/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_TIM Timer Functions * @brief PIOS Timer control code * @{ * * @file pios_tim.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief Sets up timers and ways to register callbacks on them * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "pios.h" #include "pios_tim.h" #include "pios_tim_priv.h" enum pios_tim_dev_magic { PIOS_TIM_DEV_MAGIC = 0x87654098, }; struct pios_tim_dev { enum pios_tim_dev_magic magic; const struct pios_tim_channel * channels; uint8_t num_channels; const struct pios_tim_callbacks * callbacks; uint32_t context; }; #define PIOS_TIM_ALL_FLAGS TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4 | TIM_IT_Trigger | TIM_IT_Update static struct pios_tim_dev pios_tim_devs[PIOS_TIM_MAX_DEVS]; static uint8_t pios_tim_num_devs; static struct pios_tim_dev * PIOS_TIM_alloc(void) { struct pios_tim_dev * tim_dev; if (pios_tim_num_devs >= PIOS_TIM_MAX_DEVS) { return (NULL); } tim_dev = &pios_tim_devs[pios_tim_num_devs++]; tim_dev->magic = PIOS_TIM_DEV_MAGIC; return (tim_dev); } int32_t PIOS_TIM_InitClock(const struct pios_tim_clock_cfg * cfg) { PIOS_DEBUG_Assert(cfg); /* Enable appropriate clock to timer module */ switch((uint32_t) cfg->timer) { case (uint32_t)TIM1: RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); break; case (uint32_t)TIM2: RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); break; case (uint32_t)TIM3: RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); break; case (uint32_t)TIM4: RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE); break; case (uint32_t)TIM5: RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5, ENABLE); break; case (uint32_t)TIM6: RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE); break; case (uint32_t)TIM7: RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM7, ENABLE); break; case (uint32_t)TIM8: RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM8, ENABLE); break; case (uint32_t)TIM9: RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM9, ENABLE); break; case (uint32_t)TIM10: RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM10, ENABLE); break; case (uint32_t)TIM11: RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM11, ENABLE); break; case (uint32_t)TIM12: RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM12, ENABLE); break; case (uint32_t)TIM13: RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM13, ENABLE); break; case (uint32_t)TIM14: RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM14, ENABLE); break; } /* Configure the dividers for this timer */ TIM_TimeBaseInit(cfg->timer, cfg->time_base_init); /* Configure internal timer clocks */ TIM_InternalClockConfig(cfg->timer); /* Enable timers */ TIM_Cmd(cfg->timer, ENABLE); /* Enable Interrupts */ NVIC_Init(&cfg->irq.init); return 0; } int32_t PIOS_TIM_InitChannels(uint32_t * tim_id, const struct pios_tim_channel * channels, uint8_t num_channels, const struct pios_tim_callbacks * callbacks, uint32_t context) { PIOS_Assert(channels); PIOS_Assert(num_channels); struct pios_tim_dev * tim_dev; tim_dev = (struct pios_tim_dev *) PIOS_TIM_alloc(); if (!tim_dev) goto out_fail; /* Bind the configuration to the device instance */ tim_dev->channels = channels; tim_dev->num_channels = num_channels; tim_dev->callbacks = callbacks; tim_dev->context = context; /* Configure the pins */ for (uint8_t i = 0; i < num_channels; i++) { const struct pios_tim_channel * chan = &(channels[i]); /* Enable the peripheral clock for the GPIO */ /* switch ((uint32_t)chan->pin.gpio) { case (uint32_t) GPIOA: RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); break; case (uint32_t) GPIOB: RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); break; case (uint32_t) GPIOC: RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); break; default: PIOS_Assert(0); break; } */ // commented out for now as f4 starts all clocks GPIO_Init(chan->pin.gpio, &chan->pin.init); PIOS_DEBUG_Assert(chan->remaP); // Second parameter should technically be PinSource but they are numerically the same GPIO_PinAFConfig(chan->pin.gpio, chan->pin.pin_source,chan->remap); } *tim_id = (uint32_t)tim_dev; return(0); out_fail: return(-1); } static void PIOS_TIM_generic_irq_handler(TIM_TypeDef * timer) { /* Iterate over all registered clients of the TIM layer to find channels on this timer */ for (uint8_t i = 0; i < pios_tim_num_devs; i++) { const struct pios_tim_dev * tim_dev = &pios_tim_devs[i]; if (!tim_dev->channels || tim_dev->num_channels == 0) { /* No channels to process on this client */ continue; } /* Check for an overflow event on this timer */ bool overflow_event; uint16_t overflow_count; if (TIM_GetITStatus(timer, TIM_IT_Update) == SET) { TIM_ClearITPendingBit(timer, TIM_IT_Update); overflow_count = timer->ARR; overflow_event = true; } else { overflow_count = 0; overflow_event = false; } for (uint8_t j = 0; j < tim_dev->num_channels; j++) { const struct pios_tim_channel * chan = &tim_dev->channels[j]; if (chan->timer != timer) { /* channel is not on this timer */ continue; } /* Figure out which interrupt bit we should be looking at */ uint16_t timer_it; switch (chan->timer_chan) { case TIM_Channel_1: timer_it = TIM_IT_CC1; break; case TIM_Channel_2: timer_it = TIM_IT_CC2; break; case TIM_Channel_3: timer_it = TIM_IT_CC3; break; case TIM_Channel_4: timer_it = TIM_IT_CC4; break; default: PIOS_Assert(0); break; } bool edge_event; uint16_t edge_count; if (TIM_GetITStatus(chan->timer, timer_it) == SET) { TIM_ClearITPendingBit(chan->timer, timer_it); /* Read the current counter */ switch(chan->timer_chan) { case TIM_Channel_1: edge_count = TIM_GetCapture1(chan->timer); break; case TIM_Channel_2: edge_count = TIM_GetCapture2(chan->timer); break; case TIM_Channel_3: edge_count = TIM_GetCapture3(chan->timer); break; case TIM_Channel_4: edge_count = TIM_GetCapture4(chan->timer); break; default: PIOS_Assert(0); break; } edge_event = true; } else { edge_event = false; edge_count = 0; } if (!tim_dev->callbacks) { /* No callbacks registered, we're done with this channel */ continue; } /* Generate the appropriate callbacks */ if (overflow_event & edge_event) { /* * When both edge and overflow happen in the same interrupt, we * need a heuristic to determine the order of the edge and overflow * events so that the callbacks happen in the right order. If we * get the order wrong, our pulse width calculations could be off by up * to ARR ticks. That could be bad. * * Heuristic: If the edge_count is < 16 ticks above zero then we assume the * edge happened just after the overflow. */ if (edge_count < 16) { /* Call the overflow callback first */ if (tim_dev->callbacks->overflow) { (*tim_dev->callbacks->overflow)((uint32_t)tim_dev, tim_dev->context, j, overflow_count); } /* Call the edge callback second */ if (tim_dev->callbacks->edge) { (*tim_dev->callbacks->edge)((uint32_t)tim_dev, tim_dev->context, j, edge_count); } } else { /* Call the edge callback first */ if (tim_dev->callbacks->edge) { (*tim_dev->callbacks->edge)((uint32_t)tim_dev, tim_dev->context, j, edge_count); } /* Call the overflow callback second */ if (tim_dev->callbacks->overflow) { (*tim_dev->callbacks->overflow)((uint32_t)tim_dev, tim_dev->context, j, overflow_count); } } } else if (overflow_event && tim_dev->callbacks->overflow) { (*tim_dev->callbacks->overflow)((uint32_t)tim_dev, tim_dev->context, j, overflow_count); } else if (edge_event && tim_dev->callbacks->edge) { (*tim_dev->callbacks->edge)((uint32_t)tim_dev, tim_dev->context, j, edge_count); } } } } /* Bind