/** ****************************************************************************** * @addtogroup AHRS AHRS Control * @brief The AHRS Modules perform * * @{ * @addtogroup AHRS_Main * @brief Main function which does the hardware dependent stuff * @{ * * * @file ahrs.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief INSGPS Test Program * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* OpenPilot Includes */ #include "ahrs.h" #include "ahrs_adc.h" #include "ahrs_timer.h" #include "pios_opahrs_proto.h" #include "ahrs_fsm.h" /* lfsm_state */ #include "insgps.h" #include "CoordinateConversions.h" volatile enum algorithms ahrs_algorithm; // For debugging the raw sensors //#define DUMP_RAW //#define DUMP_FRIENDLY /** * @addtogroup AHRS_Definitions * @{ */ // Currently analog acquistion hard coded at 480 Hz #define ADC_RATE (4*480) #define EKF_RATE (ADC_RATE / adc_oversampling) #define VDD 3.3 /* supply voltage for ADC */ #define FULL_RANGE 4096 /* 12 bit ADC */ #define ACCEL_RANGE 2 /* adjustable by FS input */ #define ACCEL_GRAVITY 9.81 /* m s^-1 */ #define ACCEL_SENSITIVITY ( VDD / 5 ) #define ACCEL_SCALE ( (VDD / FULL_RANGE) / ACCEL_SENSITIVITY * 2 / ACCEL_RANGE * ACCEL_GRAVITY ) #define ACCEL_OFFSET -2048 #define GYRO_SENSITIVITY ( 2.0 / 1000 ) /* 2 mV / (deg s^-1) */ #define RAD_PER_DEGREE ( M_PI / 180 ) #define GYRO_SCALE ( (VDD / FULL_RANGE) / GYRO_SENSITIVITY * RAD_PER_DEGREE ) #define GYRO_OFFSET -1675 /* From data sheet, zero accel output is 1.35 v */ #define MAX_IDLE_COUNT 65e3 /** * @} */ /** * @addtogroup AHRS_Local Local Variables * @{ */ struct mag_sensor { uint8_t id[4]; struct { int16_t axis[3]; } raw; }; struct accel_sensor { struct { uint16_t x; uint16_t y; uint16_t z; } raw; struct { float x; float y; float z; } filtered; }; struct gyro_sensor { struct { uint16_t x; uint16_t y; uint16_t z; } raw; struct { float x; float y; float z; } filtered; struct { uint16_t xy; uint16_t z; } temp; }; struct attitude_solution { struct { float q1; float q2; float q3; float q4; } quaternion; }; struct altitude_sensor { float altitude; bool updated; }; struct gps_sensor { float NED[3]; float heading; float groundspeed; float quality; bool updated; }; struct mag_sensor mag_data; volatile struct accel_sensor accel_data; volatile struct gyro_sensor gyro_data; volatile struct altitude_sensor altitude_data; struct gps_sensor gps_data; volatile struct attitude_solution attitude_data; /** * @} */ /* Function Prototypes */ void process_spi_request(void); void downsample_data(void); void calibrate_sensors(void); void converge_insgps(); volatile uint32_t last_counter_idle_start = 0; volatile uint32_t last_counter_idle_end = 0; volatile uint32_t idle_counts; volatile uint32_t running_counts; uint32_t counter_val; /** * @addtogroup AHRS_Global_Data AHRS Global Data * @{ * Public data. Used by both EKF and the sender */ //! Accelerometer variance after filter from OP or calibrate_sensors float accel_var[3] = {1,1,1}; //! Gyro variance after filter from OP or calibrate sensors float gyro_var[3] = {1,1,1}; //! Accelerometer scale after calibration float accel_scale[3] = {ACCEL_SCALE, ACCEL_SCALE, ACCEL_SCALE}; //! Gyro scale after calibration float