/** ****************************************************************************** * * @file WorldMagModel.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Source file for the World Magnetic Model * This is a port of code available from the US NOAA. * The hard coded coefficients should be valid until 2015. * Major changes include: * - No geoid model (altitude must be geodetic WGS-84) * - Floating point calculation (not double precision) * - Hard coded coefficients for model * - Elimination of user interface * - Elimination of dynamic memory allocation * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ // I don't want this dependency, but currently using pvPortMalloc #include "openpilot.h" #include #include #include #include #include #include "WorldMagModel.h" #include "WMMInternal.h" static WMMtype_Ellipsoid *Ellip; static WMMtype_MagneticModel *MagneticModel; /************************************************************************************** * Example use - very simple - only two exposed functions * * WMM_Initialize(); // Set default values and constants * * WMM_GetMagVector(float Lat, float Lon, float Alt, uint16_t Month, uint16_t Day, uint16_t Year, float B[3]); * e.g. Iceland in may of 2012 = WMM_GetMagVector(65.0, -20.0, 0.0, 5, 5, 2012, B); * Alt is above the WGS-84 Ellipsoid * B is the NED (XYZ) magnetic vector in nTesla **************************************************************************************/ int WMM_Initialize() // Sets default values for WMM subroutines. // UPDATES : Ellip and MagneticModel { // Sets WGS-84 parameters Ellip->a = 6378.137; // semi-major axis of the ellipsoid in km Ellip->b = 6356.7523142; // semi-minor axis of the ellipsoid in km Ellip->fla = 1 / 298.257223563; // flattening Ellip->eps = sqrt(1 - (Ellip->b * Ellip->b) / (Ellip->a * Ellip->a)); // first eccentricity Ellip->epssq = (Ellip->eps * Ellip->eps); // first eccentricity squared Ellip->re = 6371.2; // Earth's radius in km // Sets Magnetic Model parameters MagneticModel->nMax = WMM_MAX_MODEL_DEGREES; MagneticModel->nMaxSecVar = WMM_MAX_SECULAR_VARIATION_MODEL_DEGREES; MagneticModel->SecularVariationUsed = 0; // Really, Really needs to be read from a file - out of date in 2015 at latest MagneticModel->EditionDate = 5.7863328170559505e-307; MagneticModel->epoch = 2010.0; sprintf(MagneticModel->ModelName, "WMM-2010"); WMM_Set_Coeff_Array(); return 0; } void WMM_GetMagVector(float Lat, float Lon, float AltEllipsoid, uint16_t Month, uint16_t Day, uint16_t Year, float B[3]) { char Error_Message[255]; Ellip = (WMMtype_Ellipsoid *) pvPortMalloc(sizeof(WMMtype_Ellipsoid)); MagneticModel = (WMMtype_MagneticModel *) pvPortMalloc(sizeof(WMMtype_MagneticModel)); WMMtype_CoordSpherical *CoordSpherical = (WMMtype_CoordSpherical *) pvPortMalloc(sizeof(CoordSpherical)); WMMtype_CoordGeodetic *CoordGeodetic = (WMMtype_CoordGeodetic *) pvPortMalloc(sizeof(CoordGeodetic)); WMMtype_Date *Date = (WMMtype_Date *) pvPortMalloc(sizeof(WMMtype_Date)); WMMtype_GeoMagneticElements *GeoMagneticElements = (WMMtype_GeoMagneticElements *) pvPortMalloc(sizeof(GeoMagneticElements)); WMM_Initialize(); CoordGeodetic->lambda = Lon; CoordGeodetic->phi = Lat; CoordGeodetic->HeightAboveEllipsoid = AltEllipsoid; WMM_GeodeticToSpherical(CoordGeodetic, CoordSpherical); /*Convert from geodeitic to Spherical Equations: 17-18, WMM Technical report */ Date->Month = Month; Date->Day = Day; Date->Year = Year; WMM_DateToYear(Date, Error_Message); WMM_TimelyModifyMagneticModel(Date); WMM_Geomag(CoordSpherical, CoordGeodetic, GeoMagneticElements); /* Computes the geoMagnetic field elements and their time change */ B[0] = GeoMagneticElements->X; B[1] = GeoMagneticElements->Y; B[2] = GeoMagneticElements->Z; vPortFree(Ellip); vPortFree(MagneticModel); vPortFree(CoordSpherical); vPortFree(CoordGeodetic); vPortFree(Date); vPortFree(GeoMagneticElements); } uint16_t WMM_Geomag(WMMtype_CoordSpherical * CoordSpherical, WMMtype_CoordGeodetic * CoordGeodetic, WMMtype_GeoMagneticElements * GeoMagneticElements) /* The main subroutine that calls a sequence of WMM sub-functions to calculate the magnetic field elements for a single point. The function expects the model coefficients and point coordinates as input and returns the magnetic field elements and their rate of change. Though, this subroutine can be called successively to calculate a time series, profile or grid of magnetic field, these are better achieved by the subroutine WMM_Grid. INPUT: Ellip CoordSpherical CoordGeodetic TimedMagneticModel OUTPUT : GeoMagneticElements CALLS: WMM_ComputeSphericalHarmonicVariables( Ellip, CoordSpherical, TimedMagneticModel->nMax, &SphVariables); (Compute