/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_ADC ADC Functions * @brief STM32F4xx ADC PIOS interface * @{ * * @file pios_adc.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @author Michael Smith Copyright (C) 2011. * @brief Analog to Digital converstion routines * @see The GNU Public License (GPL) Version 3 *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* * @note This is a stripped-down ADC driver intended primarily for sampling * voltage and current values. Samples are averaged over the period between * fetches so that relatively accurate measurements can be obtained without * forcing higher-level logic to poll aggressively. * * @todo This module needs more work to be more generally useful. It should * almost certainly grow callback support so that e.g. voltage and current readings * can be shipped out for coulomb counting purposes. The F1xx interface presumes * use with analog sensors, but that implementation largely dominates the ADC * resources. Rather than commit to a new API without a defined use case, we * should stick to our lightweight subset until we have a better idea of what's needed. */ #include "pios.h" #include #if defined(PIOS_INCLUDE_ADC) #if !defined(PIOS_ADC_MAX_SAMPLES) #define PIOS_ADC_MAX_SAMPLES 0 #endif #if !defined(PIOS_ADC_MAX_OVERSAMPLING) #define PIOS_ADC_MAX_OVERSAMPLING 0 #endif #if !defined(PIOS_ADC_USE_ADC2) #define PIOS_ADC_USE_ADC2 0 #endif #if !defined(PIOS_ADC_NUM_CHANNELS) #define PIOS_ADC_NUM_CHANNELS 0 #endif // Private types enum pios_adc_dev_magic { PIOS_ADC_DEV_MAGIC = 0x58375124, }; struct pios_adc_dev { const struct pios_adc_cfg * cfg; ADCCallback callback_function; #if defined(PIOS_INCLUDE_FREERTOS) xQueueHandle data_queue; #endif volatile int16_t *valid_data_buffer; volatile uint8_t adc_oversample; uint8_t dma_block_size; uint16_t dma_half_buffer_size; // int16_t fir_coeffs[PIOS_ADC_MAX_SAMPLES+1] __attribute__ ((aligned(4))); // volatile int16_t raw_data_buffer[PIOS_ADC_MAX_SAMPLES] __attribute__ ((aligned(4))); // float downsampled_buffer[PIOS_ADC_NUM_CHANNELS] __attribute__ ((aligned(4))); enum pios_adc_dev_magic magic; }; struct pios_adc_dev * pios_adc_dev; // Private functions void PIOS_ADC_downsample_data(); static struct pios_adc_dev * PIOS_ADC_Allocate(); static bool PIOS_ADC_validate(struct pios_adc_dev *); #if defined(PIOS_INCLUDE_ADC) static void init_pins(void); static void init_dma(void); static void init_adc(void); #endif struct dma_config { GPIO_TypeDef *port; uint32_t pin; uint32_t channel; }; struct adc_accumulator { uint32_t accumulator; uint32_t count; }; #if defined(PIOS_INCLUDE_ADC) static const struct dma_config config[] = PIOS_DMA_PIN_CONFIG; #define PIOS_ADC_NUM_PINS (sizeof(config) / sizeof(config[0])) static struct adc_accumulator accumulator[PIOS_ADC_NUM_PINS]; // Two buffers here for double buffering static uint16_t adc_raw_buffer[2][PIOS_ADC_MAX_SAMPLES][PIOS_ADC_NUM_PINS]; #endif #if defined(PIOS_INCLUDE_ADC) static void init_pins(void) { /* Setup analog pins */ GPIO_InitTypeDef GPIO_InitStructure; GPIO_StructInit(&GPIO_InitStructure); GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; for (int32_t i = 0; i < PIOS_ADC_NUM_PINS; i++) { if (config[i].port == NULL) continue; GPIO_InitStructure.GPIO_Pin = config[i].pin; GPIO_Init(config[i].port, &GPIO_InitStructure); } } static void init_dma(void) { /* Disable interrupts */ DMA_ITConfig(pios_adc_dev->cfg->dma.rx.channel, pios_adc_dev->cfg->dma.irq.flags, DISABLE); /* Configure DMA channel */ DMA_DeInit(pios_adc_dev->cfg->dma.rx.channel); DMA_InitTypeDef DMAInit = pios_adc_dev->cfg->dma.rx.init; DMAInit.DMA_Memory0BaseAddr = (uint32_t)&adc_raw_buffer[0]; DMAInit.DMA_BufferSize = sizeof(adc_raw_buffer[0]) / sizeof(uint16_t); DMAInit.DMA_DIR = DMA_DIR_PeripheralToMemory; DMAInit.