/** ****************************************************************************** * @addtogroup AHRS AHRS * @brief The AHRS Modules perform * * @{ * @addtogroup AHRS_Main * @brief Main function which does the hardware dependent stuff * @{ * * * @file ahrs.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief INSGPS Test Program * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* OpenPilot Includes */ #include "ahrs.h" #include "pios.h" #include "ahrs_timer.h" #include "ahrs_spi_comm.h" #include "insgps.h" #include "CoordinateConversions.h" #include #include "fifo_buffer.h" #define DEG_TO_RAD (M_PI / 180.0) #define RAD_TO_DEG (180.0 / M_PI) #define INSGPS_GPS_TIMEOUT 2 /* 2 seconds triggers reinit of position */ #define INSGPS_GPS_MINSAT 6 /* 2 seconds triggers reinit of position */ #define INSGPS_GPS_MINPDOP 3.5 /* minimum PDOP for postition updates */ #define INSGPS_MAGLEN 1000 #define INSGPS_MAGTOL 0.5 /* error in magnetic vector length to use */ #define GYRO_OOB(x) ((x > (1000 * DEG_TO_RAD)) || (x < (-1000 * DEG_TO_RAD))) #define ACCEL_OOB(x) (((x > 12*9.81) || (x < -12*9.81))) #define ISNAN(x) (x != x) // down-sampled data index #define ACCEL_RAW_X_IDX 2 #define ACCEL_RAW_Y_IDX 0 #define ACCEL_RAW_Z_IDX 4 #define GYRO_RAW_X_IDX 1 #define GYRO_RAW_Y_IDX 3 #define GYRO_RAW_Z_IDX 5 #define GYRO_TEMP_RAW_XY_IDX 6 #define GYRO_TEMP_RAW_Z_IDX 7 #define MAG_RAW_X_IDX 1 #define MAG_RAW_Y_IDX 0 #define MAG_RAW_Z_IDX 2 // For debugging the raw sensors //#define DUMP_RAW //#define DUMP_EKF //#define PIP_DUMP_RAW volatile int8_t ahrs_algorithm; /* INS functions */ void ins_outdoor_update(); void ins_indoor_update(); void simple_update(); /* Data accessors */ void adc_callback(float *); bool get_accel_gyro_data(); void process_mag_data(); void reset_values(); void calibrate_sensors(void); /* Communication functions */ void send_calibration(void); void send_attitude(void); void send_velocity(void); void send_position(void); void homelocation_callback(AhrsObjHandle obj); void altitude_callback(AhrsObjHandle obj); void calibration_callback(AhrsObjHandle obj); void gps_callback(AhrsObjHandle obj); void settings_callback(AhrsObjHandle obj); void affine_rotate(float scale[3][4], float rotation[3]); void calibration(float result[3], float scale[3][4], float arg[3]); /* Bootloader related functions and var*/ static uint32_t iap_calc_crc(void); static void read_description(uint8_t *); void firmwareiapobj_callback(AhrsObjHandle obj); volatile uint8_t reset_count=0; /** * @addtogroup AHRS_Global_Data AHRS Global Data * @{ * Public data. Used by both EKF and the sender */ //! Contains the data from the mag sensor chip struct mag_sensor mag_data; //! Contains the data from the accelerometer struct accel_sensor accel_data; //! Contains the data from the gyro struct gyro_sensor gyro_data; //! Conains the current estimate of the attitude struct attitude_solution attitude_data; //! Contains data from the altitude sensor struct altitude_sensor altitude_data; //! Contains data from the GPS (via the SPI link) struct gps_sensor gps_data; //! The oversampling rate, ekf is 2k / this uint8_t adc_oversampling = 15; //! Offset correction of barometric alt, to match gps data static float baro_offset = 0; static float mag_len = 0; typedef enum { AHRS_IDLE, AHRS_DATA_READY, AHRS_PROCESSING } states; volatile int32_t ekf_too_slow; volatile int32_t total_conversion_blocks; //! Buffer to allow ADC to run a bit faster than EKF t_fifo_buffer adc_fifo_buffer; /** * @} */ /* INS functions */ /** * @brief Update the EKF when in outdoor mode. The primary difference is using the GPS values. */ void ins_outdoor_update() { float gyro[3], accel[3], vel[3]; static uint32_t last_gps_time = 0; uint16_t sensors; // format data for INS algo gyro[0] = gyro_data.filtered.x; gyro[1] = gyro_data.filtered.y; gyro[2] = gyro_data.filtered.z; accel[0] = accel_data.filtered.x, accel[1] = accel_data.filtered.y, accel[2] = accel_data.filtered.z, INSStatePrediction(gyro, accel, 1 / (float)EKF_RATE); attitude_data.quaternion.q1 = Nav.q[0]; attitude_data.quaternion.q2 = Nav.q[1]; attitude_data.quaternion.q3 = Nav.q[2]; attitude_data.quaternion.q4 = Nav.q[3]; send_attitude(); // get message out quickly send_velocity(); send_position(); INSCovariancePrediction(1 / (float)EKF_RATE); sensors = 0; /* * Detect if greater than certain time since last gps update and if so * reset EKF to that position since probably drifted too far for safe * update */ uint32_t this_gps_time = timer_count(); float gps_delay; if (this_gps_time < last_gps_time) gps_delay = ((0xFFFF - last_gps_time) - this_gps_time) / timer_rate(); else gps_delay = (this_gps_time - last_gps_time) / timer_rate(); last_gps_time = this_gps_time; if (gps_data.updated) { vel[0] = gps_data.groundspeed * cos(gps_data.heading * DEG_TO_RAD); vel[1] = gps_data.groundspeed * sin(gps_data.heading * DEG_TO_RAD); vel[2] = 0; if(gps_delay > INSGPS_GPS_TIMEOUT) INSPosVelReset(gps_data.NED,vel); // position stale, reset else { sensors |= HORIZ_SENSORS | POS_SENSORS; } /* * When using gps need to make sure that barometer is brought into NED frame * we should try and see if the altitude from the home location is good enough * to use for the offset but for now starting with this conservative filter */ if(fabs(gps_data.NED[2] + (altitude_data.altitude - baro_offset)) > 10) { baro_offset = gps_data.NED[2] + altitude_data.altitude; } else { /* IIR filter with 100 second or so tau to keep them crudely in the same frame */ baro_offset = baro_offset * 0.999 + (gps_data.NED[2] + altitude_data.altitude) * 0.001; } gps_data.updated = false; } else if (gps_delay > INSGPS_GPS_TIMEOUT) { vel[0] = 0; vel[1] = 0; vel[2] = 0; sensors |= VERT_SENSORS | HORIZ_SENSORS; } if(mag_data.updated) { sensors |= MAG_SENSORS; mag_data.updated = false; } if(altitude_data.updated) { sensors |= BARO_SENSOR; altitude_data.updated = false; } /* * TODO: Need to add a general sanity check for all the inputs to make sure their kosher * although probably should occur within INS itself */ INSCorrection(mag_data.scaled.axis, gps_data.NED, vel, altitude_data.altitude - baro_offset, sensors); } /** * @brief Update the EKF when in indoor mode */ void ins_indoor_update() { float gyro[3], accel[3], vel[3]; static uint32_t last_indoor_time = 0; uint16_t sensors = 0; // format data for INS algo gyro[0] = gyro_data.filtered.x; gyro[1] = gyro_data.filtered.y; gyro[2] = gyro_data.filtered.z; accel[0] = accel_data.filtered.x, accel[1] = accel_data.filtered.y, accel[2] = accel_data.filtered.z, INSStatePrediction(gyro, accel, 1 / (float)EKF_RATE); attitude_data.quaternion.q1 = Nav.q[0]; attitude_data.quaternion.q2 = Nav.q[1]; attitude_data.quaternion.q3 = Nav.q[2]; attitude_data.quaternion.q4 = Nav.q[3]; send_attitude(); // get message out quickly send_velocity(); send_position(); INSCovariancePrediction(1 / (float)EKF_RATE); /* Indoors, update with zero position and velocity and high covariance */ vel[0] = 0; vel[1] = 0; vel[2] = 0; uint32_t this_indoor_time = timer_count(); float indoor_delay; /* * Detect if greater than certain time since last gps update and if so * reset EKF to that position since probably drifted too far for safe * update */ if (this_indoor_time < last_indoor_time) indoor_delay = ((0xFFFF - last_indoor_time) - this_indoor_time) / timer_rate(); else indoor_delay = (this_indoor_time - last_indoor_time) / timer_rate(); last_indoor_time = this_indoor_time; if(indoor_delay > INSGPS_GPS_TIMEOUT) INSPosVelReset(vel,vel); else sensors = HORIZ_SENSORS | VERT_SENSORS; if(mag_data.updated && (ahrs_algorithm == AHRSSETTINGS_ALGORITHM_INSGPS_INDOOR)) { sensors |= MAG_SENSORS; mag_data.updated = false; } if(altitude_data.updated) { sensors |= BARO_SENSOR; altitude_data.updated = false; } /* * TODO: Need to add a general sanity check for all the inputs to make sure their kosher * although probably should occur within INS itself */ INSCorrection(mag_data.scaled.axis, gps_data.NED, vel, altitude_data.altitude, sensors | HORIZ_SENSORS | VERT_SENSORS); } /** * @brief Initialize the EKF assuming stationary */ void ins_init_algorithm() { float Rbe[3][3], q[4], accels[3], rpy[3], mag; float ge[3]={0,0,-9.81}, zeros[3]={0,0,0}, Pdiag[16]={25,25,25,5,5,5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-4,1e-4,1e-4}; bool using_mags, using_gps; INSGPSInit(); HomeLocationData home; HomeLocationGet(&home); accels[0]=accel_data.filtered.x; accels[1]=accel_data.filtered.y; accels[2]=accel_data.filtered.z; using_mags = (ahrs_algorithm == AHRSSETTINGS_ALGORITHM_INSGPS_OUTDOOR) || (ahrs_algorithm == AHRSSETTINGS_ALGORITHM_INSGPS_INDOOR); using_mags &= (home.Be[0] != 0) || (home.Be[1] != 0) || (home.Be[2] != 0); /* only use mags when valid home location */ using_gps = (ahrs_algorithm == AHRSSETTINGS_ALGORITHM_INSGPS_OUTDOOR) && (gps_data.quality != 0); /* Block till a data update */ get_accel_gyro_data(); /* Ensure we get mag data in a timely manner */ uint16_t fail_count = 50; // 50 at 200 Hz is up to 0.25 sec while(using_mags && !mag_data.updated && fail_count--) { get_accel_gyro_data(); AhrsPoll(); } using_mags &= mag_data.updated; if (using_mags) { /* Spin waiting for mag data */ while(!mag_data.updated) { get_accel_gyro_data(); AhrsPoll(); } mag_data.updated = false; RotFrom2Vectors(accels, ge, mag_data.scaled.axis, home.Be, Rbe); R2Quaternion(Rbe,q); if (using_gps) INSSetState(gps_data.NED, zeros, q, zeros, zeros); else INSSetState(zeros, zeros, q, zeros, zeros); } else { // assume yaw = 0 mag = VectorMagnitude(accels); rpy[1] = asinf(-accels[0]/mag); rpy[0] = atan2(accels[1]/mag,accels[2]/mag); rpy[2] = 0; RPY2Quaternion(rpy,q); if (using_gps) INSSetState(gps_data.NED, zeros, q, zeros, zeros); else INSSetState(zeros, zeros, q, zeros, zeros); } INSResetP(Pdiag); // TODO: include initial estimate of gyro bias? } /** * @brief Simple update using just mag and accel. Yaw biased and big attitude changes. */ void simple_update() { float q[4]; float rpy[3]; /***************** SIMPLE ATTITUDE FROM NORTH AND ACCEL ************/ /* Very simple computation of the heading and attitude from accel. */ rpy[2] = atan2((mag_data.raw.axis[MAG_RAW_Y_IDX]), (-1 * mag_data.raw.axis[MAG_RAW_X_IDX])) * RAD_TO_DEG; rpy[1] = atan2(accel_data.filtered.x, accel_data.filtered.z) * RAD_TO_DEG; rpy[0] = atan2(accel_data.filtered.y, accel_data.filtered.z) * RAD_TO_DEG; RPY2Quaternion(rpy, q); attitude_data.quaternion.q1 = q[0]; attitude_data.quaternion.q2 = q[1]; attitude_data.quaternion.q3 = q[2]; attitude_data.quaternion.q4 = q[3]; send_attitude(); } /** * @brief Output all the important inputs and states of the ekf through serial port */ #ifdef DUMP_EKF extern float **P, *X; // covariance matrix and state vector void print_ekf_binary() { uint16_t states = ins_get_num_states(); uint8_t framing[16] = { 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 }; // Dump raw buffer PIOS_COM_SendBuffer(PIOS_COM_AUX, &framing[0], 16); // framing header (1:16) PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & total_conversion_blocks, sizeof(total_conversion_blocks)); // dump block number (17:20) PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *) & accel_data.filtered.x, 4*3); // accel data (21:32) PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *) & gyro_data.filtered.x, 4*3); // gyro data (33:44) PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & mag_data.updated, 1); // mag update (45) PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & mag_data.scaled.axis, 3*4); // mag data (46:57) PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & gps_data, sizeof(gps_data)); // gps data (58:85) PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & X, 4 * states); // X (86:149) for(uint8_t i = 0; i < states; i++) PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) &((*P)[i + i * states]), 4); // diag(P) (150:213) PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & altitude_data.altitude, 4); // BaroAlt (214:217) PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & baro_offset, 4); // baro_offset (218:221) } #else void print_ekf_binary() {} #endif /** * @brief Debugging function to output all the ADC samples */ #if defined(DUMP_RAW) void print_ahrs_raw() { int result; static int previous_conversion = 0; int16_t * valid_data_buffer; uint8_t framing[16] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; get_accel_gyro_data(); valid_data_buffer = PIOS_ADC_GetRawBuffer(); if (total_conversion_blocks != previous_conversion + 1) PIOS_LED_On(LED1); // not keeping up else PIOS_LED_Off(LED1); previous_conversion = total_conversion_blocks; // Dump raw buffer result = PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, &framing[0], 16); // framing header result += PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *) & total_conversion_blocks, sizeof(total_conversion_blocks)); // dump block number result += PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *) & valid_data_buffer[0], adc_oversampling * PIOS_ADC_NUM_PINS * sizeof(valid_data_buffer[0])); if (result == 0) PIOS_LED_Off(LED1); else { PIOS_LED_On(LED1); } } #endif #if defined(PIP_DUMP_RAW) #define MAX_OVERSAMPLING PIOS_ADC_MAX_OVERSAMPLING void print_ahrs_raw() { int16_t accel_x[MAX_OVERSAMPLING], accel_y[MAX_OVERSAMPLING], accel_z[MAX_OVERSAMPLING]; int16_t gyro_x[MAX_OVERSAMPLING], gyro_y[MAX_OVERSAMPLING], gyro_z[MAX_OVERSAMPLING]; #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) int16_t mag[3]; int16_t mag_x, mag_y, mag_z; #endif static int previous_conversion = 0; uint8_t framing[3] = {0xD2, 0x73, 0x00}; // wait for new raw samples while (previous_conversion == total_conversion_blocks); if ((previous_conversion + 1) != total_conversion_blocks) PIOS_LED_On(LED1); // we are not keeping up previous_conversion = total_conversion_blocks; // fetch the buffer address for the new samples int16_t *valid_data_buffer = PIOS_ADC_GetRawBuffer(); // fetch number of raw samples in the buffer (per channel) int over_sampling = PIOS_ADC_GetOverSampling(); framing[2] = over_sampling; // copy the raw samples into their own buffers for (uint16_t i = 0, j = 0; i < over_sampling; i++, j += PIOS_ADC_NUM_CHANNELS) { accel_x[i] = valid_data_buffer[ACCEL_RAW_X_IDX + j]; accel_y[i] = valid_data_buffer[ACCEL_RAW_Y_IDX + j]; accel_z[i] = valid_data_buffer[ACCEL_RAW_Z_IDX + j]; gyro_x[i] = valid_data_buffer[GYRO_RAW_X_IDX + j]; gyro_y[i] = valid_data_buffer[GYRO_RAW_Y_IDX + j]; gyro_z[i] = valid_data_buffer[GYRO_RAW_Z_IDX + j]; } #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) if (PIOS_HMC5843_NewDataAvailable()) { PIOS_HMC5843_ReadMag(mag); mag_x = mag[MAG_RAW_X_IDX]; mag_y = mag[MAG_RAW_Y_IDX]; mag_z = mag[MAG_RAW_Z_IDX]; } #endif // send the raw samples int result = PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, framing, sizeof(framing)); result += PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *)accel_x, over_sampling * sizeof(accel_x[0])); result += PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *)accel_y, over_sampling * sizeof(accel_y[0])); result += PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *)accel_z, over_sampling * sizeof(accel_z[0])); result += PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *)gyro_x, over_sampling * sizeof(gyro_x[0])); result += PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *)gyro_y, over_sampling * sizeof(gyro_y[0])); result += PIOS_COM_SendBufferNonBlocking(PIOS_COM_AUX, (uint8_t *)gyro_z, over_sampling * sizeof(gyro_z[0])); if (result != 0) PIOS_LED_On(LED1); // all data not sent else PIOS_LED_Off(LED1); } #endif extern void PIOS_Board_Init(void); /** * @brief AHRS Main function */ int main() { gps_data.quality = -1; uint32_t up_time_real = 0; uint32_t up_time = 0; uint32_t last_up_time = 0; static int8_t last_ahrs_algorithm; uint32_t last_counter_idle_start = 0; uint32_t last_counter_idle_end = 0; uint32_t idle_counts = 0; uint32_t running_counts = 0; uint32_t counter_val = 0; ahrs_algorithm = AHRSSETTINGS_ALGORITHM_SIMPLE; reset_values(); PIOS_Board_Init(); #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) // Get 3 ID bytes strcpy((char *)mag_data.id, "ZZZ"); PIOS_HMC5843_ReadID(mag_data.id); #endif while(!AhrsLinkReady()) { AhrsPoll(); } /* we didn't connect the callbacks before because we have to wait for all data to be up to date before doing anything*/ AHRSCalibrationConnectCallback(calibration_callback); GPSPositionConnectCallback(gps_callback); BaroAltitudeConnectCallback(altitude_callback); AHRSSettingsConnectCallback(settings_callback); HomeLocationConnectCallback(homelocation_callback); FirmwareIAPObjConnectCallback(firmwareiapobj_callback); calibration_callback(AHRSCalibrationHandle()); //force an update #if defined(DUMP_RAW) || defined(PIP_DUMP_RAW) while (1) { AhrsPoll(); print_ahrs_raw(); } #endif timer_start(); /******************* Main EKF loop ****************************/ while(1) { AhrsPoll(); AhrsStatusData status; AhrsStatusGet(&status); status.CPULoad = ((float)running_counts / (float)(idle_counts + running_counts)) * 100; status.IdleTimePerCyle = idle_counts / (timer_rate() / 10000); status.RunningTimePerCyle = running_counts / (timer_rate() / 10000); status.DroppedUpdates = ekf_too_slow; up_time = timer_count(); if(up_time >= last_up_time) // normal condition up_time_real += ((up_time - last_up_time) * 1000) / timer_rate(); else up_time_real += ((0xFFFF - last_up_time + up_time) * 1000) / timer_rate(); last_up_time = up_time; status.RunningTime = up_time_real; AhrsStatusSet(&status); // Alive signal if (((total_conversion_blocks % 100) & 0xFFFE) == 0) PIOS_LED_Toggle(LED1); // Delay for valid data counter_val = timer_count(); running_counts = counter_val - last_counter_idle_end; last_counter_idle_start = counter_val; // This function blocks till data avilable get_accel_gyro_data(); // Get any mag data available process_mag_data(); counter_val = timer_count(); idle_counts = counter_val - last_counter_idle_start; last_counter_idle_end = counter_val; if(ISNAN(accel_data.filtered.x + accel_data.filtered.y + accel_data.filtered.z) || ISNAN(gyro_data.filtered.x + gyro_data.filtered.y + gyro_data.filtered.z) || ACCEL_OOB(accel_data.filtered.x + accel_data.filtered.y + accel_data.filtered.z) || GYRO_OOB(gyro_data.filtered.x + gyro_data.filtered.y + gyro_data.filtered.z)) { // If any values are NaN or huge don't update //TODO: add field to ahrs status to track number of these events continue; } print_ekf_binary(); /* If algorithm changed reinit. This could go in callback but wouldn't be synchronous */ if (ahrs_algorithm != last_ahrs_algorithm) ins_init_algorithm(); last_ahrs_algorithm = ahrs_algorithm; switch(ahrs_algorithm) { case AHRSSETTINGS_ALGORITHM_SIMPLE: simple_update(); break; case AHRSSETTINGS_ALGORITHM_INSGPS_OUTDOOR: ins_outdoor_update(); break; case AHRSSETTINGS_ALGORITHM_INSGPS_INDOOR: case AHRSSETTINGS_ALGORITHM_INSGPS_INDOOR_NOMAG: ins_indoor_update(); break; } } return 0; } /** * @brief Get the accel and gyro data from whichever source when available * * This function will act as the HAL for the new INS sensors */ bool get_accel_gyro_data() { float accel[6]; float gyro[6]; uint16_t spin_count = 1; while(fifoBuf_getUsed(&adc_fifo_buffer) < (sizeof(accel) + sizeof(gyro))) { if(spin_count++ == 