Spherical Harmonic variables ) WMM_AssociatedLegendreFunction(CoordSpherical, TimedMagneticModel->nMax, LegendreFunction); Compute ALF WMM_Summation(LegendreFunction, TimedMagneticModel, SphVariables, CoordSpherical, &MagneticResultsSph); Accumulate the spherical harmonic coefficients WMM_SecVarSummation(LegendreFunction, TimedMagneticModel, SphVariables, CoordSpherical, &MagneticResultsSphVar); Sum the Secular Variation Coefficients WMM_RotateMagneticVector(CoordSpherical, CoordGeodetic, MagneticResultsSph, &MagneticResultsGeo); Map the computed Magnetic fields to Geodeitic coordinates WMM_RotateMagneticVector(CoordSpherical, CoordGeodetic, MagneticResultsSphVar, &MagneticResultsGeoVar); Map the secular variation field components to Geodetic coordinates WMM_CalculateGeoMagneticElements(&MagneticResultsGeo, GeoMagneticElements); Calculate the Geomagnetic elements WMM_CalculateSecularVariation(MagneticResultsGeoVar, GeoMagneticElements); Calculate the secular variation of each of the Geomagnetic elements */ { WMMtype_LegendreFunction LegendreFunction; WMMtype_SphericalHarmonicVariables SphVariables; WMMtype_MagneticResults MagneticResultsSph, MagneticResultsGeo, MagneticResultsSphVar, MagneticResultsGeoVar; WMM_ComputeSphericalHarmonicVariables(CoordSpherical, MagneticModel->nMax, &SphVariables); /* Compute Spherical Harmonic variables */ WMM_AssociatedLegendreFunction(CoordSpherical, MagneticModel->nMax, &LegendreFunction); /* Compute ALF */ WMM_Summation(&LegendreFunction, &SphVariables, CoordSpherical, &MagneticResultsSph); /* Accumulate the spherical harmonic coefficients */ WMM_SecVarSummation(&LegendreFunction, &SphVariables, CoordSpherical, &MagneticResultsSphVar); /*Sum the Secular Variation Coefficients */ WMM_RotateMagneticVector(CoordSpherical, CoordGeodetic, &MagneticResultsSph, &MagneticResultsGeo); /* Map the computed Magnetic fields to Geodeitic coordinates */ WMM_RotateMagneticVector(CoordSpherical, CoordGeodetic, &MagneticResultsSphVar, &MagneticResultsGeoVar); /* Map the secular variation field components to Geodetic coordinates */ WMM_CalculateGeoMagneticElements(&MagneticResultsGeo, GeoMagneticElements); /* Calculate the Geomagnetic elements, Equation 18 , WMM Technical report */ WMM_CalculateSecularVariation(&MagneticResultsGeoVar, GeoMagneticElements); /*Calculate the secular variation of each of the Geomagnetic elements */ return TRUE; } uint16_t WMM_ComputeSphericalHarmonicVariables(WMMtype_CoordSpherical * CoordSpherical, uint16_t nMax, WMMtype_SphericalHarmonicVariables * SphVariables) /* Computes Spherical variables Variables computed are (a/r)^(n+2), cos_m(lamda) and sin_m(lambda) for spherical harmonic summations. (Equations 10-12 in the WMM Technical Report) INPUT Ellip data structure with the following elements float a; semi-major axis of the ellipsoid float b; semi-minor axis of the ellipsoid float fla; flattening float epssq; first eccentricity squared float eps; first eccentricity float re; mean radius of ellipsoid CoordSpherical A data structure with the following elements float lambda; ( longitude) float phig; ( geocentric latitude ) float r; ( distance from the center of the ellipsoid) nMax integer ( Maxumum degree of spherical harmonic secular model)\ OUTPUT SphVariables Pointer to the data structure with the following elements float RelativeRadiusPower[WMM_MAX_MODEL_DEGREES+1]; [earth_reference_radius_km sph. radius ]^n float cos_mlambda[WMM_MAX_MODEL_DEGREES+1]; cp(m) - cosine of (mspherical coord. longitude) float sin_mlambda[WMM_MAX_MODEL_DEGREES+1]; sp(m) - sine of (mspherical coord. longitude) CALLS : none */ { float cos_lambda, sin_lambda; uint16_t m, n; cos_lambda = cos(DEG2RAD(CoordSpherical->lambda)); sin_lambda = sin(DEG2RAD(CoordSpherical->lambda)); /* for n = 0 ... model_order, compute (Radius of Earth / Spherica radius r)^(n+2) for n 1..nMax-1 (this is much faster than calling pow MAX_N+1 times). */ SphVariables->RelativeRadiusPower[0] = (Ellip->re / CoordSpherical->r) * (Ellip->re / CoordSpherical->r); for (n = 1; n <= nMax; n++) { SphVariables->RelativeRadiusPower[n] = SphVariables->RelativeRadiusPower[n - 1] * (Ellip->re / CoordSpherical->r); } /* Compute cos(m*lambda), sin(m*lambda) for m = 0 ... nMax cos(a + b) = cos(a)*cos(b) - sin(a)*sin(b) sin(a + b) = cos(a)*sin(b) + sin(a)*cos(b) */ SphVariables->cos_mlambda[0] = 1.0; SphVariables->sin_mlambda[0] = 0.0; SphVariables->cos_mlambda[1] = cos_lambda; SphVariables->sin_mlambda[1] = sin_lambda; for (m = 2; m <= nMax; m++) { SphVariables->cos_mlambda[m] = SphVariables->cos_mlambda[m - 1] * cos_lambda - SphVariables->sin_mlambda[m - 