gyro_scale[3] = {GYRO_SCALE, GYRO_SCALE, GYRO_SCALE}; //! Magnetometer variance from OP or calibrate sensors float mag_var[3] = {1,1,1}; //! Accelerometer bias from OP or calibrate sensors int16_t accel_bias[3] = {ACCEL_OFFSET, ACCEL_OFFSET, ACCEL_OFFSET}; //! Gyroscope bias term from OP or calibrate sensors int16_t gyro_bias[3] = {0,0,0}; //! Magnetometer bias (direction) from OP or calibrate sensors int16_t mag_bias[3] = {0,0,0}; //! Filter coefficients used in decimation. Limited order so filter can't run between samples int16_t fir_coeffs[50]; //! Home location in ECEF coordinates double BaseECEF[3] = {0, 0, 0}; //! Rotation matrix from LLA to Rne float Rne[3][3]; //! Indicates the communications are requesting a calibration uint8_t calibration_pending = FALSE; //! The oversampling rate, ekf is 2k / this static uint8_t adc_oversampling = 15; /** * @} */ /** * @brief AHRS Main function */ int main() { float gyro[3], accel[3], mag[3]; float vel[3] = {0,0,0}; gps_data.quality = -1; ahrs_algorithm = INSGPS_Algo; /* Brings up System using CMSIS functions, enables the LEDs. */ PIOS_SYS_Init(); /* Delay system */ PIOS_DELAY_Init(); /* Communication system */ PIOS_COM_Init(); /* ADC system */ AHRS_ADC_Config(adc_oversampling); /* Setup the Accelerometer FS (Full-Scale) GPIO */ PIOS_GPIO_Enable(0); SET_ACCEL_2G; #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) /* Magnetic sensor system */ PIOS_I2C_Init(); PIOS_HMC5843_Init(); // Get 3 ID bytes strcpy ((char *)mag_data.id, "ZZZ"); PIOS_HMC5843_ReadID(mag_data.id); #endif /* SPI link to master */ PIOS_SPI_Init(); lfsm_init(); ahrs_state = AHRS_IDLE; /* Use simple averaging filter for now */ for (int i = 0; i < adc_oversampling; i++) fir_coeffs[i] = 1; fir_coeffs[adc_oversampling] = adc_oversampling; if(ahrs_algorithm == INSGPS_Algo) { // compute a data point and initialize INS downsample_data(); converge_insgps(); } #ifdef DUMP_RAW int previous_conversion; while(1) { int result; uint8_t framing[16] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; while( ahrs_state != AHRS_DATA_READY ); ahrs_state = AHRS_PROCESSING; if(total_conversion_blocks != previous_conversion+1) PIOS_LED_On(LED1); // not keeping up else PIOS_LED_Off(LED1); previous_conversion = total_conversion_blocks; downsample_data(); ahrs_state = AHRS_IDLE;; // Dump raw buffer result = PIOS_COM_SendBuffer(PIOS_COM_AUX, &framing[0], 16); // framing header result += PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) &total_conversion_blocks, sizeof(total_conversion_blocks)); // dump block number result += PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) &valid_data_buffer[0], ADC_OVERSAMPLE * ADC_CONTINUOUS_CHANNELS * sizeof(valid_data_buffer[0])); if(result == 0) PIOS_LED_Off(LED1); else { PIOS_LED_On(LED1); } } #endif timer_start(); /******************* Main EKF loop ****************************/ while (1) { // Alive signal if((total_conversion_blocks % 100) == 0) PIOS_LED_Toggle(LED1); if(calibration_pending) { calibrate_sensors(); calibration_pending = FALSE; } #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) // Get magnetic readings if (PIOS_HMC5843_NewDataAvailable()) { PIOS_HMC5843_ReadMag(mag_data.raw.axis); } #endif // Delay for valid data