0) AhrsPoll(); } fifoBuf_getData(&adc_fifo_buffer, &accel[0], sizeof(float) * 3); fifoBuf_getData(&adc_fifo_buffer, &gyro[0], sizeof(float) * 3); fifoBuf_getData(&adc_fifo_buffer, &accel[3], sizeof(float) * 3); fifoBuf_getData(&adc_fifo_buffer, &gyro[3], sizeof(float) * 3); accel_data.filtered.x = (accel[0] + accel[3]) / 2; accel_data.filtered.y = (accel[1] + accel[4]) / 2; accel_data.filtered.z = (accel[2] + accel[5]) / 2; gyro_data.filtered.x = (gyro[0] + gyro[3]) / 2; gyro_data.filtered.y = (gyro[1] + gyro[4]) / 2; gyro_data.filtered.z = (gyro[2] + gyro[5]) / 2; return true; } /** * @brief Perform calibration of a 3-axis field sensor using an affine transformation * matrix. * * Computes result = scale * arg. * * @param result[out] The three-axis resultant field. * @param scale[in] The 4x4 affine transformation matrix. The fourth row is implicitly * [0 0 0 1] * @param arg[in] The 3-axis input field. The 'w' component is implicitly 1. */ void calibration(float result[3], float scale[3][4], float arg[3]) { for (int row = 0; row < 3; ++row) { result[row] = 0.0f; int col; for (col = 0; col < 3; ++col) { result[row] += scale[row][col] * arg[col]; } // fourth column: arg has an implicit w value of 1.0f. result[row] += scale[row][col]; } } /** * @brief Scale an affine transformation matrix by a rotation, defined by a * rotation vector. scale <- rotation * scale * * @param scale[in,out] The affine transformation matrix to be rotated * @param rotation[in] The rotation vector defining the rotation */ void affine_rotate(float scale[3][4], float rotation[3]) { // Rotate the scale factor matrix in-place float rmatrix[3][3]; Rv2Rot(rotation, rmatrix); float ret[3][4]; for (int row = 0; row < 3; ++row) { for (int col = 0; col < 4; ++col) { ret[row][col] = 0.0f; for (int i = 0; i < 3; ++i) { ret[row][col] += rmatrix[row][i] * scale[i][col]; } } } // copy output to argument for (int row = 0; row < 3; ++row) { for (int col = 0; col < 4; ++col) { scale[row][col] = ret[row][col]; } } } /** * @brief Downsample the analog data * @return none * * Tried to make as much of the filtering fixed point when possible. Need to account * for offset for each sample before the multiplication if filter not a boxcar. Could * precompute fixed offset as sum[fir_coeffs[i]] * ACCEL_OFFSET. Puts data into global * data structures @ref accel_data and @ref gyro_data. * * The accel_data values are converted into a coordinate system where X is forwards along * the fuselage, Y is along right the wing, and Z is down. */ void adc_callback(float * downsampled_data) { AHRSSettingsData settings; AHRSSettingsGet(&settings); #if 0 // Get the Y data. Third byte in. Convert to m/s float accel_filtered[3]; accel_filtered[1] = 0; for (i = 0; i < adc_oversampling; i++) accel_filtered[1] += valid_data_buffer[0 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i]; accel_filtered[1] /= (float) fir_coeffs[adc_oversampling]; // Get the X data which projects forward/backwards. Fifth byte in. Convert to m/s accel_filtered[0] = 0; for (i = 0; i < adc_oversampling; i++) accel_filtered[0] += valid_data_buffer[2 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i]; accel_filtered[0] /= (float) fir_coeffs[adc_oversampling]; // Get the Z data. Third byte in. Convert to m/s accel_filtered[2] = 0; for (i = 0; i < adc_oversampling; i++) accel_filtered[2] += valid_data_buffer[4 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i]; accel_filtered[2] /= (float) fir_coeffs[adc_oversampling]; float accel_scaled[3]; calibration(accel_scaled, accel_data.calibration.scale, accel_filtered); accel_data.filtered.x = accel_scaled[0]; accel_data.filtered.y = accel_scaled[1]; accel_data.filtered.z = accel_scaled[2]; #else float accel[3], gyro[3]; float raw_accel[3] = { downsampled_data[ACCEL_RAW_X_IDX], downsampled_data[ACCEL_RAW_Y_IDX], -downsampled_data[ACCEL_RAW_Z_IDX] }; // Accel data is (y,x,z) in first third and fifth byte. Convert to m/s^2 calibration(accel, accel_data.calibration.scale, raw_accel); // Gyro data is (x,y,z) in second, fifth and seventh byte. Convert to rad/s gyro[0] = ( ( downsampled_data[GYRO_RAW_X_IDX] + gyro_data.calibration.tempcompfactor[0] * downsampled_data[GYRO_TEMP_RAW_XY_IDX] ) * gyro_data.calibration.scale[0]) + gyro_data.calibration.bias[0]; gyro[1] = ( ( downsampled_data[GYRO_RAW_Y_IDX] + gyro_data.calibration.tempcompfactor[1] * downsampled_data[GYRO_TEMP_RAW_XY_IDX] ) * gyro_data.calibration.scale[1]) + gyro_data.calibration.bias[1]; gyro[2] = ( ( downsampled_data[GYRO_RAW_Z_IDX] + gyro_data.calibration.tempcompfactor[2] * downsampled_data[GYRO_TEMP_RAW_Z_IDX] ) * gyro_data.calibration.scale[2]) + gyro_data.calibration.bias[2]; #endif #if 0 static float gravity_tracking[3] = {0,0,0}; const float tau = 0.9999; gravity_tracking[0] = tau * gravity_tracking[0] + (1-tau) * accel[0]; gravity_tracking[1] = tau * gravity_tracking[1] + (1-tau) * accel[1]; gravity_tracking[2] = tau * gravity_tracking[2] + (1-tau) * (accel[2] + 9.81); if(settings.BiasCorrectedRaw == AHRSSETTINGS_BIASCORRECTEDRAW_TRUE) { accel[0] -= gravity_tracking[0]; accel[1] -= gravity_tracking[1]; accel[2] -= gravity_tracking[2]; } #endif if(fifoBuf_getFree(&adc_fifo_buffer) >= (sizeof(accel) + sizeof(gyro))) { fifoBuf_putData(&adc_fifo_buffer, (uint8_t *) &accel[0], sizeof(accel)); fifoBuf_putData(&adc_fifo_buffer, (uint8_t *) &gyro[0], sizeof(gyro)); } else { ekf_too_slow++; } AttitudeRawData raw; raw.gyrotemp[0] = downsampled_data[GYRO_TEMP_RAW_XY_IDX]; raw.gyrotemp[1] = downsampled_data[GYRO_TEMP_RAW_Z_IDX]; raw.gyros[0] = gyro[0] * RAD_TO_DEG; raw.gyros[1] = gyro[1] * RAD_TO_DEG; raw.gyros[2] = gyro[2] * RAD_TO_DEG; raw.accels[0] = accel[0]; raw.accels[1] = accel[1]; raw.accels[2] = accel[2]; raw.magnetometers[0] = mag_data.scaled.axis[0]; raw.magnetometers[1] = mag_data.scaled.axis[1]; raw.magnetometers[2] = mag_data.scaled.axis[2]; if (settings.BiasCorrectedRaw == AHRSSETTINGS_BIASCORRECTEDRAW_TRUE) { raw.gyros[0] -= Nav.gyro_bias[0] * RAD_TO_DEG; raw.gyros[1] -= Nav.gyro_bias[1] * RAD_TO_DEG; raw.gyros[2] -= Nav.gyro_bias[2] * RAD_TO_DEG; raw.accels[0] -= Nav.accel_bias[0]; raw.accels[1] -= Nav.accel_bias[1]; raw.accels[2] -= Nav.accel_bias[2]; } AttitudeRawSet(&raw); total_conversion_blocks++; } #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) /** * @brief Get the mag data from the I2C sensor and load into structure * @return none * * This function also considers if the home location is set and has a valid * magnetic field before updating the mag data to prevent data being used that * cannot be interpreted. In addition the mag data is not used for the first * five seconds to allow the filter to start to converge */ void process_mag_data() { // Get magnetic readings // For now don't use mags until the magnetic field is set AND until 5 seconds // after initialization otherwise it seems to have problems // TODO: Follow up this initialization issue HomeLocationData home; HomeLocationGet(&home); if (PIOS_HMC5843_NewDataAvailable()) { PIOS_HMC5843_ReadMag(mag_data.raw.axis); // Swap the axis here to acount for orientation of mag chip (notice 0 and 1 swapped in raw) mag_data.scaled.axis[0] = (mag_data.raw.axis[MAG_RAW_X_IDX] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0]; mag_data.scaled.axis[1] = (mag_data.raw.axis[MAG_RAW_Y_IDX] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1]; mag_data.scaled.axis[2] = (mag_data.raw.axis[MAG_RAW_Z_IDX] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2]; // Only use if magnetic length reasonable float Blen = sqrt(pow(mag_data.scaled.axis[0],2) + pow(mag_data.scaled.axis[1],2) + pow(mag_data.scaled.axis[2],2)); mag_data.updated = (home.Set == HOMELOCATION_SET_TRUE) && ((home.Be[0] != 0) || (home.Be[1] != 0) || (home.Be[2] != 0)) && ((mag_data.raw.axis[MAG_RAW_X_IDX] != 0) || (mag_data.raw.axis[MAG_RAW_Y_IDX] != 0) || (mag_data.raw.axis[MAG_RAW_Z_IDX] != 0)) && ((Blen < mag_len * (1 + INSGPS_MAGTOL)) && (Blen > mag_len * (1 - INSGPS_MAGTOL))); } } #else void process_mag_data() { } #endif /** * @brief Assumes board is not moving computes biases and variances of sensors * @returns None * * All data is stored in global structures. This function should be called from OP when * aircraft is in stable state and then the data stored to SD card. * * After this function the bias for each sensor will be the mean value. This doesn't make * sense for the z accel so make sure 6 point calibration is also run and those values set * after these read. */ #define NBIAS 100 #define NVAR 500 void calibrate_sensors() { int i,j; float accel_bias[3] = {0, 0, 0}; float gyro_bias[3] = {0, 0, 0}; float mag_bias[3] = {0, 0, 0}; for (i = 0, j = 0; i < NBIAS; i++) { get_accel_gyro_data(); gyro_bias[0] += gyro_data.filtered.x / NBIAS; gyro_bias[1] += gyro_data.filtered.y / NBIAS; gyro_bias[2] += gyro_data.filtered.z / NBIAS; accel_bias[0] += accel_data.filtered.x / NBIAS; accel_bias[1] += accel_data.filtered.y / NBIAS; accel_bias[2] += accel_data.filtered.z / NBIAS; #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) if(PIOS_HMC5843_NewDataAvailable()) { j ++; PIOS_HMC5843_ReadMag(mag_data.raw.axis); mag_data.scaled.axis[0] = (mag_data.raw.axis[MAG_RAW_X_IDX] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0]; mag_data.scaled.axis[1] = (mag_data.raw.axis[MAG_RAW_Y_IDX] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1]; mag_data.scaled.axis[2] = (mag_data.raw.axis[MAG_RAW_Z_IDX] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2]; mag_bias[0] += mag_data.scaled.axis[0]; mag_bias[1] += mag_data.scaled.axis[1]; mag_bias[2] += mag_data.scaled.axis[2]; } #endif } mag_bias[0] /= j; mag_bias[1] /= j; mag_bias[2] /= j; gyro_data.calibration.variance[0] = 