1] * sin_lambda; SphVariables->sin_mlambda[m] = SphVariables->cos_mlambda[m - 1] * sin_lambda + SphVariables->sin_mlambda[m - 1] * cos_lambda; } return TRUE; } /*WMM_ComputeSphericalHarmonicVariables */ uint16_t WMM_AssociatedLegendreFunction(WMMtype_CoordSpherical * CoordSpherical, uint16_t nMax, WMMtype_LegendreFunction * LegendreFunction) /* Computes all of the Schmidt-semi normalized associated Legendre functions up to degree nMax. If nMax <= 16, function WMM_PcupLow is used. Otherwise WMM_PcupHigh is called. INPUT CoordSpherical A data structure with the following elements float lambda; ( longitude) float phig; ( geocentric latitude ) float r; ( distance from the center of the ellipsoid) nMax integer ( Maxumum degree of spherical harmonic secular model) LegendreFunction Pointer to data structure with the following elements float *Pcup; ( pointer to store Legendre Function ) float *dPcup; ( pointer to store Derivative of Lagendre function ) OUTPUT LegendreFunction Calculated Legendre variables in the data structure */ { float sin_phi; uint16_t FLAG = 1; sin_phi = sin(DEG2RAD(CoordSpherical->phig)); /* sin (geocentric latitude) */ if (nMax <= 16 || (1 - fabs(sin_phi)) < 1.0e-10) /* If nMax is less tha 16 or at the poles */ FLAG = WMM_PcupLow(LegendreFunction->Pcup, LegendreFunction->dPcup, sin_phi, nMax); else FLAG = WMM_PcupHigh(LegendreFunction->Pcup, LegendreFunction->dPcup, sin_phi, nMax); if (FLAG == 0) /* Error while computing Legendre variables */ return FALSE; return TRUE; } /*WMM_AssociatedLegendreFunction */ uint16_t WMM_Summation(WMMtype_LegendreFunction * LegendreFunction, WMMtype_SphericalHarmonicVariables * SphVariables, WMMtype_CoordSpherical * CoordSpherical, WMMtype_MagneticResults * MagneticResults) { /* Computes Geomagnetic Field Elements X, Y and Z in Spherical coordinate system using spherical harmonic summation. The vector Magnetic field is given by -grad V, where V is Geomagnetic scalar potential The gradient in spherical coordinates is given by: dV ^ 1 dV ^ 1 dV ^ grad V = -- r + - -- t + -------- -- p dr r dt r sin(t) dp INPUT : LegendreFunction MagneticModel SphVariables CoordSpherical OUTPUT : MagneticResults CALLS : WMM_SummationSpecial Manoj Nair, June, 2009 Manoj.C.Nair@Noaa.Gov */ uint16_t m, n, index; float cos_phi; MagneticResults->Bz = 0.0; MagneticResults->By = 0.0; MagneticResults->Bx = 0.0; for (n = 1; n <= MagneticModel->nMax; n++) { for (m = 0; m <= n; m++) { index = (n * (n + 1) / 2 + m); /* nMax (n+2) n m m m Bz = -SUM (a/r) (n+1) SUM [g cos(m p) + h sin(m p)] P (sin(phi)) n=1 m=0 n n n */ /* Equation 12 in the WMM Technical report. Derivative with respect to radius.*/ MagneticResults->Bz -= SphVariables->RelativeRadiusPower[n] * (MagneticModel->Main_Field_Coeff_G[index] * SphVariables->cos_mlambda[m] + MagneticModel->Main_Field_Coeff_H[index] * SphVariables->sin_mlambda[m]) * (float)(n + 1) * LegendreFunction->Pcup[index]; /* 1 nMax (n+2) n m m m By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi)) n=1 m=0 n n n */ /* Equation 11 in the WMM Technical report. Derivative with respect to longitude, divided by radius. */ MagneticResults->By += SphVariables->RelativeRadiusPower[n] * (MagneticModel->Main_Field_Coeff_G[index] * SphVariables->sin_mlambda[m] - MagneticModel->Main_Field_Coeff_H[index] * SphVariables->cos_mlambda[m]) * (float)(m) * LegendreFunction->Pcup[index]; /* nMax (n+2) n m m m Bx = - SUM (a/r) SUM [g cos(m p) + h sin(m p)] dP (sin(phi)) n=1 m=0 n n n */ /* Equation 10 in the WMM Technical report. Derivative with respect to latitude, divided by radius. */ MagneticResults->Bx -= SphVariables->RelativeRadiusPower[n] * (MagneticModel->Main_Field_Coeff_G[index] * SphVariables->cos_mlambda[m] + MagneticModel->Main_Field_Coeff_H[index] * SphVariables->sin_mlambda[m]) * LegendreFunction->dPcup[index]; } } cos_phi = cos(DEG2RAD(CoordSpherical->phig)); if (fabs(cos_phi) > 1.0e-10) { MagneticResults->By = MagneticResults->By / cos_phi; } else /* Special calculation for component - By - at Geographic poles. * If the user wants to avoid using this function, please make sure that * the latitude is not exactly +/-90. An option is to make use the function * WMM_CheckGeographicPoles. */ { WMM_SummationSpecial(SphVariables, CoordSpherical, MagneticResults); } return TRUE; } /*WMM_Summation */ uint16_t WMM_SecVarSummation(WMMtype_LegendreFunction * LegendreFunction, WMMtype_SphericalHarmonicVariables * SphVariables, WMMtype_CoordSpherical * CoordSpherical, WMMtype_MagneticResults * MagneticResults) { /*This Function sums the secular variation coefficients to get the secular variation of the Magnetic vector. INPUT : LegendreFunction MagneticModel SphVariables CoordSpherical OUTPUT : MagneticResults CALLS : WMM_SecVarSummationSpecial */ uint16_t m, n, index; float cos_phi; MagneticModel->SecularVariationUsed = TRUE; MagneticResults->Bz = 0.0; MagneticResults->By = 0.0; MagneticResults->Bx = 0.0; for (n = 1; n <= MagneticModel->nMaxSecVar; n++) { for (m = 0; m <= n; m++) { index = (n * (n + 1) / 2 + m); /* nMax (n+2) n m m m Bz = -SUM (a/r) (n+1) SUM [g cos(m p) + h sin(m p)] P (sin(phi)) n=1 m=0 n n n */ /* Derivative with respect to radius.