counter_val = timer_count(); running_counts = counter_val - last_counter_idle_end; last_counter_idle_start = counter_val; while ( ahrs_state != AHRS_DATA_READY ); counter_val = timer_count(); idle_counts = counter_val - last_counter_idle_start; last_counter_idle_end = counter_val; ahrs_state = AHRS_PROCESSING; downsample_data(); /***************** SEND BACK SOME RAW DATA ************************/ // Hacky - grab one sample from buffer to populate this. Need to send back // all raw data if it's happening accel_data.raw.x = valid_data_buffer[0]; accel_data.raw.y = valid_data_buffer[2]; accel_data.raw.z = valid_data_buffer[4]; gyro_data.raw.x = valid_data_buffer[1]; gyro_data.raw.y = valid_data_buffer[3]; gyro_data.raw.z = valid_data_buffer[5]; gyro_data.temp.xy = valid_data_buffer[6]; gyro_data.temp.z = valid_data_buffer[7]; if(ahrs_algorithm == INSGPS_Algo) { /******************** INS ALGORITHM **************************/ // format data for INS algo gyro[0] = gyro_data.filtered.x; gyro[1] = gyro_data.filtered.y; gyro[2] = gyro_data.filtered.z; accel[0] = accel_data.filtered.x, accel[1] = accel_data.filtered.y, accel[2] = accel_data.filtered.z, // Note: The magnetometer driver returns registers X,Y,Z from the chip which are // (left, backward, up). Remapping to (forward, right, down). mag[0] = -(mag_data.raw.axis[1] - mag_bias[1]); mag[1] = -(mag_data.raw.axis[0] - mag_bias[0]); mag[2] = -(mag_data.raw.axis[2] - mag_bias[2]); INSPrediction(gyro, accel, 1 / (float) EKF_RATE); if ( gps_data.updated && gps_data.quality == 1) { // Compute velocity from Heading and groundspeed vel[0] = gps_data.groundspeed * cos(gps_data.heading * M_PI / 180); vel[1] = gps_data.groundspeed * sin(gps_data.heading * M_PI / 180); // Completely unprincipled way to make the position variance // increase as data quality decreases but keep it bounded // Variance becomes 40 m^2 and 40 (m/s)^2 when no gps INSSetPosVelVar(0.004); FullCorrection(mag, gps_data.NED, vel, altitude_data.altitude); gps_data.updated = false; } else if(gps_data.quality != -1) MagCorrection(mag); // only trust mags if outdoors else { // Indoors, update with zero position and velocity and high covariance INSSetPosVelVar(0.1); vel[0] = 0; vel[1] = 0; vel[2] = 0; VelBaroCorrection(vel,altitude_data.altitude); // MagVelBaroCorrection(mag,vel,altitude_data.altitude); // only trust mags if outdoors } attitude_data.quaternion.q1 = Nav.q[0]; attitude_data.quaternion.q2 = Nav.q[1]; attitude_data.quaternion.q3 = Nav.q[2]; attitude_data.quaternion.q4 = Nav.q[3]; } else if( ahrs_algorithm == SIMPLE_Algo ) { float q[4]; float rpy[3]; /***************** SIMPLE ATTITUDE FROM NORTH AND ACCEL ************/ /* Very simple computation of the heading and attitude from accel. */ rpy[2] = atan2((mag_data.raw.axis[0]), (-1 * mag_data.raw.axis[1])) * 180 / M_PI; rpy[1] = atan2(accel_data.filtered.x, accel_data.filtered.z) * 180 / M_PI; rpy[0] = atan2(accel_data.filtered.y,accel_data.filtered.z) * 180 / M_PI; RPY2Quaternion(rpy,q); attitude_data.quaternion.q1 = q[0]; attitude_data.quaternion.q2 = q[1]; attitude_data.quaternion.q3 = q[2]; attitude_data.quaternion.q4 = q[3]; } ahrs_state = AHRS_IDLE; #ifdef DUMP_FRIENDLY PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX, "b: %d\r\n", total_conversion_blocks); PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX, "a: %d %d %d\r\n", (int16_t)(accel_data.filtered.x * 1000), (int16_t)(accel_data.filtered.y * 1000), (int16_t)(accel_data.filtered.z * 1000)); PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX, "g: %d %d %d\r\n", (int16_t)(gyro_data.filtered.x * 1000), (int16_t)(gyro_data.filtered.y * 1000), (int16_t)(gyro_data.filtered.z * 1000)); PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX, "m: %d %d %d\r\n", mag_data.raw.axis[0], mag_data.raw.axis[1], mag_data.raw.axis[2]); PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX, "q: %d %d %d %d\r\n", (int16_t)(Nav.q[0] * 1000), (int16_t)(Nav.q[1] * 1000), (int16_t)(Nav.q[2] * 1000), (int16_t)(Nav.q[3] * 1000)); #endif process_spi_request(); } return 0; } /** * @brief Downsample the analog data * @return none * * Tried to make as much of the filtering fixed point when possible. Need to account * for offset for each sample before the multiplication if filter not a boxcar. Could * precompute fixed offset as sum[fir_coeffs[i]] * ACCEL_OFFSET. Puts data into global * data structures @ref accel_data and @ref gyro_data. * * The accel_data values are converted into a coordinate system where X is forwards along * the fuselage, Y is along right the wing, and Z is down. */ void downsample_data() { int32_t accel_raw[3], gyro_raw[3]; uint16_t i; // Get the Y data. Third byte in. Convert to m/s accel_raw[0] = 0; for( i = 0; i < adc_oversampling; i++ ) accel_raw[0] += ( valid_data_buffer[0 + i * PIOS_ADC_NUM_PINS] + accel_bias[1] ) * fir_coeffs[i]; accel_data.filtered.y = (float) accel_raw[0] / (float) fir_coeffs[adc_oversampling] * accel_scale[1]; // Get the X data which projects forward/backwards. Fifth byte in. Convert to m/s accel_raw[1] = 0; for( i = 0; i < adc_oversampling; i++ ) accel_raw[1] += ( valid_data_buffer[2 + i * PIOS_ADC_NUM_PINS] + accel_bias[0] ) * fir_coeffs[i]; accel_data.filtered.x = (float) accel_raw[1] / (float) fir_coeffs[adc_oversampling] * accel_scale[0]; // Get the Z data. Third byte in. Convert to m/s accel_raw[2] = 0; for( i = 0; i < adc_oversampling; i++ ) accel_raw[2] += ( valid_data_buffer[4 + i * PIOS_ADC_NUM_PINS] + accel_bias[2] ) * fir_coeffs[i]; accel_data.filtered.z = -(float) accel_raw[2] / (float) fir_coeffs[adc_oversampling] * accel_scale[2]; // Get the X gyro data. Seventh byte in. Convert to deg/s. gyro_raw[0] = 0; for( i = 0; i < adc_oversampling; i++ ) gyro_raw[0] += ( valid_data_buffer[1 + i * PIOS_ADC_NUM_PINS] + gyro_bias[0] ) * fir_coeffs[i]; gyro_data.filtered.x = (float) gyro_raw[0] / (float) fir_coeffs[adc_oversampling] * gyro_scale[0]; // Get the Y gyro data. Second byte in. Convert to deg/s. gyro_raw[1] = 0; for( i = 0; i < adc_oversampling; i++ ) gyro_raw[1] += ( valid_data_buffer[3 + i * PIOS_ADC_NUM_PINS] + gyro_bias[1] ) * fir_coeffs[i]; gyro_data.filtered.y = (float) gyro_raw[1] / (float) fir_coeffs[adc_oversampling] * gyro_scale[1]; // Get the Z gyro data. Fifth byte in. Convert to deg/s. gyro_raw[2] = 0; for( i = 0; i < adc_oversampling; i++ ) gyro_raw[2] += ( valid_data_buffer[5 + i * PIOS_ADC_NUM_PINS] + gyro_bias[2] ) * fir_coeffs[i]; gyro_data.filtered.z = (float) gyro_raw[2] / (float) fir_coeffs[adc_oversampling] * gyro_scale[2]; } /** * @brief Assumes board is not moving computes biases and variances of sensors * @returns None * * All data is stored in global structures. This function should be called from OP when * aircraft is in stable state and then the data stored to SD card. */ void calibrate_sensors() { int i; int16_t mag_raw[3] = {0,0,0}; // local biases for noise analysis float accel_bias[3], gyro_bias[3], mag_bias[3]; // run few loops to get mean gyro_bias[0] = gyro_bias[1] = gyro_bias[2] = 0; accel_bias[0] = accel_bias[1] = accel_bias[2] = 0; mag_bias[0] = mag_bias[1] = mag_bias[2] = 0; for(i = 0; i < 50; i++) { while( ahrs_state != AHRS_DATA_READY ); ahrs_state = AHRS_PROCESSING; downsample_data(); gyro_bias[0] += gyro_data.filtered.x; gyro_bias[1] += gyro_data.filtered.y; gyro_bias[2] += gyro_data.filtered.z; accel_bias[0] += accel_data.filtered.x; accel_bias[1] += accel_data.filtered.y; accel_bias[2] += accel_data.filtered.z; #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) PIOS_HMC5843_ReadMag(mag_raw); #endif mag_bias[0] += mag_raw[0]; mag_bias[1] += mag_raw[1]; mag_bias[2] += mag_raw[2]; ahrs_state = AHRS_IDLE; process_spi_request(); } gyro_bias[0] /= i; gyro_bias[1] /= i; gyro_bias[2] /= i; accel_bias[0] /= i; accel_bias[1] /= i; accel_bias[2] /= i; mag_bias[0] /= i; mag_bias[1] /= i; mag_bias[2] /= i; // more iterations for variance accel_var[0] = accel_var[1] = accel_var[2] = 0; gyro_var[0] = gyro_var[1] = gyro_var[2] = 0; mag_var[0] = mag_var[1] = mag_var[2] = 0; for(i = 0; i < 500; i++) { while( ahrs_state != AHRS_DATA_READY ); ahrs_state = AHRS_PROCESSING; downsample_data(); gyro_var[0] += (gyro_data.filtered.x - gyro_bias[0]) * (gyro_data.filtered.x - gyro_bias[0]); gyro_var[1] += (gyro_data.filtered.y - gyro_bias[1]) * (gyro_data.filtered.y - gyro_bias[1]); gyro_var[2] += (gyro_data.filtered.z - gyro_bias[2]) * (gyro_data.filtered.z - gyro_bias[2]); accel_var[0] += (accel_data.filtered.x - accel_bias[0]) * (accel_data.filtered.x - accel_bias[0]); accel_var[1] += (accel_data.filtered.y - accel_bias[1]) * (accel_data.filtered.y - accel_bias[1]); accel_var[2] += (accel_data.filtered.z - accel_bias[2]) * (accel_data.filtered.z - accel_bias[2]); #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) PIOS_HMC5843_ReadMag(mag_raw); #endif mag_var[0] += (mag_raw[0] - mag_bias[0]) * (mag_raw[0] - mag_bias[0]); mag_var[1] += (mag_raw[1] - mag_bias[1]) * (mag_raw[1] - mag_bias[1]); mag_var[2] += (mag_raw[2] - mag_bias[2]) * (mag_raw[2] - mag_bias[2]); ahrs_state = AHRS_IDLE; process_spi_request(); } gyro_var[0] /= i; gyro_var[1] /= i; gyro_var[2] /= i; accel_var[0] /= i; accel_var[1] /= i; accel_var[2] /= i; mag_var[0] /= i; mag_var[1] /= i; mag_var[2] /= i; float mag_length2 = mag_bias[0] * mag_bias[0] + mag_bias[1] * mag_bias[1] + mag_bias[2] * mag_bias[2]; mag_var[0] = mag_var[0] / mag_length2; mag_var[1] = mag_var[1] / mag_length2; mag_var[2] = mag_var[2] / mag_length2; if(ahrs_algorithm == INSGPS_Algo) converge_insgps(); } /** * @brief Quickly initialize INS assuming stationary and gravity is down * * Currently this is done iteratively but I'm sure it can