0; gyro_data.calibration.variance[1] = 0; gyro_data.calibration.variance[2] = 0; mag_data.calibration.variance[0] = 0; mag_data.calibration.variance[1] = 0; mag_data.calibration.variance[2] = 0; accel_data.calibration.variance[0] = 0; accel_data.calibration.variance[1] = 0; accel_data.calibration.variance[2] = 0; for (i = 0, j = 0; j < NVAR; j++) { get_accel_gyro_data(); gyro_data.calibration.variance[0] += pow(gyro_data.filtered.x-gyro_bias[0],2) / NVAR; gyro_data.calibration.variance[1] += pow(gyro_data.filtered.y-gyro_bias[1],2) / NVAR; gyro_data.calibration.variance[2] += pow(gyro_data.filtered.z-gyro_bias[2],2) / NVAR; accel_data.calibration.variance[0] += pow(accel_data.filtered.x-accel_bias[0],2) / NVAR; accel_data.calibration.variance[1] += pow(accel_data.filtered.y-accel_bias[1],2) / NVAR; accel_data.calibration.variance[2] += pow(accel_data.filtered.z-accel_bias[2],2) / NVAR; #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) if(PIOS_HMC5843_NewDataAvailable()) { j ++; PIOS_HMC5843_ReadMag(mag_data.raw.axis); mag_data.scaled.axis[0] = (mag_data.raw.axis[MAG_RAW_X_IDX] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0]; mag_data.scaled.axis[1] = (mag_data.raw.axis[MAG_RAW_Y_IDX] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1]; mag_data.scaled.axis[2] = (mag_data.raw.axis[MAG_RAW_Z_IDX] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2]; mag_data.calibration.variance[0] += pow(mag_data.scaled.axis[0]-mag_bias[0],2); mag_data.calibration.variance[1] += pow(mag_data.scaled.axis[1]-mag_bias[1],2); mag_data.calibration.variance[2] += pow(mag_data.scaled.axis[2]-mag_bias[2],2); } #endif } mag_data.calibration.variance[0] /= j; mag_data.calibration.variance[1] /= j; mag_data.calibration.variance[2] /= j; gyro_data.calibration.bias[0] -= gyro_bias[0]; gyro_data.calibration.bias[1] -= gyro_bias[1]; gyro_data.calibration.bias[2] -= gyro_bias[2]; } /** * @brief Populate fields with initial values */ void reset_values() { accel_data.calibration.scale[0][1] = 0; accel_data.calibration.scale[1][0] = 0; accel_data.calibration.scale[0][2] = 0; accel_data.calibration.scale[2][0] = 0; accel_data.calibration.scale[1][2] = 0; accel_data.calibration.scale[2][1] = 0; accel_data.calibration.scale[0][0] = 0.0359; accel_data.calibration.scale[1][1] = 0.0359; accel_data.calibration.scale[2][2] = 0.0359; accel_data.calibration.scale[0][3] = -73.5; accel_data.calibration.scale[1][3] = -73.5; accel_data.calibration.scale[2][3] = -73.5; accel_data.calibration.variance[0] = 1e-4; accel_data.calibration.variance[1] = 1e-4; accel_data.calibration.variance[2] = 1e-4; gyro_data.calibration.scale[0] = -0.014; gyro_data.calibration.scale[1] = 0.014; gyro_data.calibration.scale[2] = -0.014; gyro_data.calibration.bias[0] = -24; gyro_data.calibration.bias[1] = -24; gyro_data.calibration.bias[2] = -24; gyro_data.calibration.variance[0] = 1; gyro_data.calibration.variance[1] = 1; gyro_data.calibration.variance[2] = 1; mag_data.calibration.scale[0] = 1; mag_data.calibration.scale[1] = 1; mag_data.calibration.scale[2] = 1; mag_data.calibration.bias[0] = 0; mag_data.calibration.bias[1] = 0; mag_data.calibration.bias[2] = 0; mag_data.calibration.variance[0] = 50; mag_data.calibration.variance[1] = 50; mag_data.calibration.variance[2] = 50; } void send_attitude(void) { AttitudeActualData attitude; AHRSSettingsData settings; AHRSSettingsGet(&settings); attitude.q1 = attitude_data.quaternion.q1; attitude.q2 = attitude_data.quaternion.q2; attitude.q3 = attitude_data.quaternion.q3; attitude.q4 = attitude_data.quaternion.q4; float rpy[3]; Quaternion2RPY(&attitude_data.quaternion.q1, rpy); attitude.Roll = rpy[0] + settings.RollBias; attitude.Pitch = rpy[1] + settings.PitchBias; attitude.Yaw = rpy[2] + settings.YawBias; if(attitude.Yaw > 360) attitude.Yaw -= 360; AttitudeActualSet(&attitude); } void send_velocity(void) { VelocityActualData velocityActual; VelocityActualGet(&velocityActual); // convert into cm velocityActual.North = Nav.Vel[0] * 100; velocityActual.East = Nav.Vel[1] * 100; velocityActual.Down = Nav.Vel[2] * 100; VelocityActualSet(&velocityActual); } void send_position(void) { PositionActualData positionActual; PositionActualGet(&positionActual); // convert into cm positionActual.North = Nav.Pos[0] * 100; positionActual.East = Nav.Pos[1] * 100; positionActual.Down = Nav.Pos[2] * 100; PositionActualSet(&positionActual); } void send_calibration(void) { AHRSCalibrationData cal; AHRSCalibrationGet(&cal); for(int ct=0; ct<3; ct++) { cal.accel_var[ct] = accel_data.calibration.variance[ct]; cal.gyro_bias[ct] = gyro_data.calibration.bias[ct]; cal.gyro_var[ct] = gyro_data.calibration.variance[ct]; cal.mag_var[ct] = mag_data.calibration.variance[ct]; } cal.measure_var = AHRSCALIBRATION_MEASURE_VAR_SET; AHRSCalibrationSet(&cal); } /** * @brief