*/ MagneticResults->Bz -= SphVariables->RelativeRadiusPower[n] * (MagneticModel->Secular_Var_Coeff_G[index] * SphVariables->cos_mlambda[m] + MagneticModel->Secular_Var_Coeff_H[index] * SphVariables->sin_mlambda[m]) * (float)(n + 1) * LegendreFunction->Pcup[index]; /* 1 nMax (n+2) n m m m By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi)) n=1 m=0 n n n */ /* Derivative with respect to longitude, divided by radius. */ MagneticResults->By += SphVariables->RelativeRadiusPower[n] * (MagneticModel->Secular_Var_Coeff_G[index] * SphVariables->sin_mlambda[m] - MagneticModel->Secular_Var_Coeff_H[index] * SphVariables->cos_mlambda[m]) * (float)(m) * LegendreFunction->Pcup[index]; /* nMax (n+2) n m m m Bx = - SUM (a/r) SUM [g cos(m p) + h sin(m p)] dP (sin(phi)) n=1 m=0 n n n */ /* Derivative with respect to latitude, divided by radius. */ MagneticResults->Bx -= SphVariables->RelativeRadiusPower[n] * (MagneticModel->Secular_Var_Coeff_G[index] * SphVariables->cos_mlambda[m] + MagneticModel->Secular_Var_Coeff_H[index] * SphVariables->sin_mlambda[m]) * LegendreFunction->dPcup[index]; } } cos_phi = cos(DEG2RAD(CoordSpherical->phig)); if (fabs(cos_phi) > 1.0e-10) { MagneticResults->By = MagneticResults->By / cos_phi; } else /* Special calculation for component By at Geographic poles */ { WMM_SecVarSummationSpecial(SphVariables, CoordSpherical, MagneticResults); } return TRUE; } /*WMM_SecVarSummation */ uint16_t WMM_RotateMagneticVector(WMMtype_CoordSpherical * CoordSpherical, WMMtype_CoordGeodetic * CoordGeodetic, WMMtype_MagneticResults * MagneticResultsSph, WMMtype_MagneticResults * MagneticResultsGeo) /* Rotate the Magnetic Vectors to Geodetic Coordinates Manoj Nair, June, 2009 Manoj.C.Nair@Noaa.Gov Equation 16, WMM Technical report INPUT : CoordSpherical : Data structure WMMtype_CoordSpherical with the following elements float lambda; ( longitude) float phig; ( geocentric latitude ) float r; ( distance from the center of the ellipsoid) CoordGeodetic : Data structure WMMtype_CoordGeodetic with the following elements float lambda; (longitude) float phi; ( geodetic latitude) float HeightAboveEllipsoid; (height above the ellipsoid (HaE) ) float HeightAboveGeoid;(height above the Geoid ) MagneticResultsSph : Data structure WMMtype_MagneticResults with the following elements float Bx; North float By; East float Bz; Down OUTPUT: MagneticResultsGeo Pointer to the data structure WMMtype_MagneticResults, with the following elements float Bx; North float By; East float Bz; Down CALLS : none */ { float Psi; /* Difference between the spherical and Geodetic latitudes */ Psi = (M_PI / 180) * (CoordSpherical->phig - CoordGeodetic->phi); /* Rotate spherical field components to the Geodeitic system */ MagneticResultsGeo->Bz = MagneticResultsSph->Bx * sin(Psi) + MagneticResultsSph->Bz * cos(Psi); MagneticResultsGeo->Bx = MagneticResultsSph->Bx * cos(Psi) - MagneticResultsSph->Bz * sin(Psi); MagneticResultsGeo->By = MagneticResultsSph->By; return TRUE; } /*WMM_RotateMagneticVector */ uint16_t WMM_CalculateGeoMagneticElements(WMMtype_MagneticResults * MagneticResultsGeo, WMMtype_GeoMagneticElements * GeoMagneticElements) /* Calculate all the Geomagnetic elements from X,Y and Z components INPUT MagneticResultsGeo Pointer to data structure with the following elements float Bx; ( North ) float By; ( East ) float Bz; ( Down ) OUTPUT GeoMagneticElements Pointer to data structure with the following elements float Decl; (Angle between the magnetic field vector and true north, positive east) float Incl; Angle between the magnetic field vector and the horizontal plane, positive down float F; Magnetic Field Strength float H; Horizontal Magnetic Field Strength float X; Northern component of the magnetic field vector float Y; Eastern component of the magnetic field vector float Z; Downward component of the magnetic field vector CALLS : none */ { GeoMagneticElements->X = MagneticResultsGeo->Bx; GeoMagneticElements->Y = MagneticResultsGeo->By; GeoMagneticElements->Z = MagneticResultsGeo->Bz; GeoMagneticElements->H = sqrt(MagneticResultsGeo->Bx * MagneticResultsGeo->Bx + MagneticResultsGeo->By * MagneticResultsGeo->By); GeoMagneticElements->F = sqrt(GeoMagneticElements->H * GeoMagneticElements->H + MagneticResultsGeo->Bz * MagneticResultsGeo->Bz); GeoMagneticElements->Decl = RAD2DEG(atan2(GeoMagneticElements->Y, GeoMagneticElements->X)); GeoMagneticElements->Incl = RAD2DEG(atan2(GeoMagneticElements->Z, GeoMagneticElements->H)); return TRUE; } /*WMM_CalculateGeoMagneticElements */ uint16_t WMM_CalculateSecularVariation(WMMtype_MagneticResults * MagneticVariation, WMMtype_GeoMagneticElements * MagneticElements) /*This takes the Magnetic Variation in x, y, and z and uses it to calculate the secular variation of each of the Geomagnetic elements. INPUT MagneticVariation Data structure with the following elements float Bx; ( North ) float By; ( East ) float Bz; ( Down ) OUTPUT MagneticElements Pointer to the data structure with the following elements updated float Decldot; Yearly Rate of change in declination float Incldot; Yearly Rate of change in inclination float Fdot; Yearly rate of change in Magnetic field strength float Hdot; Yearly rate of change in horizontal field strength float Xdot; Yearly rate of change in the northern component float Ydot; Yearly rate of change in the eastern component float Zdot; Yearly rate of change in the downward component float GVdot;Yearly rate of chnage in grid variation CALLS : none */ { MagneticElements->Xdot = MagneticVariation->Bx; MagneticElements->Ydot = MagneticVariation->By; MagneticElements->Zdot = MagneticVariation->Bz; MagneticElements->Hdot = (MagneticElements->X * MagneticElements->Xdot + MagneticElements->Y * MagneticElements->Ydot) / MagneticElements->H; //See equation 19 in the WMM technical report MagneticElements->Fdot = (MagneticElements->X * MagneticElements->Xdot + MagneticElements->Y * MagneticElements->Ydot + MagneticElements->Z * MagneticElements->Zdot) / MagneticElements->F; MagneticElements->Decldot = 180.0 / M_PI * (MagneticElements->X * MagneticElements->Ydot - MagneticElements->Y * MagneticElements->Xdot) / (MagneticElements->H * MagneticElements->H); MagneticElements->Incldot = 180.0 / M_PI * (MagneticElements->H * MagneticElements->Zdot - MagneticElements->Z * MagneticElements->Hdot) / (MagneticElements->F * MagneticElements->F); MagneticElements->GVdot = MagneticElements->Decldot; return TRUE; } /*WMM_CalculateSecularVariation */ uint16_t WMM_PcupHigh(float *Pcup, float *dPcup, float x, uint16_t nMax) /* This function evaluates all of the Schmidt-semi normalized associated Legendre functions up to degree nMax. The functions are initially scaled by 10^280 sin^m in order to minimize the effects of underflow at large m near the poles (see Holmes and Featherstone 2002, J. Geodesy, 76, 279-299). Note that this function performs the same operation as WMM_PcupLow. However this function also can be used for high degree (large nMax) models. Calling Parameters: INPUT nMax: Maximum spherical harmonic degree to compute. x: cos(colatitude) or sin(latitude). OUTPUT Pcup: A vector of all associated Legendgre polynomials evaluated at x up to nMax. The lenght must by greater or equal to (nMax+1)*(nMax+2)/2. dPcup: Derivative of Pcup(x) with respect to latitude CALLS : none Notes: Adopted from the FORTRAN code written by Mark Wieczorek September 25, 2005. Manoj Nair, Nov, 2009 Manoj.C.Nair@Noaa.Gov Change from the previous version The prevous version computes the derivatives as dP(n,m)(x)/dx, where x = sin(latitude) (or cos(colatitude) ). However, the WMM Geomagnetic routines requires dP(n,m)(x)/dlatitude. Hence the derivatives are multiplied by sin(latitude). Removed the options for CS phase and normalizations. Note: In geomagnetism, the derivatives of ALF are usually found with respect to the colatitudes. Here the derivatives are found with respect to the latitude. The difference is a sign reversal for the derivative of the Associated Legendre Functions. The derivates can't be computed for latitude = |90| degrees. */ { float pm2, pm1, pmm, plm, rescalem, z, scalef; float f1[NUMPCUP], f2[NUMPCUP], PreSqr[NUMPCUP]; uint16_t k, kstart, m, n; if (fabs(x) == 1.0) { // printf("Error in PcupHigh: derivative cannot be calculated at poles\n"); return FALSE; } scalef = 1.0e-280; for (n = 0; n <= 2 * nMax + 1; ++n) { PreSqr[n] = sqrt((float)(n)); } k = 2; for (n = 2; n <= nMax; n++) { k = k + 1; f1[k] = (float)(2 * n - 1) / (float)(n); f2[k] = (float)(n - 1) / (float)(n); for (m = 1; m <= n - 2; m++) { k = k + 1; f1[k] = (float)(2 * n - 1) / PreSqr[n + m] / PreSqr[n - m]; f2[k] = PreSqr[n - m - 1] * PreSqr[n + m - 1] / PreSqr[n + m] / PreSqr[n - m]; } k = k + 2; } /*z = sin (geocentric latitude) */ z = sqrt((1.0 - x) * (1.0 + x)); pm2 = 1.0; Pcup[0] = 1.0; dPcup[0] = 