/** ****************************************************************************** * * @file MagOrAccelSensorCal.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief 3 axis sensor cal from six measurements taken in a constant field. * Call SixPointInConstFieldCal(FieldMagnitude, X, Y, Z, S, b) * - FieldMagnitude is the constant field, e.g. 9.81 for accels * - X, Y, Z are vectors of six measurements from different orientations * - returns, S[3] and b[3], that are the scale and offsett for the axes * - i.e. Measurementx = S[0]*Sensorx + b[0] * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include "stdint.h" //Function Prototypes int16_t SixPointInConstFieldCal(double ConstMag, double x[6], double y[6], double z[6], double S[3], double b[3]); int16_t LinearEquationsSolving(int16_t nDim, double *pfMatr, double *pfVect, double *pfSolution); int16_t SixPointInConstFieldCal(double ConstMag, double x[6], double y[6], double z[6], double S[3], double b[3]) { int16_t i; double A[5][5]; double f[5], c[5]; double xp, yp, zp, Sx; // Fill in matrix A - // write six difference-in-magnitude equations of the form // Sx^2(x2^2-x1^2) + 2*Sx*bx*(x2-x1) + Sy^2(y2^2-y1^2) + 2*Sy*by*(y2-y1) + Sz^2(z2^2-z1^2) + 2*Sz*bz*(z2-z1) = 0 // or in other words // 2*Sx*bx*(x2-x1)/Sx^2 + Sy^2(y2^2-y1^2)/Sx^2 + 2*Sy*by*(y2-y1)/Sx^2 + Sz^2(z2^2-z1^2)/Sx^2 + 2*Sz*bz*(z2-z1)/Sx^2 = (x1^2-x2^2) for (i = 0; i < 5; i++) { A[i][0] = 2.0 * (x[i + 1] - x[i]); A[i][1] = y[i + 1] * y[i + 1] - y[i] * y[i]; A[i][2] = 2.0 * (y[i + 1] - y[i]); A[i][3] = z[i + 1] * z[i + 1] - z[i] * z[i]; A[i][4] = 2.0 * (z[i + 1] - z[i]); f[i] = x[i] * x[i] - x[i + 1] * x[i + 1]; } // solve for c0=bx/Sx, c1=Sy^2/Sx^2; c2=Sy*by/Sx^2, c3=Sz^2/Sx^2, c4=Sz*bz/Sx^2 if (!LinearEquationsSolving(5, (double *)A, f, c)) return 0; // use one magnitude equation and c's to find Sx - doesn't matter which - all give the same answer xp = x[0]; yp = y[0]; zp = z[0]; Sx = sqrt(ConstMag * ConstMag / (xp * xp + 2 * c[0] * xp + c[0] * c[0] + c[1] * yp * yp + 2 * c[2] * yp + c[2] * c[2] / c[1] + c[3] * zp * zp + 2 * c[4] * zp + c[4] * c[4] / c[3])); S[0] = Sx; b[0] = Sx * c[0]; S[1] = sqrt(c[1] * Sx * Sx); b[1] = c[2] * Sx * Sx / S[1]; S[2] = sqrt(c[3] * Sx * Sx); b[2] = c[4] * Sx * Sx / S[2]; return 1; } //***************************************************************** int16_t LinearEquationsSolving(int16_t nDim, double *pfMatr, double *pfVect, double *pfSolution) { double fMaxElem; double fAcc; int16_t i, j, k, m; for (k = 0; k < (nDim - 1); k++) // base row of matrix { // search of line with max element fMaxElem = fabs(pfMatr[k * nDim + k]); m = k; for (i = k + 1; i < nDim; i++) { if (fMaxElem < fabs(pfMatr[i * nDim + k])) { fMaxElem = pfMatr[i * nDim + k]; m = i; } } // permutation of base line (index k) and max element line(index m) if (m != k) { for (i = k; i < nDim; i++) { fAcc = pfMatr[k * nDim + i]; pfMatr[k * nDim + i] = pfMatr[m * nDim + i]; pfMatr[m * nDim + i] = fAcc; } fAcc = pfVect[k]; pfVect[k] = pfVect[m]; pfVect[m] = fAcc; } if (pfMatr[k * nDim + k] == 0.) return 0; // needs improvement !!! // triangulation of matrix with coefficients for (j = (k + 1); j < nDim; j++) // current row of matrix { fAcc = -pfMatr[j * nDim + k] / pfMatr[k * nDim + k]; for (i = k; i < nDim; i++) { pfMatr[j * nDim + i] = pfMatr[j * nDim + i] + fAcc * pfMatr[k * nDim + i]; } pfVect[j] = pfVect[j] + fAcc * pfVect[k]; // free member recalculation } } for (k = (nDim - 1); k >= 0; k--) { pfSolution[k] = pfVect[k]; for (i = (k + 1); i < nDim; i++) { pfSolution[k] -= (pfMatr[k * nDim + i] * pfSolution[i]); } pfSolution[k] = pfSolution[k] / pfMatr[k * nDim + k]; } return 1; }