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMAInit.DMA_MemoryInc = DMA_MemoryInc_Enable; DMAInit.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMAInit.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMAInit.DMA_Mode = DMA_Mode_Circular; DMAInit.DMA_Priority = DMA_Priority_Low; DMAInit.DMA_FIFOMode = DMA_FIFOMode_Disable; DMAInit.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; DMAInit.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMAInit.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; DMA_Init(pios_adc_dev->cfg->dma.rx.channel, &DMAInit); /* channel is actually stream ... */ /* configure for double-buffered mode and interrupt on every buffer flip */ DMA_DoubleBufferModeConfig(pios_adc_dev->cfg->dma.rx.channel, (uint32_t)&adc_raw_buffer[1], DMA_Memory_0); DMA_DoubleBufferModeCmd(pios_adc_dev->cfg->dma.rx.channel, ENABLE); DMA_ITConfig(pios_adc_dev->cfg->dma.rx.channel, DMA_IT_TC, ENABLE); //DMA_ITConfig(pios_adc_dev->cfg->dma.rx.channel, DMA_IT_HT, ENABLE); /* enable DMA */ DMA_Cmd(pios_adc_dev->cfg->dma.rx.channel, ENABLE); /* Configure DMA interrupt */ NVIC_InitTypeDef NVICInit = pios_adc_dev->cfg->dma.irq.init; NVIC_Init(&NVICInit); } static void init_adc(void) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); ADC_DeInit(); /* turn on VREFInt in case we need it */ ADC_TempSensorVrefintCmd(ENABLE); /* Do common ADC init */ ADC_CommonInitTypeDef ADC_CommonInitStructure; ADC_CommonStructInit(&ADC_CommonInitStructure); ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div8; ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; ADC_CommonInit(&ADC_CommonInitStructure); ADC_InitTypeDef ADC_InitStructure; ADC_StructInit(&ADC_InitStructure); ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; ADC_InitStructure.ADC_ScanConvMode = ENABLE; ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfConversion = ((PIOS_ADC_NUM_PINS)/* >> 1*/); ADC_Init(pios_adc_dev->cfg->adc_dev, &ADC_InitStructure); /* Enable DMA request */ ADC_DMACmd(pios_adc_dev->cfg->adc_dev, ENABLE); /* Configure input scan */ for (int32_t i = 0; i < PIOS_ADC_NUM_PINS; i++) { ADC_RegularChannelConfig(pios_adc_dev->cfg->adc_dev, config[i].channel, i+1, ADC_SampleTime_56Cycles); /* XXX this is totally arbitrary... */ } ADC_DMARequestAfterLastTransferCmd(pios_adc_dev->cfg->adc_dev, ENABLE); /* Finally start initial conversion */ ADC_Cmd(pios_adc_dev->cfg->adc_dev, ENABLE); ADC_ContinuousModeCmd(pios_adc_dev->cfg->adc_dev, ENABLE); ADC_SoftwareStartConv(pios_adc_dev->cfg->adc_dev); } #endif static bool PIOS_ADC_validate(struct pios_adc_dev * dev) { if (dev == NULL) return false; return (dev->magic == PIOS_ADC_DEV_MAGIC); } #if defined(PIOS_INCLUDE_FREERTOS) static struct pios_adc_dev * PIOS_ADC_Allocate() { struct pios_adc_dev * adc_dev; adc_dev = (struct pios_adc_dev *)pvPortMalloc(sizeof(*adc_dev)); if (!adc_dev) return (NULL); adc_dev->magic = PIOS_ADC_DEV_MAGIC; return(adc_dev); } #else #if defined(PIOS_INCLUDE_ADC) #error Not implemented #endif static struct pios_adc_dev * PIOS_ADC_Allocate() { return (struct pios_adc_dev *) NULL; } #endif /** * @brief Init the ADC. */ int32_t PIOS_ADC_Init(const struct pios_adc_cfg * cfg) { pios_adc_dev = PIOS_ADC_Allocate(); if (pios_adc_dev == NULL) return -1; pios_adc_dev->cfg = cfg; pios_adc_dev->callback_function = NULL; #if defined(PIOS_INCLUDE_FREERTOS) pios_adc_dev->data_queue = NULL; #endif #if defined(PIOS_INCLUDE_ADC) init_pins(); init_dma(); init_adc(); #endif return 0; } /** * @brief Configure the ADC