AHRS calibration callback * * Called when the OP board sets the calibration */ void calibration_callback(AhrsObjHandle obj) { AHRSCalibrationData cal; AHRSCalibrationGet(&cal); if(cal.measure_var == AHRSCALIBRATION_MEASURE_VAR_SET){ accel_data.calibration.scale[0][1] = cal.accel_ortho[0]; accel_data.calibration.scale[1][0] = cal.accel_ortho[0]; accel_data.calibration.scale[0][2] = cal.accel_ortho[1]; accel_data.calibration.scale[2][0] = cal.accel_ortho[1]; accel_data.calibration.scale[1][2] = cal.accel_ortho[2]; accel_data.calibration.scale[2][1] = cal.accel_ortho[2]; #if 0 // TODO: Enable after v1.0 feature freeze. float rotation[3] = { cal.accel_rotation[0], cal.accel_rotation[1], cal.accel_rotation[2], }; affine_rotate(accel_data.calibration.scale, rotation); #endif for(int ct=0; ct<3; ct++) { accel_data.calibration.scale[ct][ct] = cal.accel_scale[ct]; accel_data.calibration.scale[ct][3] = cal.accel_bias[ct]; accel_data.calibration.variance[ct] = cal.accel_var[ct]; gyro_data.calibration.scale[ct] = cal.gyro_scale[ct]; gyro_data.calibration.bias[ct] = cal.gyro_bias[ct]; gyro_data.calibration.variance[ct] = cal.gyro_var[ct]; #if 1 gyro_data.calibration.tempcompfactor[ct] = cal.gyro_tempcompfactor[ct]; #endif mag_data.calibration.bias[ct] = cal.mag_bias[ct]; mag_data.calibration.scale[ct] = cal.mag_scale[ct]; mag_data.calibration.variance[ct] = cal.mag_var[ct]; } // Note: We need the divided by 1000^2 since we scale mags to have a norm of 1000 and they are scaled to // one in code float mag_var[3] = {mag_data.calibration.variance[0] / INSGPS_MAGLEN / INSGPS_MAGLEN, mag_data.calibration.variance[1] / INSGPS_MAGLEN / INSGPS_MAGLEN, mag_data.calibration.variance[2] / INSGPS_MAGLEN / INSGPS_MAGLEN}; INSSetMagVar(mag_var); INSSetAccelVar(accel_data.calibration.variance); INSSetGyroVar(gyro_data.calibration.variance); } else if(cal.measure_var == AHRSCALIBRATION_MEASURE_VAR_MEASURE) { calibrate_sensors(); send_calibration(); } INSSetPosVelVar(cal.pos_var, cal.vel_var); } void gps_callback(AhrsObjHandle obj) { GPSPositionData pos; GPSPositionGet(&pos); HomeLocationData home; HomeLocationGet(&home); // convert from cm back to meters double LLA[3] = {(double) pos.Latitude / 1e7, (double) pos.Longitude / 1e7, (double) (pos.GeoidSeparation + pos.Altitude)}; // put in local NED frame double ECEF[3] = {(double) (home.ECEF[0] / 100), (double) (home.ECEF[1] / 100), (double) (home.ECEF[2] / 100)}; LLA2Base(LLA, ECEF, (float (*)[3]) home.RNE, gps_data.NED); gps_data.heading = pos.Heading; gps_data.groundspeed = pos.Groundspeed; gps_data.quality = 1; /* currently unused */ gps_data.updated = true; // if poor don't use this update if((ahrs_algorithm != AHRSSETTINGS_ALGORITHM_INSGPS_OUTDOOR) || (pos.Satellites < INSGPS_GPS_MINSAT) || (pos.PDOP >= INSGPS_GPS_MINPDOP) || (home.Set == FALSE) || ((home.ECEF[0] == 0) && (home.ECEF[1] == 0) && (home.ECEF[2] == 0))) { gps_data.quality = 0; gps_data.updated = false; } } void altitude_callback(AhrsObjHandle obj) { BaroAltitudeData alt; BaroAltitudeGet(&alt); altitude_data.altitude = alt.Altitude; altitude_data.updated = true; } void settings_callback(AhrsObjHandle obj) { AHRSSettingsData settings; AHRSSettingsGet(&settings); ahrs_algorithm = settings.Algorithm; if(settings.Downsampling != adc_oversampling) { adc_oversampling = settings.Downsampling; PIOS_ADC_Config(adc_oversampling); } } void homelocation_callback(AhrsObjHandle obj) { HomeLocationData data; HomeLocationGet(&data); mag_len = sqrt(pow(data.Be[0],2) + pow(data.Be[1],2) + pow(data.Be[2],2)); float Be[3] = {data.Be[0] / mag_len, data.Be[1] / mag_len, data.Be[2] / mag_len}; INSSetMagNorth(Be); } void firmwareiapobj_callback(AhrsObjHandle obj) { FirmwareIAPObjData firmwareIAPObj; FirmwareIAPObjGet(&firmwareIAPObj); if(firmwareIAPObj.ArmReset==0) reset_count=0; if(firmwareIAPObj.ArmReset==1) { if((firmwareIAPObj.BoardType==BOARD_TYPE) || (firmwareIAPObj.BoardType==0xFF)) { ++reset_count; if(reset_count>2) { PIOS_IAP_SetRequest1(); PIOS_IAP_SetRequest2(); PIOS_SYS_Reset(); } } } else if(firmwareIAPObj.BoardType==BOARD_TYPE && firmwareIAPObj.crc!=iap_calc_crc()) { read_description(firmwareIAPObj.Description); firmwareIAPObj.crc=iap_calc_crc(); firmwareIAPObj.BoardRevision=BOARD_REVISION; FirmwareIAPObjSet(&firmwareIAPObj); } } static uint32_t iap_calc_crc(void) { RCC_AHBPeriphClockCmd(RCC_AHBPeriph_CRC, ENABLE); CRC_ResetDR(); CRC_CalcBlockCRC((uint32_t *) START_OF_USER_CODE, (SIZE_OF_CODE) >> 2); return CRC_GetCRC(); } static uint8_t *FLASH_If_Read(uint32_t SectorAddress) { return (uint8_t *) (SectorAddress); } static void read_description(uint8_t * array) { uint8_t x = 0; for (uint32_t i = START_OF_USER_CODE + SIZE_OF_CODE; i < START_OF_USER_CODE + SIZE_OF_CODE + SIZE_OF_DESCRIPTION; ++i) { array[x] = *FLASH_If_Read(i); ++x; } } /** * @} */