/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup CameraStab Camera Stabilization Module * @brief Camera stabilization module * Updates accessory outputs with values appropriate for camera stabilization * @{ * * @file camerastab.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Stabilize camera against the roll pitch and yaw of aircraft * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /** * Output object: Accessory * * This module will periodically calculate the output values for stabilizing the camera * * UAVObjects are automatically generated by the UAVObjectGenerator from * the object definition XML file. * * Modules have no API, all communication to other modules is done through UAVObjects. * However modules may use the API exposed by shared libraries. * See the OpenPilot wiki for more details. * http://www.openpilot.org/OpenPilot_Application_Architecture * */ #include "openpilot.h" #include "accessorydesired.h" #include "attitudeactual.h" #include "camerastabsettings.h" #include "cameradesired.h" #include "hwsettings.h" // // Configuration // #define SAMPLE_PERIOD_MS 10 // Private types // Private variables static struct CameraStab_data { portTickType lastSysTime; float inputs[CAMERASTABSETTINGS_INPUT_NUMELEM]; #ifdef USE_GIMBAL_LPF float attitudeFiltered[CAMERASTABSETTINGS_INPUT_NUMELEM]; #endif #ifdef USE_GIMBAL_FF float ffLastAttitude[CAMERASTABSETTINGS_INPUT_NUMELEM]; float ffLastAttitudeFiltered[CAMERASTABSETTINGS_INPUT_NUMELEM]; float ffFilterAccumulator[CAMERASTABSETTINGS_INPUT_NUMELEM]; #endif } *csd; // Private functions static void attitudeUpdated(UAVObjEvent* ev); static float bound(float val, float limit); #ifdef USE_GIMBAL_FF static void applyFeedForward(uint8_t index, float dT, float *attitude, CameraStabSettingsData *cameraStab); #endif /** * Initialise the module, called on startup * \returns 0 on success or -1 if initialisation failed */ int32_t CameraStabInitialize(void) { bool cameraStabEnabled; #ifdef MODULE_CameraStab_BUILTIN cameraStabEnabled = true; #else uint8_t optionalModules[HWSETTINGS_OPTIONALMODULES_NUMELEM]; HwSettingsInitialize(); HwSettingsOptionalModulesGet(optionalModules); if (optionalModules[HWSETTINGS_OPTIONALMODULES_CAMERASTAB] == HWSETTINGS_OPTIONALMODULES_ENABLED) cameraStabEnabled = true; else cameraStabEnabled = false; #endif if (cameraStabEnabled) { // allocate and initialize the static data storage only if module is enabled csd = (struct CameraStab_data *) pvPortMalloc(sizeof(struct CameraStab_data)); if (!csd) return -1; // initialize camera state variables memset(csd, 0, sizeof(struct CameraStab_data)); csd->lastSysTime = xTaskGetTickCount(); AttitudeActualInitialize(); CameraStabSettingsInitialize(); CameraDesiredInitialize(); UAVObjEvent ev = { .obj = AttitudeActualHandle(), .instId = 0, .event = 0, }; EventPeriodicCallbackCreate(&ev, attitudeUpdated, SAMPLE_PERIOD_MS / portTICK_RATE_MS); return 0; } return -1; } /* stub: module has no module thread */ int32_t CameraStabStart(void) { return 0; } MODULE_INITCALL(CameraStabInitialize, CameraStabStart) static void attitudeUpdated(UAVObjEvent* ev) { if (ev->obj != AttitudeActualHandle()) return; AccessoryDesiredData accessory; CameraStabSettingsData cameraStab; CameraStabSettingsGet(&cameraStab); // check how long since last update, time delta between calls in ms portTickType thisSysTime = xTaskGetTickCount(); float dT = (thisSysTime > csd->lastSysTime) ? (float)((thisSysTime - csd->lastSysTime) * portTICK_RATE_MS) : (float)SAMPLE_PERIOD_MS; csd->lastSysTime = thisSysTime; // process axes for (uint8_t i = 0; i < CAMERASTABSETTINGS_INPUT_NUMELEM; i++) { // read