to run at a fixed oversampling * @param[in] oversampling the amount of oversampling to run at */ void PIOS_ADC_Config(uint32_t oversampling) { /* we ignore this */ } /** * Returns value of an ADC Pin * @param[in] pin number * @return ADC pin value averaged over the set of samples since the last reading. * @return -1 if pin doesn't exist */ int32_t last_conv_value; int32_t PIOS_ADC_PinGet(uint32_t pin) { #if defined(PIOS_INCLUDE_ADC) int32_t result; /* Check if pin exists */ if (pin >= PIOS_ADC_NUM_PINS) { return -1; } /* return accumulated result and clear accumulator */ result = accumulator[pin].accumulator / (accumulator[pin].count ?: 1); accumulator[pin].accumulator = 0; accumulator[pin].count = 0; return result; #endif return -1; } /** * @brief Set a callback function that is executed whenever * the ADC double buffer swaps * @note Not currently supported. */ void PIOS_ADC_SetCallback(ADCCallback new_function) { pios_adc_dev->callback_function = new_function; } #if defined(PIOS_INCLUDE_FREERTOS) /** * @brief Register a queue to add data to when downsampled * @note Not currently supported. */ void PIOS_ADC_SetQueue(xQueueHandle data_queue) { pios_adc_dev->data_queue = data_queue; } #endif /** * @brief Return the address of the downsampled data buffer * @note Not currently supported. */ float * PIOS_ADC_GetBuffer(void) { return NULL; } /** * @brief Return the address of the raw data data buffer * @note Not currently supported. */ int16_t * PIOS_ADC_GetRawBuffer(void) { return NULL; } /** * @brief Return the amount of over sampling * @note Not currently supported (always returns 1) */ uint8_t PIOS_ADC_GetOverSampling(void) { return 1; } /** * @brief Set the fir coefficients. Takes as many samples as the * current filter order plus one (normalization) * * @param new_filter Array of adc_oversampling floats plus one for the * filter coefficients * @note Not currently supported. */ void PIOS_ADC_SetFIRCoefficients(float * new_filter) { // not implemented } /** * @brief accumulate the data for each of the channels. */ void accumulate(uint16_t *buffer, uint32_t count) { #if defined(PIOS_INCLUDE_ADC) uint16_t *sp = buffer; /* * Accumulate sampled values. */ while (count--) { for (int i = 0; i < PIOS_ADC_NUM_PINS; i++) { accumulator[i].accumulator += *sp++; accumulator[i].count++; /* * If the accumulator reaches half-full, rescale in order to * make more space. */ if (accumulator[i].accumulator >= (1 << 31)) { accumulator[i].accumulator /= 2; accumulator[i].count /= 2; } } } #if defined(PIOS_INCLUDE_FREERTOS) // XXX should do something with this if (pios_adc_dev->data_queue) { static portBASE_TYPE xHigherPriorityTaskWoken; // xQueueSendFromISR(pios_adc_dev->data_queue, pios_adc_dev->downsampled_buffer, &xHigherPriorityTaskWoken); portEND_SWITCHING_ISR(xHigherPriorityTaskWoken); } #endif #endif // if(pios_adc_dev->callback_function) // pios_adc_dev->callback_function(pios_adc_dev->downsampled_buffer); } /** * @brief Interrupt on buffer flip. * * The hardware is done with the 'other' buffer, so we can pass it to the accumulator. */ void PIOS_ADC_DMA_Handler(void) { if (!PIOS_ADC_validate(pios_adc_dev)) return; #if defined(PIOS_INCLUDE_ADC) /* terminal count, buffer has flipped */ if (DMA_GetITStatus(pios_adc_dev->cfg->dma.rx.channel, pios_adc_dev->cfg->full_flag)) { DMA_ClearITPendingBit(pios_adc_dev->cfg->dma.rx.channel, pios_adc_dev->cfg->full_flag); /* accumulate results from the buffer that was just completed */ accumulate(&adc_raw_buffer[DMA_GetCurrentMemoryTarget(pios_adc_dev->cfg->dma.rx.channel) ? 0 : 1][0][0], PIOS_ADC_MAX_SAMPLES); } #endif } #endif /* PIOS_INCLUDE_ADC */ /** * @} * @} */