be directly computed * when I sit down and work it out */ void converge_insgps() { float pos[3] = {0,0,0}, vel[3] = {0,0,0}, BaroAlt = 0, mag[3], accel[3], temp_gyro[3] = {0, 0, 0}; INSGPSInit(); INSSetAccelVar(accel_var); INSSetGyroBias(temp_gyro); // set this to zero - crude bias corrected from downsample_data INSSetGyroVar(gyro_var); INSSetMagVar(mag_var); float temp_var[3] = {10, 10, 10}; INSSetGyroVar(temp_var); // ignore gyro's accel[0] = accel_data.filtered.x; accel[1] = accel_data.filtered.y; accel[2] = accel_data.filtered.z; // Iteratively constrain pitch and roll while updating yaw to align magnetic axis. for(int i = 0; i < 50; i++) { // This should be done directly but I'm too dumb. float rpy[3]; Quaternion2RPY(Nav.q, rpy); rpy[1] = -atan2(accel_data.filtered.x, accel_data.filtered.z) * 180 / M_PI; rpy[0] = -atan2(accel_data.filtered.y, accel_data.filtered.z) * 180 / M_PI; // Get magnetic readings #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) PIOS_HMC5843_ReadMag(mag_data.raw.axis); #endif mag[0] = -mag_data.raw.axis[1]; mag[1] = -mag_data.raw.axis[0]; mag[2] = -mag_data.raw.axis[2]; RPY2Quaternion(rpy,Nav.q); INSPrediction( temp_gyro, accel, 1 / (float) EKF_RATE ); FullCorrection(mag,pos,vel,BaroAlt); process_spi_request(); // again we must keep this hear to prevent SPI connection dropping } INSSetGyroVar(gyro_var); } /** * @addtogroup AHRS_SPI SPI Messaging * @{ * @brief SPI protocol handling requests for data from OP mainboard */ static struct opahrs_msg_v1 link_tx_v1; static struct opahrs_msg_v1 link_rx_v1; static struct opahrs_msg_v1 user_rx_v1; static struct opahrs_msg_v1 user_tx_v1; void process_spi_request(void) { bool msg_to_process = FALSE; PIOS_IRQ_Disable(); /* Figure out if we're in an interesting stable state */ switch (lfsm_get_state()) { case LFSM_STATE_USER_BUSY: msg_to_process = TRUE; break; case LFSM_STATE_INACTIVE: /* Queue up a receive buffer */ lfsm_user_set_rx_v1 (&user_rx_v1); lfsm_user_done (); break; case LFSM_STATE_STOPPED: /* Get things going */ lfsm_set_link_proto_v1 (&link_tx_v1, &link_rx_v1); break; default: /* Not a stable state */ break; } PIOS_IRQ_Enable(); if (!msg_to_process) { /* Nothing to do */ return; } switch (user_rx_v1.payload.user.t) { case OPAHRS_MSG_V1_REQ_RESET: PIOS_DELAY_WaitmS(user_rx_v1.payload.user.v.req.reset.reset_delay_in_ms); PIOS_SYS_Reset(); break; case OPAHRS_MSG_V1_REQ_SERIAL: opahrs_msg_v1_init_user_tx (&user_tx_v1, OPAHRS_MSG_V1_RSP_SERIAL); PIOS_SYS_SerialNumberGet((char *)&(user_tx_v1.payload.user.v.rsp.serial.serial_bcd)); lfsm_user_set_tx_v1 (&user_tx_v1); break; case OPAHRS_MSG_V1_REQ_ALGORITHM: opahrs_msg_v1_init_user_tx (&user_tx_v1, OPAHRS_MSG_V1_RSP_ALGORITHM); ahrs_algorithm = user_rx_v1.payload.user.v.req.algorithm.algorithm; lfsm_user_set_tx_v1 (&user_tx_v1); break; case OPAHRS_MSG_V1_REQ_NORTH: opahrs_msg_v1_init_user_tx (&user_tx_v1, OPAHRS_MSG_V1_RSP_NORTH); INSSetMagNorth(user_rx_v1.payload.user.v.req.north.Be); INSGPSInit(); // TODO: Better reinitialization when North is finally established lfsm_user_set_tx_v1 (&user_tx_v1); break; case OPAHRS_MSG_V1_REQ_CALIBRATION: if(user_rx_v1.payload.user.v.req.calibration.measure_var == AHRS_MEASURE) { calibration_pending = TRUE; } else if (user_rx_v1.payload.user.v.req.calibration.measure_var == AHRS_SET) { accel_var[0] = user_rx_v1.payload.user.v.req.calibration.accel_var[0]; accel_var[1] = user_rx_v1.payload.user.v.req.calibration.accel_var[1]; accel_var[2] = user_rx_v1.payload.user.v.req.calibration.accel_var[2]; gyro_bias[0] = user_rx_v1.payload.user.v.req.calibration.gyro_bias[0]; gyro_bias[1] = user_rx_v1.payload.user.v.req.calibration.gyro_bias[1]; gyro_bias[2] = user_rx_v1.payload.user.v.req.calibration.gyro_bias[2]; gyro_var[0] = user_rx_v1.payload.user.v.req.calibration.gyro_var[0]; gyro_var[1] = user_rx_v1.payload.user.v.req.calibration.gyro_var[1]; gyro_var[2] = user_rx_v1.payload.user.v.req.calibration.gyro_var[2]; mag_var[0] = user_rx_v1.payload.user.v.req.calibration.mag_var[0]; mag_var[1] = user_rx_v1.payload.user.v.req.calibration.mag_var[1]; mag_var[2] = user_rx_v1.payload.user.v.req.calibration.mag_var[2]; INSSetAccelVar(accel_var); float gyro_bias_ins[3] = {0,0,0}; INSSetGyroBias(gyro_bias_ins); //gyro bias corrects in preprocessing INSSetGyroVar(gyro_var); INSSetMagVar(mag_var); } if(user_rx_v1.payload.user.v.req.calibration.measure_var != AHRS_ECHO) { /* if echoing don't set anything */ accel_bias[0] = user_rx_v1.payload.user.v.req.calibration.accel_bias[0]; accel_bias[1] = user_rx_v1.payload.user.v.req.calibration.accel_bias[1]; accel_bias[2] = user_rx_v1.payload.user.v.req.calibration.accel_bias[2]; accel_scale[0] = user_rx_v1.payload.user.v.req.calibration.accel_scale[0]; accel_scale[1] = user_rx_v1.payload.user.v.req.calibration.accel_scale[1]; accel_scale[2] = user_rx_v1.payload.user.v.req.calibration.accel_scale[2]; gyro_scale[0] = user_rx_v1.payload.user.v.req.calibration.gyro_scale[0]; gyro_scale[1] = user_rx_v1.payload.user.v.req.calibration.gyro_scale[1]; gyro_scale[2] = user_rx_v1.payload.user.v.req.calibration.gyro_scale[2]; mag_bias[0] = user_rx_v1.payload.user.v.req.calibration.mag_bias[0]; mag_bias[1] = user_rx_v1.payload.user.v.req.calibration.mag_bias[1]; mag_bias[2] = user_rx_v1.payload.user.v.req.calibration.mag_bias[2]; } // echo back the values used opahrs_msg_v1_init_user_tx (&user_tx_v1, OPAHRS_MSG_V1_RSP_CALIBRATION); user_tx_v1.payload.user.v.rsp.calibration.accel_var[0] = accel_var[0]; user_tx_v1.payload.user.v.rsp.calibration.accel_var[1] = accel_var[1]; user_tx_v1.payload.user.v.rsp.calibration.accel_var[2] = accel_var[2]; user_tx_v1.payload.user.v.rsp.calibration.gyro_bias[0] = gyro_bias[0]; user_tx_v1.payload.user.v.rsp.calibration.gyro_bias[1] = gyro_bias[1]; user_tx_v1.payload.user.v.rsp.calibration.gyro_bias[2] = gyro_bias[2]; user_tx_v1.payload.user.v.rsp.calibration.gyro_var[0] = gyro_var[0]; user_tx_v1.payload.user.v.rsp.calibration.gyro_var[1] = gyro_var[1]; user_tx_v1.payload.user.v.rsp.calibration.gyro_var[2] = gyro_var[2]; user_tx_v1.payload.user.v.rsp.calibration.mag_var[0] = mag_var[0]; user_tx_v1.payload.user.v.rsp.calibration.mag_var[1] = mag_var[1]; user_tx_v1.payload.user.v.rsp.calibration.mag_var[2] = mag_var[2]; lfsm_user_set_tx_v1 (&user_tx_v1); break; case OPAHRS_MSG_V1_REQ_ATTITUDERAW: opahrs_msg_v1_init_user_tx (&user_tx_v1, OPAHRS_MSG_V1_RSP_ATTITUDERAW); user_tx_v1.payload.user.v.rsp.attituderaw.mags.x = mag_data.raw.axis[0]; user_tx_v1.payload.user.v.rsp.attituderaw.mags.y = mag_data.raw.axis[1]; user_tx_v1.payload.user.v.rsp.attituderaw.mags.z = mag_data.raw.axis[2]; user_tx_v1.payload.user.v.rsp.attituderaw.gyros.x = gyro_data.raw.x; user_tx_v1.payload.user.v.rsp.attituderaw.gyros.y = gyro_data.raw.y; user_tx_v1.payload.user.v.rsp.attituderaw.gyros.z = gyro_data.raw.z; user_tx_v1.payload.user.v.rsp.attituderaw.gyros_filtered.x = gyro_data.filtered.x; user_tx_v1.payload.user.v.rsp.attituderaw.gyros_filtered.y = gyro_data.filtered.y; user_tx_v1.payload.user.v.rsp.attituderaw.gyros_filtered.z = gyro_data.filtered.z; user_tx_v1.payload.user.v.rsp.attituderaw.gyros.xy_temp = gyro_data.temp.xy; user_tx_v1.payload.user.v.rsp.attituderaw.gyros.z_temp = gyro_data.temp.z; user_tx_v1.payload.user.v.rsp.attituderaw.accels.x = accel_data.raw.x; user_tx_v1.payload.user.v.rsp.attituderaw.accels.y = accel_data.raw.y; user_tx_v1.payload.user.v.rsp.attituderaw.accels.z = accel_data.raw.z; user_tx_v1.payload.user.v.rsp.attituderaw.accels_filtered.x = accel_data.filtered.x; user_tx_v1.payload.user.v.rsp.attituderaw.accels_filtered.y = accel_data.filtered.y; user_tx_v1.payload.user.v.rsp.attituderaw.accels_filtered.z = accel_data.filtered.z; lfsm_user_set_tx_v1 (&user_tx_v1); break; case OPAHRS_MSG_V1_REQ_UPDATE: // process incoming data opahrs_msg_v1_init_user_tx (&user_tx_v1, OPAHRS_MSG_V1_RSP_UPDATE); if(user_rx_v1.payload.user.v.req.update.barometer.updated) { altitude_data.altitude = user_rx_v1.payload.user.v.req.update.barometer.altitude; altitude_data.updated = user_rx_v1.payload.user.v.req.update.barometer.updated; } if(user_rx_v1.payload.user.v.req.update.gps.updated) { gps_data.updated = true; gps_data.NED[0] = user_rx_v1.payload.user.v.req.update.gps.NED[0]; gps_data.NED[1] = user_rx_v1.payload.user.v.req.update.gps.NED[1]; gps_data.NED[2] = user_rx_v1.payload.user.v.req.update.gps.NED[2]; gps_data.heading = user_rx_v1.payload.user.v.req.update.gps.heading; gps_data.groundspeed = user_rx_v1.payload.user.v.req.update.gps.groundspeed; gps_data.quality = user_rx_v1.payload.user.v.req.update.gps.quality; } // send out attitude/position estimate user_tx_v1.payload.user.v.rsp.update.quaternion.q1 = attitude_data.quaternion.q1; user_tx_v1.payload.user.v.rsp.update.quaternion.q2 = attitude_data.quaternion.q2; user_tx_v1.payload.user.v.rsp.update.quaternion.q3 = attitude_data.quaternion.q3; user_tx_v1.payload.user.v.rsp.update.quaternion.q4 = attitude_data.quaternion.q4; // TODO: separate this from INSGPS user_tx_v1.payload.user.v.rsp.update.NED[0] = Nav.Pos[0]; user_tx_v1.payload.user.v.rsp.update.NED[1] = Nav.Pos[1]; user_tx_v1.payload.user.v.rsp.update.NED[2] = Nav.Pos[2]; user_tx_v1.payload.user.v.rsp.update.Vel[0] = Nav.Vel[0]; user_tx_v1.payload.user.v.rsp.update.Vel[1] = Nav.Vel[1]; user_tx_v1.payload.user.v.rsp.update.Vel[2] = Nav.Vel[2]; // compute the idle fraction user_tx_v1.payload.user.v.rsp.update.load = ((float) running_counts / (float) (idle_counts+running_counts)) * 100; lfsm_user_set_tx_v1 (&user_tx_v1); break; default: break; } /* Finished processing the received message, requeue it */ lfsm_user_set_rx_v1 (&user_rx_v1); lfsm_user_done (); } /** * @} */