0.0; if (nMax == 0) return FALSE; pm1 = x; Pcup[1] = pm1; dPcup[1] = z; k = 1; for (n = 2; n <= nMax; n++) { k = k + n; plm = f1[k] * x * pm1 - f2[k] * pm2; Pcup[k] = plm; dPcup[k] = (float)(n) * (pm1 - x * plm) / z; pm2 = pm1; pm1 = plm; } pmm = PreSqr[2] * scalef; rescalem = 1.0 / scalef; kstart = 0; for (m = 1; m <= nMax - 1; ++m) { rescalem = rescalem * z; /* Calculate Pcup(m,m) */ kstart = kstart + m + 1; pmm = pmm * PreSqr[2 * m + 1] / PreSqr[2 * m]; Pcup[kstart] = pmm * rescalem / PreSqr[2 * m + 1]; dPcup[kstart] = -((float)(m) * x * Pcup[kstart] / z); pm2 = pmm / PreSqr[2 * m + 1]; /* Calculate Pcup(m+1,m) */ k = kstart + m + 1; pm1 = x * PreSqr[2 * m + 1] * pm2; Pcup[k] = pm1 * rescalem; dPcup[k] = ((pm2 * rescalem) * PreSqr[2 * m + 1] - x * (float)(m + 1) * Pcup[k]) / z; /* Calculate Pcup(n,m) */ for (n = m + 2; n <= nMax; ++n) { k = k + n; plm = x * f1[k] * pm1 - f2[k] * pm2; Pcup[k] = plm * rescalem; dPcup[k] = (PreSqr[n + m] * PreSqr[n - m] * (pm1 * rescalem) - (float)(n) * x * Pcup[k]) / z; pm2 = pm1; pm1 = plm; } } /* Calculate Pcup(nMax,nMax) */ rescalem = rescalem * z; kstart = kstart + m + 1; pmm = pmm / PreSqr[2 * nMax]; Pcup[kstart] = pmm * rescalem; dPcup[kstart] = -(float)(nMax) * x * Pcup[kstart] / z; return TRUE; } /* WMM_PcupHigh */ uint16_t WMM_PcupLow(float *Pcup, float *dPcup, float x, uint16_t nMax) /* This function evaluates all of the Schmidt-semi normalized associated Legendre functions up to degree nMax. Calling Parameters: INPUT nMax: Maximum spherical harmonic degree to compute. x: cos(colatitude) or sin(latitude). OUTPUT Pcup: A vector of all associated Legendgre polynomials evaluated at x up to nMax. dPcup: Derivative of Pcup(x) with respect to latitude Notes: Overflow may occur if nMax > 20 , especially for high-latitudes. Use WMM_PcupHigh for large nMax. Writted by Manoj Nair, June, 2009 . Manoj.C.Nair@Noaa.Gov. Note: In geomagnetism, the derivatives of ALF are usually found with respect to the colatitudes. Here the derivatives are found with respect to the latitude. The difference is a sign reversal for the derivative of the Associated Legendre Functions. */ { uint16_t n, m, index, index1, index2; float k, z, schmidtQuasiNorm[NUMPCUP]; Pcup[0] = 1.0; dPcup[0] = 0.0; /*sin (geocentric latitude) - sin_phi */ z = sqrt((1.0 - x) * (1.0 + x)); /* First, Compute the Gauss-normalized associated Legendre functions */ for (n = 1; n <= nMax; n++) { for (m = 0; m <= n; m++) { index = (n * (n + 1) / 2 + m); if (n == m) { index1 = (n - 1) * n / 2 + m - 1; Pcup[index] = z * Pcup[index1]; dPcup[index] = z * dPcup[index1] + x * Pcup[index1]; } else if (n == 1 && m == 0) { index1 = (n - 1) * n / 2 + m; Pcup[index] = x * Pcup[index1]; dPcup[index] = x * dPcup[index1] - z * Pcup[index1]; } else if (n > 1 && n != m) { index1 = (n - 2) * (n - 1) / 2 + m; index2 = (n - 1) * n / 2 + m; if (m > n - 2) { Pcup[index] = x * Pcup[index2]; dPcup[index] = x * dPcup[index2] - z * Pcup[index2]; } else { k = (float)(((n - 1) * (n - 1)) - (m * m)) / (float)((2 * n - 1) * (2 * n - 3)); Pcup[index] = x * Pcup[index2] - k * Pcup[index1]; dPcup[index] = x * dPcup[index2] - z * Pcup[index2] - k * dPcup[index1]; } } } } /*Compute the ration between the Gauss-normalized associated Legendre functions and the Schmidt quasi-normalized version. This is equivalent to sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)! */ schmidtQuasiNorm[0] = 1.0; for (n = 1; n <= nMax; n++) { index = (n * (n + 1) / 2); index1 = (n - 1) * n / 2; /* for m = 0 */ schmidtQuasiNorm[index] = schmidtQuasiNorm[index1] * (float)(2 * n - 1) / (float)n; for (m = 1; m <= n; m++) { index = (n * (n + 1) / 2 + m); index1 = (n * (n + 1) / 2 + m - 1); schmidtQuasiNorm[index] = schmidtQuasiNorm[index1] * sqrt((float)((n - m + 1) * (m == 1 ? 2 : 1)) / (float)(n + m)); } } /* Converts the Gauss-normalized associated Legendre functions to the Schmidt quasi-normalized version using pre-computed relation stored in the variable schmidtQuasiNorm */ for (n = 1; n <= nMax; n++) { for (m = 0; m <= n; m++) { index = (n * (n + 1) / 2 + m); Pcup[index] = Pcup[index] * schmidtQuasiNorm[index]; dPcup[index] = -dPcup[index] * schmidtQuasiNorm[index]; /* The sign is changed since the new WMM routines use derivative with respect to latitude insted of co-latitude */ } } return TRUE; } /*WMM_PcupLow */ uint16_t WMM_SummationSpecial(WMMtype_SphericalHarmonicVariables * SphVariables, WMMtype_CoordSpherical * CoordSpherical, WMMtype_MagneticResults * MagneticResults) /* Special calculation for the component By at Geographic poles. Manoj Nair, June, 2009 manoj.c.nair@noaa.gov INPUT: MagneticModel SphVariables CoordSpherical