and process control input if (cameraStab.Input[i] != CAMERASTABSETTINGS_INPUT_NONE) { if (AccessoryDesiredInstGet(cameraStab.Input[i] - CAMERASTABSETTINGS_INPUT_ACCESSORY0, &accessory) == 0) { float input_rate; switch (cameraStab.StabilizationMode[i]) { case CAMERASTABSETTINGS_STABILIZATIONMODE_ATTITUDE: csd->inputs[i] = accessory.AccessoryVal * cameraStab.InputRange[i]; break; case CAMERASTABSETTINGS_STABILIZATIONMODE_AXISLOCK: input_rate = accessory.AccessoryVal * cameraStab.InputRate[i]; if (fabs(input_rate) > cameraStab.MaxAxisLockRate) csd->inputs[i] = bound(csd->inputs[i] + input_rate * 0.001f * dT, cameraStab.InputRange[i]); break; default: PIOS_Assert(0); } } } // calculate servo output float attitude; switch (i) { case CAMERASTABSETTINGS_INPUT_ROLL: AttitudeActualRollGet(&attitude); break; case CAMERASTABSETTINGS_INPUT_PITCH: AttitudeActualPitchGet(&attitude); break; case CAMERASTABSETTINGS_INPUT_YAW: AttitudeActualYawGet(&attitude); break; default: PIOS_Assert(0); } #ifdef USE_GIMBAL_LPF if (cameraStab.ResponseTime) { float rt = (float)cameraStab.ResponseTime; attitude = csd->attitudeFiltered[i] = ((rt * csd->attitudeFiltered[i]) + (dT * attitude)) / (rt + dT); } #endif #ifdef USE_GIMBAL_FF if (cameraStab.FeedForward[i]) applyFeedForward(i, dT, &attitude, &cameraStab); #endif // set output channels float output = bound((attitude + csd->inputs[i]) / cameraStab.OutputRange[i], 1.0f); switch (i) { case CAMERASTABSETTINGS_INPUT_ROLL: CameraDesiredRollSet(&output); break; case CAMERASTABSETTINGS_INPUT_PITCH: CameraDesiredPitchSet(&output); break; case CAMERASTABSETTINGS_INPUT_YAW: CameraDesiredYawSet(&output); break; default: PIOS_Assert(0); } } } float bound(float val, float limit) { return (val > limit) ? limit : (val < -limit) ? -limit : val; } #ifdef USE_GIMBAL_FF void applyFeedForward(uint8_t index, float dT, float *attitude, CameraStabSettingsData *cameraStab) { // compensate high feed forward values depending on gimbal type float gimbalTypeCorrection = 1.0f; switch (cameraStab->GimbalType) { case CAMERASTABSETTINGS_GIMBALTYPE_YAWROLLPITCH: if (index == CAMERASTABSETTINGS_INPUT_ROLL) { float pitch; AttitudeActualPitchGet(&pitch); gimbalTypeCorrection = (cameraStab->OutputRange[CAMERASTABSETTINGS_OUTPUTRANGE_PITCH] - fabs(pitch)) / cameraStab->OutputRange[CAMERASTABSETTINGS_OUTPUTRANGE_PITCH]; } break; case CAMERASTABSETTINGS_GIMBALTYPE_YAWPITCHROLL: if (index == CAMERASTABSETTINGS_INPUT_PITCH) { float roll; AttitudeActualRollGet(&roll); gimbalTypeCorrection = (cameraStab->OutputRange[CAMERASTABSETTINGS_OUTPUTRANGE_ROLL] - fabs(roll)) / cameraStab->OutputRange[CAMERASTABSETTINGS_OUTPUTRANGE_ROLL]; } break; default: PIOS_Assert(0); } // apply feed forward float accumulator = csd->ffFilterAccumulator[index]; accumulator += (*attitude - csd->ffLastAttitude[index]) * (float)cameraStab->FeedForward[index] * gimbalTypeCorrection; csd->ffLastAttitude[index] = *attitude; *attitude += accumulator; float filter = (float)((accumulator > 0.0f) ? cameraStab->AccelTime : cameraStab->DecelTime) / dT; if (filter < 1.0f) filter = 1.0f; accumulator -= accumulator / filter; csd->ffFilterAccumulator[index] = accumulator; *attitude += accumulator; // apply acceleration limit float delta = *attitude - csd->ffLastAttitudeFiltered[index]; float maxDelta = (float)cameraStab->MaxAccel * 0.001f * dT; if (fabs(delta) > maxDelta) { // we are accelerating too hard *attitude = csd->ffLastAttitudeFiltered[index] + ((delta > 0.0f) ? maxDelta : -maxDelta); } csd->ffLastAttitudeFiltered[index] = *attitude; } #endif // USE_GIMBAL_FF /** * @} */ /** * @} */