->tx_complete_ticks = xTaskGetTickCount(); } // Set the Tx period portTickType curTicks = xTaskGetTickCount(); if (rfm22b_dev->tx_packet->header.type == PACKET_TYPE_ACK) rfm22b_dev->time_to_send_offset = curTicks + 0x4; else if (rfm22b_dev->tx_packet->header.type == PACKET_TYPE_ACK_RTS) rfm22b_dev->time_to_send_offset = curTicks; rfm22b_dev->tx_packet = 0; rfm22b_dev->tx_data_wr = rfm22b_dev->tx_data_rd = 0; // Start a new transaction rfm22b_dev->packet_start_ticks = 0; #ifdef PIOS_RFM22B_DEBUG_ON_TELEM D1_LED_OFF; D3_LED_TOGGLE; #endif } return ret_event; } static enum pios_rfm22b_event rfm22_txFailure(struct pios_rfm22b_dev *rfm22b_dev) { rfm22b_dev->stats.tx_failure++; rfm22b_dev->tx_data_wr = rfm22b_dev->tx_data_rd = 0; return RFM22B_EVENT_TX_START; } /** * Send an ACK to a received packet. * \param[in] rfm22b_dev The device structure */ static enum pios_rfm22b_event rfm22_sendAck(struct pios_rfm22b_dev *rfm22b_dev) { PHAckNackPacketHandle aph = (PHAckNackPacketHandle)(&(rfm22b_dev->ack_nack_packet)); aph->header.destination_id = rfm22b_dev->rx_packet.header.source_id; aph->header.type = rfm22_ready_to_send(rfm22b_dev) ? PACKET_TYPE_ACK_RTS : PACKET_TYPE_ACK; aph->header.data_size = PH_ACK_NACK_DATA_SIZE(aph); aph->header.seq_num = rfm22b_dev->rx_packet.header.seq_num; rfm22b_dev->tx_packet = (PHPacketHandle)aph; rfm22b_dev->time_to_send = true; return RFM22B_EVENT_TX_START; } /** * Send an NACK to a received packet. * \param[in] rfm22b_dev The device structure */ static enum pios_rfm22b_event rfm22_sendNack(struct pios_rfm22b_dev *rfm22b_dev) { PHAckNackPacketHandle aph = (PHAckNackPacketHandle)(&(rfm22b_dev->ack_nack_packet)); aph->header.destination_id = rfm22b_dev->rx_packet.header.source_id; aph->header.type = PACKET_TYPE_NACK; aph->header.data_size = PH_ACK_NACK_DATA_SIZE(aph); aph->header.seq_num = rfm22b_dev->rx_packet.header.seq_num; rfm22b_dev->tx_packet = (PHPacketHandle)aph; rfm22b_dev->time_to_send = true; return RFM22B_EVENT_TX_START; } /** * Receive an ACK. * \param[in] rfm22b_dev The device structure */ static enum pios_rfm22b_event rfm22_receiveAck(struct pios_rfm22b_dev *rfm22b_dev) { PHPacketHandle prev = rfm22b_dev->prev_tx_packet; portTickType curTicks = xTaskGetTickCount(); // Clear the previous TX packet. rfm22b_dev->prev_tx_packet = NULL; // Was this a connection request? switch (prev->header.type) { case PACKET_TYPE_CON_REQUEST: rfm22_setConnectionParameters(rfm22b_dev); break; case PACKET_TYPE_DATA: rfm22b_dev->data_packet.header.data_size = 0; break; } // Should we try to start another TX? if (rfm22b_dev->rx_packet.header.type == PACKET_TYPE_ACK) { rfm22b_dev->time_to_send_offset = curTicks; rfm22b_dev->time_to_send = true; return RFM22B_EVENT_TX_START; } else { rfm22b_dev->time_to_send_offset = curTicks + 0x4; return RFM22B_EVENT_RX_MODE; } } /** * Receive an MACK. * \param[in] rfm22b_dev The device structure */ static enum pios_rfm22b_event rfm22_receiveNack(struct pios_rfm22b_dev *rfm22b_dev) { // Resend the previous TX packet. rfm22b_dev->tx_packet = rfm22b_dev->prev_tx_packet; rfm22b_dev->prev_tx_packet = NULL; if (rfm22b_dev->stats.link_state == OPLINKSTATUS_LINKSTATE_CONNECTED) rfm22b_add_rx_status(rfm22b_dev, RFM22B_RESENT_TX_PACKET); rfm22b_dev->time_to_send = true; return RFM22B_EVENT_TX_START; } /** * Receive a status packet * \param[in] rfm22b_dev The device structure */ static enum pios_rfm22b_event rfm22_receiveStatus(struct pios_rfm22b_dev *rfm22b_dev) { PHStatusPacketHandle status = (PHStatusPacketHandle)&(rfm22b_dev->rx_packet); int8_t rssi = rfm22b_dev->rssi_dBm; int8_t afc = rfm22b_dev->afc_correction_Hz; uint32_t id = status->header.source_id; bool found = false; // Have we seen this device recently? uint8_t id_idx = 0; for ( ; id_idx < OPLINKSTATUS_PAIRIDS_NUMELEM; ++id_idx) if(rfm22b_dev->pair_stats[id_idx].pairID == id) { found = true; break; } // If we have seen it, update the RSSI and reset the last contact couter if(found) { rfm22b_dev->pair_stats[id_idx].rssi = rssi; rfm22b_dev->pair_stats[id_idx].afc_correction = afc; rfm22b_dev->pair_stats[id_idx].lastContact = 0; } // If we haven't seen it, find a slot to put it in. if (!found) { uint8_t min_idx = 0; if(id != rfm22b_dev->destination_id) { int8_t min_rssi = rfm22b_dev->pair_stats[0].rssi; for (id_idx = 1; id_idx < OPLINKSTATUS_PAIRIDS_NUMELEM; ++id_idx) { if(rfm22b_dev->pair_stats[id_idx].rssi < min_rssi) { min_rssi = rfm22b_dev->pair_stats[id_idx].rssi; min_idx = id_idx; } } } rfm22b_dev->pair_stats[min_idx].pairID = id; rfm22b_dev->pair_stats[min_idx].rssi = rssi; rfm22b_dev->pair_stats[min_idx].afc_correction = afc; rfm22b_dev->pair_stats[min_idx].lastContact = 0; } return RFM22B_EVENT_RX_COMPLETE; } static enum pios_rfm22b_event rfm22_initConnection(struct pios_rfm22b_dev *rfm22b_dev) { if (rfm22b_dev->coordinator) return RFM22B_EVENT_REQUEST_CONNECTION; else return RFM22B_EVENT_WAIT_FOR_CONNECTION; } static enum pios_rfm22b_event rfm22_requestConnection(struct pios_rfm22b_dev *rfm22b_dev) { PHConnectionPacketHandle cph = &(rfm22b_dev->con_packet); // Set our connection state to requesting connection. rfm22b_dev->stats.link_state = OPLINKSTATUS_LINKSTATE_CONNECTING; // Fill in the connection request cph->header.destination_id = rfm22b_dev->destination_id; cph->header.type = PACKET_TYPE_CON_REQUEST; cph->header.data_size = PH_CONNECTION_DATA_SIZE(&(rfm22b_dev->con_packet)); cph->datarate = rfm22b_dev->datarate; cph->frequency_hz = rfm22b_dev->frequency_hz; cph->min_frequency = rfm22b_dev->min_frequency; cph->max_frequency = rfm22b_dev->max_frequency; cph->max_tx_power = rfm22b_dev->tx_power; rfm22b_dev->time_to_send = true; rfm22b_dev->send_connection_request = true; return RFM22B_EVENT_TX_START; } static void rfm22_setConnectionParameters(struct pios_rfm22b_dev *rfm22b_dev) { PHConnectionPacketHandle cph = &(rfm22b_dev->con_packet); // Set our connection state to connected rfm22b_dev->stats.link_state = OPLINKSTATUS_LINKSTATE_CONNECTED; // Configure this modem from the connection request