OUTPUT: MagneticResults CALLS : none See Section 1.4, "SINGULARITIES AT THE GEOGRAPHIC POLES", WMM Technical report */ { uint16_t n, index; float k, sin_phi, PcupS[NUMPCUPS], schmidtQuasiNorm1, schmidtQuasiNorm2, schmidtQuasiNorm3; PcupS[0] = 1; schmidtQuasiNorm1 = 1.0; MagneticResults->By = 0.0; sin_phi = sin(DEG2RAD(CoordSpherical->phig)); for (n = 1; n <= MagneticModel->nMax; n++) { /*Compute the ration between the Gauss-normalized associated Legendre functions and the Schmidt quasi-normalized version. This is equivalent to sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)! */ index = (n * (n + 1) / 2 + 1); schmidtQuasiNorm2 = schmidtQuasiNorm1 * (float)(2 * n - 1) / (float)n; schmidtQuasiNorm3 = schmidtQuasiNorm2 * sqrt((float)(n * 2) / (float)(n + 1)); schmidtQuasiNorm1 = schmidtQuasiNorm2; if (n == 1) { PcupS[n] = PcupS[n - 1]; } else { k = (float)(((n - 1) * (n - 1)) - 1) / (float)((2 * n - 1) * (2 * n - 3)); PcupS[n] = sin_phi * PcupS[n - 1] - k * PcupS[n - 2]; } /* 1 nMax (n+2) n m m m By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi)) n=1 m=0 n n n */ /* Equation 11 in the WMM Technical report. Derivative with respect to longitude, divided by radius. */ MagneticResults->By += SphVariables->RelativeRadiusPower[n] * (MagneticModel->Main_Field_Coeff_G[index] * SphVariables->sin_mlambda[1] - MagneticModel->Main_Field_Coeff_H[index] * SphVariables->cos_mlambda[1]) * PcupS[n] * schmidtQuasiNorm3; } return TRUE; } /*WMM_SummationSpecial */ uint16_t WMM_SecVarSummationSpecial(WMMtype_SphericalHarmonicVariables * SphVariables, WMMtype_CoordSpherical * CoordSpherical, WMMtype_MagneticResults * MagneticResults) { /*Special calculation for the secular variation summation at the poles. INPUT: MagneticModel SphVariables CoordSpherical OUTPUT: MagneticResults CALLS : none */ uint16_t n, index; float k, sin_phi, PcupS[NUMPCUPS], schmidtQuasiNorm1, schmidtQuasiNorm2, schmidtQuasiNorm3; PcupS[0] = 1; schmidtQuasiNorm1 = 1.0; MagneticResults->By = 0.0; sin_phi = sin(DEG2RAD(CoordSpherical->phig)); for (n = 1; n <= MagneticModel->nMaxSecVar; n++) { index = (n * (n + 1) / 2 + 1); schmidtQuasiNorm2 = schmidtQuasiNorm1 * (float)(2 * n - 1) / (float)n; schmidtQuasiNorm3 = schmidtQuasiNorm2 * sqrt((float)(n * 2) / (float)(n + 1)); schmidtQuasiNorm1 = schmidtQuasiNorm2; if (n == 1) { PcupS[n] = PcupS[n - 1]; } else { k = (float)(((n - 1) * (n - 1)) - 1) / (float)((2 * n - 1) * (2 * n - 3)); PcupS[n] = sin_phi * PcupS[n - 1] - k * PcupS[n - 2]; } /* 1 nMax (n+2) n m m m By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi)) n=1 m=0 n n n */ /* Derivative with respect to longitude, divided by radius. */ MagneticResults->By += SphVariables->RelativeRadiusPower[n] * (MagneticModel->Secular_Var_Coeff_G[index] * SphVariables->sin_mlambda[1] - MagneticModel->Secular_Var_Coeff_H[index] * SphVariables->cos_mlambda[1]) * PcupS[n] * schmidtQuasiNorm3; } return TRUE; } /*SecVarSummationSpecial */ void WMM_TimelyModifyMagneticModel(WMMtype_Date * UserDate) // Time change the Model coefficients from the base year of the model using secular variation coefficients. // // Modified to work on the global data structure to reduce memory footprint { uint16_t n, m, index, a, b; a = MagneticModel->nMaxSecVar; b = (a * (a + 1) / 2 + a); for (n = 1; n <= MagneticModel->nMax; n++) { for (m = 0; m <= n; m++) { index = (n * (n + 1) / 2 + m); if (index <= b) { MagneticModel->Main_Field_Coeff_H[index] += (UserDate->DecimalYear - MagneticModel->epoch) * MagneticModel->Secular_Var_Coeff_H[index]; MagneticModel->Main_Field_Coeff_G[index] += (UserDate->DecimalYear - MagneticModel->epoch) * MagneticModel->Secular_Var_Coeff_G[index]; } } } } /* WMM_TimelyModifyMagneticModel */ uint16_t WMM_DateToYear(WMMtype_Date * CalendarDate, char *Error) // Converts a given calendar date into a decimal year { uint16_t temp = 0; // Total number of days uint16_t MonthDays[13] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; uint16_t ExtraDay = 0; uint16_t i; if ((CalendarDate->Year % 4 == 0 && CalendarDate->Year % 100 != 0) || CalendarDate->Year % 400 == 0) ExtraDay = 1; MonthDays[2] += ExtraDay; /******************Validation********************************/ if (CalendarDate->Month <= 0 || CalendarDate->Month > 12) { strcpy(Error, "\nError: The Month entered is invalid, valid months are '1 to 12'\n"); return 0; } if (CalendarDate->Day <= 0 || CalendarDate->Day > MonthDays[CalendarDate->Month]) { // printf("\nThe number of days in month %d is %d\n", CalendarDate->Month, MonthDays[CalendarDate->Month]); strcpy(Error, "\nError: The day entered is invalid\n"); return 0; } /****************Calculation of t***************************/ for (i = 1; i <= CalendarDate->Month; i++) temp += MonthDays[i - 1]; temp += CalendarDate->Day; CalendarDate->DecimalYear = CalendarDate->Year + (temp - 1) / (365.0 + ExtraDay); return 1; } /*WMM_DateToYear */ void WMM_GeodeticToSpherical(WMMtype_CoordGeodetic * CoordGeodetic, WMMtype_CoordSpherical * CoordSpherical) // Converts Geodetic coordinates to Spherical coordinates // Convert geodetic coordinates, (defined by the WGS-84 // reference ellipsoid), to Earth Centered Earth Fixed Cartesian // coordinates, and then to spherical coordinates. { float CosLat, SinLat, rc, xp, zp; // all local variables CosLat = cos(DEG2RAD(CoordGeodetic->phi)); SinLat = sin(DEG2RAD(CoordGeodetic->phi)); // compute the local radius of curvature on the WGS-84 reference ellipsoid rc = Ellip->a / sqrt(1.0 - Ellip->epssq * SinLat * SinLat); // compute ECEF Cartesian coordinates of specified point (for longitude=0) xp = (rc + CoordGeodetic->HeightAboveEllipsoid) * CosLat; zp = (rc * (1.0 - Ellip->epssq) + CoordGeodetic->HeightAboveEllipsoid) * SinLat; // compute spherical radius and angle lambda and phi of specified point CoordSpherical->r = sqrt(xp * xp + zp * zp); CoordSpherical->phig = RAD2DEG(asin(zp / CoordSpherical->r)); // geocentric latitude CoordSpherical->lambda = CoordGeodetic->lambda; // longitude } // WMM_GeodeticToSpherical void WMM_Set_Coeff_Array() { // const should hopefully keep them in the flash region static const float CoeffFile[91][6] = { {0, 0, 0, 0, 0, 0}, {1, 0, -29496.6, 0.0, 11.6, 0.0}, {1, 1, -1586.3, 4944.4, 16.5, -25.9}, {2, 0, -2396.6, 0.0, -12.1, 0.0}, {2, 1, 3026.1, -2707.7, -4.4, -22.5}, {2, 2, 1668.6, -576.1, 1.9, -11.8}, {3, 0, 1340.1, 0.0, 0.4, 0.0}, {3, 1, -2326.2, -160.2, -4.1, 7.3}, {3, 2, 1231.9, 251.9, -2.9, -3.9}, {3, 3, 634.0, -536.6, -7.7, -2.6}, {4, 0, 912.6, 0.0, -1.8, 0.0}, {4, 1, 808.9, 286.4, 2.3, 1.1}, {4, 2, 166.7, -211.2, -8.7, 2.7}, {4, 3, -357.1, 164.3, 4.6, 3.9}, {4, 4, 89.4, -309.1, -2.1, -0.8}, {5, 0, -230.9, 0.0, -1.0, 0.0}, {5, 1, 357.2, 44.6, 0.6, 0.4}, {5, 2, 200.3, 188.9, -1.8, 1.8}, {5, 3, -141.1, -118.2, -1.0, 1.2}, {5, 4, -163.0, 0.0, 0.9, 4.0}, {5, 5, -7.8, 100.9, 1.0, -0.6}, {6, 0, 72.8, 0.0, -0.2, 0.0}, {6, 1, 68.6, -20.8, -0.2, -0.2}, {6, 2, 76.0, 44.1, -0.1, -2.1}, {6, 3, -141.4, 61.5, 2.0, -0.4}, {6, 4, -22.8, -66.3, -1.7, -0.6}, {6, 5, 13.2, 3.1, -0.3, 0.5}, {6, 6, -77.9, 55.0, 1.7, 0.9}, {7, 0, 80.5, 0.0, 0.1, 0.0}, {7, 1, -75.1, -57.9, -0.1, 0.7}, {7, 2, -4.7, -21.1, -0.6, 0.3}, {7, 3, 45.3, 6.5, 1.3, -0.1}, {7, 4, 13.9, 24.9, 0.4, -0.1}, {7, 5, 10.4, 7.0, 0.3, -0.8}, {7, 6, 1.7, -27.7, -0.7, -0.3}, {7, 7, 4.9, -3.3, 0.6, 0.3}, {8, 0, 24.4, 0.0, -0.1, 0.0}, {8, 1, 8.1, 11.0, 0.1, -0.1}, {8, 2, -14.5, -20.0, -0.6, 0.2}, {8, 3, -5.6, 11.9, 0.2, 0.4}, {8, 4, -19.3, -17.4, -0.2, 0.4}, {8, 5, 11.5, 16.7, 0.3, 0.1}, {8, 6, 10.9, 7.0, 0.3, -0.1}, {8, 7, -14.1, -10.8, -0.6, 0.4}, {8, 8, -3.7, 1.7, 0.2, 0.3}, {9, 0, 5.4, 0.0, 0.0, 0.0}, {9, 1, 9.4, -20.5, -0.1, 0.0}, {9, 2, 3.4, 11.5, 0.0, -0.2}, {9, 3, -5.2, 12.8, 0.3, 0.0}, {9, 4, 3.1, -7.2, -0.4, -0.1}, {9, 5, -12.4, -7.4, -0.3, 0.1}, {9, 6, -0.7, 8.0, 0.1, 0.0}, {9, 7, 8.4, 2.1, -0.1, -0.2}, {9, 8, -8.5, -6.1, -0.4, 0.3}, {9, 9, -10.1, 7.0, -0.2, 0.2}, {10, 0, -2.0, 0.0, 0.0, 0.0}, {10, 1, -6.3, 2.8, 0.0, 0.1}, {10, 2, 0.9, -0.1, -0.1, -0.1}, {10, 3, -1.1, 4.7, 0.2, 0.0}, {10, 4, -0.2, 4.4, 0.0, -0.1}, {10, 5, 2.5, -7.2, -0.1, -0.1}, {10, 6, -0.3, -1.0, -0.2, 0.0}, {10, 7, 2.2, -3.9, 0.0, -0.1}, {10, 8, 3.1, -2.0, -0.1, -0.2}, {10, 9, -1.0, -2.0, -0.2, 0.0}, {10, 10, -2.8, -8.3, -0.2, -0.1}, {11, 0, 3.0, 0.0, 0.0, 0.0}, {11, 1, -1.5, 0.2, 0.0, 0.0}, {11, 2, -2.1, 1.7, 0.0, 0.1}, {11, 3, 1.7, -0.6, 0.1, 0.0}, {11, 4, -0.5, -1.8, 0.0, 0.1}, {11, 5, 0.5, 0.9, 0.0, 0.0}, {11, 6, -0.8, -0.4, 0.0, 0.1}, {11, 7, 0.4, -2.5, 0.0, 0.0}, {11, 8, 1.8, -1.3, 0.0, -0.1}, {11, 9, 0.1, -2.1, 0.0, -0.1}, {11, 10, 0.7, -1.9, -0.1, 0.0}, {11, 11, 3.8, -1.8, 0.0, -0.1}, {12, 0, -2.2, 0.0, 0.0, 0.0}, {12, 1, -0.2, -0.9, 0.0, 0.0}, {12, 2, 0.3, 0.3, 0.1, 0.0}, {12, 3, 1.0, 2.1, 0.1, 0.0}, {12, 4, -0.6, -2.5, -0.1, 0.0}, {12, 5, 0.9, 0.5, 0.0, 0.0}, {12, 6, -0.1, 0.6, 0.0, 0.1}, {12, 7, 0.5, 0.0, 0.0, 0.0}, {12, 8, -0.4, 0.1, 0.0, 0.0}, {12, 9, -0.4, 0.3, 0.0, 0.0}, {12, 10, 0.2, -0.9, 0.0, 0.0}, {12, 11, -0.8, -0.2, -0.1, 0.0}, {12, 12, 0.0, 0.9, 0.1, 0.0} }; // TODO: If this works here, delete first two columns to save space for (uint16_t i = 0; i < NUMTERMS; i++) { MagneticModel->Main_Field_Coeff_G[i] = CoeffFile[i][2]; MagneticModel->Main_Field_Coeff_H[i] = CoeffFile[i][3]; MagneticModel->Secular_Var_Coeff_G[i] = CoeffFile[i][4]; MagneticModel->Secular_Var_Coeff_H[i] = CoeffFile[i][5]; } }