Interrupt Handlers * * Map all valid TIM IRQs to the common interrupt handler * and give it enough context to properly demux the various timers */ void TIM1_CC_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_1_CC_irq_handler"))); static void PIOS_TIM_1_CC_irq_handler (void) { PIOS_TIM_generic_irq_handler (TIM1); } void TIM2_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_2_irq_handler"))); static void PIOS_TIM_2_irq_handler (void) { PIOS_TIM_generic_irq_handler (TIM2); } void TIM3_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_3_irq_handler"))); static void PIOS_TIM_3_irq_handler (void) { PIOS_TIM_generic_irq_handler (TIM3); } void TIM4_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_4_irq_handler"))); static void PIOS_TIM_4_irq_handler (void) { PIOS_TIM_generic_irq_handler (TIM4); } void TIM5_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_5_irq_handler"))); static void PIOS_TIM_5_irq_handler (void) { PIOS_TIM_generic_irq_handler (TIM5); } void TIM6_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_6_irq_handler"))); static void PIOS_TIM_6_irq_handler (void) { PIOS_TIM_generic_irq_handler (TIM6); } void TIM7_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_7_irq_handler"))); static void PIOS_TIM_7_irq_handler (void) { PIOS_TIM_generic_irq_handler (TIM7); } void TIM8_UP_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_8_UP_irq_handler"))); static void PIOS_TIM_8_UP_irq_handler (void) { PIOS_TIM_generic_irq_handler (TIM8); } void TIM8_CC_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_8_CC_irq_handler"))); static void PIOS_TIM_8_CC_irq_handler (void) { PIOS_TIM_generic_irq_handler (TIM8); } // The rest of TIM1 interrupts are overlapped void TIM1_BRK_TIM9_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_9_CC_irq_handler"))); static void PIOS_TIM_9_CC_irq_handler (void) { if (TIM_GetITStatus(TIM1, TIM_IT_Break)) { PIOS_TIM_generic_irq_handler(TIM1); } else if (TIM_GetITStatus(TIM9, PIOS_TIM_ALL_FLAGS)) { PIOS_TIM_generic_irq_handler (TIM9); } } void TIM1_UP_TIM10_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_10_CC_irq_handler"))); static void PIOS_TIM_10_CC_irq_handler (void) { if (TIM_GetITStatus(TIM1, TIM_IT_Update)) { PIOS_TIM_generic_irq_handler(TIM1); } else if (TIM_GetITStatus(TIM10, PIOS_TIM_ALL_FLAGS)) { PIOS_TIM_generic_irq_handler (TIM10); } } void TIM1_TRG_COM_TIM11_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_11_CC_irq_handler"))); static void PIOS_TIM_11_CC_irq_handler (void) { if(TIM_GetITStatus(TIM1, TIM_IT_COM | TIM_IT_Trigger)) { PIOS_TIM_generic_irq_handler (TIM1); } else if (TIM_GetITStatus(TIM11, PIOS_TIM_ALL_FLAGS)) { PIOS_TIM_generic_irq_handler (TIM11); } } void TIM8_BRK_TIM12_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM_12_irq_handler"))); static void PIOS_TIM_12_irq_handler (void) { if(TIM_GetITStatus(TIM8, TIM_IT_Break)) { PIOS_TIM_generic_irq_handler (TIM8); } else if (TIM_GetITStatus(TIM12, PIOS_TIM_ALL_FLAGS)) { PIOS_TIM_generic_irq_handler (TIM12); } } void TIM8_UP_TIM13_IRQHandler(void) __attribute__ ((alias ("PIOS_TIM8_UP_TIM13_IRQHandler"))); static void PIOS_TIM8_UP_TIM13_IRQHandler (void) { if(TIM_GetITStatus(TIM8, TIM_IT_Update)) { PIOS_TIM_generic_irq_handler (TIM8); } else if (TIM_GetITStatus(TIM13, PIOS_TIM_ALL_FLAGS)) { PIOS_TIM_generic_irq_handler (TIM13); } } void TIM8_TRG_COM_TIM14_IRQHandler (void) __attribute__ ((alias ("PIOS_TIM8_TRG_COM_TIM14_IRQHandler"))); static void PIOS_TIM8_TRG_COM_TIM14_IRQHandler (void) { if(TIM_GetITStatus(TIM8, TIM_IT_COM | TIM_IT_Trigger)) { PIOS_TIM_generic_irq_handler (TIM8); } else if (TIM_GetITStatus(TIM14, PIOS_TIM_ALL_FLAGS)) { PIOS_TIM_generic_irq_handler (TIM14); } } /** * @} * @} */