message. rfm22_setDatarate(rfm22b_dev, cph->datarate, true); PIOS_RFM22B_SetTxPower((uint32_t)rfm22b_dev, cph->max_tx_power); rfm22b_dev->min_frequency = cph->min_frequency; rfm22b_dev->max_frequency = cph->max_frequency; rfm22_setNominalCarrierFrequency(rfm22b_dev, cph->frequency_hz); // Call the com port configuration function if (rfm22b_dev->com_config_cb && !rfm22b_dev->coordinator) rfm22b_dev->com_config_cb(cph->port, cph->com_speed); } static enum pios_rfm22b_event rfm22_acceptConnection(struct pios_rfm22b_dev *rfm22b_dev) { // Set our connection state to connected rfm22b_dev->stats.link_state = OPLINKSTATUS_LINKSTATE_CONNECTED; // Copy the connection packet PHConnectionPacketHandle cph = (PHConnectionPacketHandle)(&(rfm22b_dev->rx_packet)); PHConnectionPacketHandle lcph = (PHConnectionPacketHandle)(&(rfm22b_dev->con_packet)); memcpy((uint8_t*)lcph, (uint8_t*)cph, PH_PACKET_SIZE((PHPacketHandle)cph)); // Set the destination ID to the source of the connection request message. PIOS_RFM22B_SetDestinationId((uint32_t)rfm22b_dev, cph->header.source_id); return RFM22B_EVENT_CONNECTION_ACCEPTED; } // ************************************ // Initialise this hardware layer module and the rf module static enum pios_rfm22b_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev) { // Initialize the register values. rfm22b_dev->device_status = 0; rfm22b_dev->int_status1 = 0; rfm22b_dev->int_status2 = 0; rfm22b_dev->ezmac_status = 0; // Clean the LEDs rfm22_clearLEDs(); // Initialize the detected device statistics. for (uint8_t i = 0; i < OPLINKSTATUS_PAIRIDS_NUMELEM; ++i) { rfm22b_dev->pair_stats[i].pairID = 0; rfm22b_dev->pair_stats[i].rssi = -127; rfm22b_dev->pair_stats[i].afc_correction = 0; rfm22b_dev->pair_stats[i].lastContact = 0; } // Initlize the link stats. for (uint8_t i = 0; i < RFM22B_RX_PACKET_STATS_LEN; ++i) rfm22b_dev->rx_packet_stats[i] = 0; // Initialize the state rfm22b_dev->stats.link_state = OPLINKSTATUS_LINKSTATE_DISCONNECTED; rfm22b_dev->tx_power = RFM22B_DEFAULT_TX_POWER; rfm22b_dev->destination_id = 0xffffffff; rfm22b_dev->time_to_send = false; rfm22b_dev->time_to_send_offset = 0; rfm22b_dev->send_status = false; rfm22b_dev->send_connection_request = false; // Initialize the packets. rfm22b_dev->rx_packet_len = 0; rfm22b_dev->tx_packet = NULL; rfm22b_dev->prev_tx_packet = NULL; rfm22b_dev->stats.tx_seq = 0; rfm22b_dev->stats.rx_seq = 0; rfm22b_dev->data_packet.header.data_size = 0; rfm22b_dev->in_rx_mode = false; // software reset the RF chip .. following procedure according to Si4x3x Errata (rev. B) rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_swres); // wait 26ms PIOS_DELAY_WaitmS(26); for (int i = 50; i > 0; i--) { // wait 1ms PIOS_DELAY_WaitmS(1); // read the status registers rfm22b_dev->int_status1 = rfm22_read(rfm22b_dev, RFM22_interrupt_status1); rfm22b_dev->int_status2 = rfm22_read(rfm22b_dev, RFM22_interrupt_status2); if (rfm22b_dev->int_status2 & RFM22_is2_ichiprdy) break; } // **************** // read status - clears interrupt rfm22b_dev->device_status = rfm22_read(rfm22b_dev, RFM22_device_status); rfm22b_dev->int_status1 = rfm22_read(rfm22b_dev, RFM22_interrupt_status1); rfm22b_dev->int_status2 = rfm22_read(rfm22b_dev, RFM22_interrupt_status2); rfm22b_dev->ezmac_status = rfm22_read(rfm22b_dev, RFM22_ezmac_status); // disable all interrupts rfm22_write(rfm22b_dev, RFM22_interrupt_enable1, 0x00); rfm22_write(rfm22b_dev, RFM22_interrupt_enable2, 0x00); // **************** rfm22b_dev->device_status = rfm22b_dev->int_status1 = rfm22b_dev->int_status2 = rfm22b_dev->ezmac_status = 0; rfm22b_dev->rx_buffer_wr = 0; rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0; rfm22b_dev->frequency_hop_channel = 0; rfm22b_dev->afc_correction_Hz = 0; rfm22b_dev->packet_start_ticks = 0; rfm22b_dev->tx_complete_ticks = 0; rfm22b_dev->rx_complete_ticks = 0; // **************** // read the RF chip ID bytes // read the device type uint8_t device_type = rfm22_read(rfm22b_dev, RFM22_DEVICE_TYPE) & RFM22_DT_MASK; // read the device version uint8_t device_version = rfm22_read(rfm22b_dev, RFM22_DEVICE_VERSION) & RFM22_DV_MASK; #if defined(RFM22_DEBUG) DEBUG_PRINTF(2, "rf device type: %d\n\r", device_type); DEBUG_PRINTF(2, "rf device version: %d\n\r", device_version); #endif if (device_type != 0x08) { #if defined(RFM22_DEBUG) DEBUG_PRINTF(2, "rf device type: INCORRECT - should be 0x08\n\r"); #endif // incorrect RF module type return RFM22B_EVENT_FATAL_ERROR; } if (device_version != RFM22_DEVICE_VERSION_B1) { #if defined(RFM22_DEBUG) DEBUG_PRINTF(2, "rf device version: INCORRECT\n\r"); #endif // incorrect RF module version return RFM22B_EVENT_FATAL_ERROR; } // **************** // set the minimum and maximum carrier frequency allowed rfm22b_dev->min_frequency = RFM22B_DEFAULT_MIN_FREQUENCY; rfm22b_dev->max_frequency = RFM22B_DEFAULT_MAX_FREQUENCY; rfm22b_dev->frequency_hz = RFM22B_DEFAULT_FREQUENCY; // **************** // calibrate our RF module to be exactly on frequency .. different for every module rfm22_write(rfm22b_dev, RFM22_xtal_osc_load_cap, OSC_LOAD_CAP); // **************** // disable Low Duty Cycle Mode rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl2, 0x00); // 1MHz clock output rfm22_write(rfm22b_dev, RFM22_cpu_output_clk, RFM22_coc_1MHz); // READY mode rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_xton); // choose the 3 GPIO pin functions // GPIO port use default value rfm22_write(rfm22b_dev, RFM22_io_port_config, RFM22_io_port_default); if (rfm22b_dev->cfg.gpio_direction == GPIO0_TX_GPIO1_RX) { rfm22_write(rfm22b_dev, RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_txstate); // GPIO0 = TX State (to control RF Switch) rfm22_write(rfm22b_dev, RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_rxstate); // GPIO1 = RX State (to control RF Switch) } else { rfm22_write(rfm22b_dev, RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_rxstate); // GPIO0 = TX State (to control RF Switch) rfm22_write(rfm22b_dev, RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_txstate); // GPIO1 = RX State (to control RF Switch) } rfm22_write(rfm22b_dev, RFM22_gpio2_config, RFM22_gpio2_config_drv3 | RFM22_gpio2_config_cca); // GPIO2 = Clear Channel Assessment // **************** // initialize the frequency hopping step size uint32_t freq_hop_step_size = 50000; freq_hop_step_size /= 10000; // in 10kHz increments if (freq_hop_step_size > 255) freq_hop_step_size = 255; rfm22b_dev->frequency_hop_step_size_reg = freq_hop_step_size; // FIFO mode, GFSK modulation uint8_t fd_bit = rfm22_read(rfm22b_dev, RFM22_modulation_mode_control2) & RFM22_mmc2_fd; rfm22_write(rfm22b_dev, RFM22_modulation_mode_control2, RFM22_mmc2_trclk_clk_none | RFM22_mmc2_dtmod_fifo | fd_bit | RFM22_mmc2_modtyp_gfsk); // setup to read the internal temperature sensor // ADC used to sample the temperature sensor uint8_t adc_config = RFM22_ac_adcsel_temp_sensor | RFM22_ac_adcref_bg; rfm22_write(rfm22b_dev, RFM22_adc_config, adc_config); // adc offset rfm22_write(rfm22b_dev, RFM22_adc_sensor_amp_offset, 0); // temp sensor calibration .. �40C to +64C 0.5C resolution rfm22_write(rfm22b_dev, RFM22_temp_sensor_calib, RFM22_tsc_tsrange0 | RFM22_tsc_entsoffs); // temp sensor offset rfm22_write(rfm22b_dev, RFM22_temp_value_offset, 0); // start an ADC conversion rfm22_write(rfm22b_dev, RFM22_adc_config, adc_config | RFM22_ac_adcstartbusy); // set the RSSI threshold interrupt to about -90dBm rfm22_write(rfm22b_dev, RFM22_rssi_threshold_clear_chan_indicator, (-90 + 122) * 2); // enable the internal Tx & Rx packet handlers (without CRC) rfm22_write(rfm22b_dev, RFM22_data_access_control, RFM22_dac_enpacrx | RFM22_dac_enpactx); // x-nibbles tx preamble rfm22_write(rfm22b_dev, RFM22_preamble_length, TX_PREAMBLE_NIBBLES); // x-nibbles rx preamble detection rfm22_write(rfm22b_dev, RFM22_preamble_detection_ctrl1, RX_PREAMBLE_NIBBLES << 3); #ifdef PIOS_RFM22_NO_HEADER // header control - we are not using the header rfm22_write(rfm22b_dev, RFM22_header_control1, RFM22_header_cntl1_bcen_none | RFM22_header_cntl1_hdch_none); // no header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header. rfm22_write(rfm22b_dev, RFM22_header_control2, RFM22_header_cntl2_hdlen_none | RFM22_header_cntl2_synclen_3210 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01)); #else // header control - using a 4 by header with broadcast of 0xffffffff rfm22_write(rfm22b_dev, RFM22_header_control1, RFM22_header_cntl1_bcen_0 | RFM22_header_cntl1_bcen_1 | RFM22_header_cntl1_bcen_2 | RFM22_header_cntl1_bcen_3 | RFM22_header_cntl1_hdch_0 | RFM22_header_cntl1_hdch_1 | RFM22_header_cntl1_hdch_2 | RFM22_header_cntl1_hdch_3); // Check all bit of all bytes of the header rfm22_write(rfm22b_dev, RFM22_header_enable0, 0xff); rfm22_write(rfm22b_dev, RFM22_header_enable1, 0xff); rfm22_write(rfm22b_dev, RFM22_header_enable2, 0xff); rfm22_write(rfm22b_dev, RFM22_header_enable3, 0xff); // Set the ID to be checked uint32_t id = rfm22b_dev->deviceID; rfm22_write(rfm22b_dev, RFM22_check_header0, id & 0xff); rfm22_write(rfm22b_dev, RFM22_check_header1, (id >> 8) & 0xff); rfm22_write(rfm22b_dev, RFM22_check_header2, (id >> 16) & 0xff); rfm22_write(rfm22b_dev, RFM22_check_header3, (id >> 24) & 0xff); // 4 header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header. rfm22_write(rfm22b_dev, RFM22_header_control2, RFM22_header_cntl2_hdlen_3210 | RFM22_header_cntl2_synclen_3210 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01)); #endif // sync word rfm22_write(rfm22b_dev, RFM22_sync_word3, SYNC_BYTE_1); rfm22_write(rfm22b_dev, RFM22_sync_word2, SYNC_BYTE_2); rfm22_write(rfm22b_dev, RFM22_sync_word1, SYNC_BYTE_3); rfm22_write(rfm22b_dev, RFM22_sync_word0, SYNC_BYTE_4); rfm22_write(rfm22b_dev, RFM22_agc_override1, RFM22_agc_ovr1_agcen); // set frequency hopping channel step size (multiples of 10kHz) rfm22_write(rfm22b_dev, RFM22_frequency_hopping_step_size, rfm22b_dev->frequency_hop_step_size_reg); // set the tx power rfm22_write(rfm22b_dev, RFM22_tx_power, RFM22_tx_pwr_papeaken | RFM22_tx_pwr_papeaklvl_0 | RFM22_tx_pwr_lna_sw | rfm22b_dev->tx_power); // TX FIFO Almost Full Threshold (0 - 63) rfm22_write(rfm22b_dev, RFM22_tx_fifo_control1, TX_FIFO_HI_WATERMARK); // TX FIFO Almost Empty Threshold (0 - 63) rfm22_write(rfm22b_dev, RFM22_tx_fifo_control2, TX_FIFO_LO_WATERMARK); // RX FIFO Almost Full Threshold (0 - 63) rfm22_write(rfm22b_dev, RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK); // Set the frequency calibration rfm22_write(rfm22b_dev, RFM22_xtal_osc_load_cap, rfm22b_dev->cfg.RFXtalCap); // Initialize the frequency and datarate to te default. rfm22_setNominalCarrierFrequency(rfm22b_dev, RFM22B_DEFAULT_FREQUENCY); rfm22_setDatarate(rfm22b_dev, RFM22B_DEFAULT_RX_DATARATE, true); return RFM22B_EVENT_INITIALIZED; } static void rfm22_clearLEDs() { LINK_LED_OFF; RX_LED_OFF; TX_LED_OFF; #ifdef PIOS_RFM22B_DEBUG_ON_TELEM D1_LED_OFF; D2_LED_OFF; D3_LED_OFF; D4_LED_OFF; #endif } static enum pios_rfm22b_event rfm22_timeout(struct pios_rfm22b_dev *rfm22b_dev) { rfm22b_dev->stats.timeouts++; rfm22b_dev->packet_start_ticks = 0; // Release the Tx packet if it's set. if (rfm22b_dev->tx_packet != 0) { rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0; } rfm22b_dev->rx_buffer_wr = 0; TX_LED_OFF; RX_LED_OFF; #ifdef PIOS_RFM22B_DEBUG_ON_TELEM D1_LED_OFF; D2_LED_OFF; D3_LED_OFF; D4_LED_OFF; #endif return RFM22B_EVENT_TX_START; } static enum pios_rfm22b_event rfm22_error(struct pios_rfm22b_dev *rfm22b_dev) { rfm22b_dev->stats.resets++; rfm22_clearLEDs(); return RFM22B_EVENT_INITIALIZE; } /** * A fatal error has occured in the state machine. * this should not happen. * \parem [in] rfm22b_dev The device structure * \return enum pios_rfm22b_event The next event to inject */ static enum pios_rfm22b_event rfm22_fatal_error(struct pios_rfm22b_dev *rfm22b_dev) { // RF module error .. flash the LED's rfm22_clearLEDs(); for(unsigned int j = 0; j < 16; j++) { USB_LED_ON; LINK_LED_ON; RX_LED_OFF; TX_LED_OFF; PIOS_DELAY_WaitmS(200); USB_LED_OFF; LINK_LED_OFF; RX_LED_ON; TX_LED_ON; PIOS_DELAY_WaitmS(200); } PIOS_DELAY_WaitmS(1000); PIOS_Assert(0); return RFM22B_EVENT_FATAL_ERROR; } // ************************************ #endif /* PIOS_INCLUDE_RFM22B */ /** * @} * @} */