/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup StabilizationModule Stabilization Module * @brief Stabilization PID loops in an airframe type independent manner * @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the * PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeActual "Attitude Actual" * @{ * * @file stabilization.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Attitude stabilization module. * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "openpilot.h" #include "stabilization.h" #include "stabilizationsettings.h" #include "actuatordesired.h" #include "ratedesired.h" #include "stabilizationdesired.h" #include "attitudeactual.h" #include "gyros.h" #include "flightstatus.h" #include "manualcontrol.h" // Just to get a macro #include "CoordinateConversions.h" // Private constants #define MAX_QUEUE_SIZE 1 #if defined(PIOS_STABILIZATION_STACK_SIZE) #define STACK_SIZE_BYTES PIOS_STABILIZATION_STACK_SIZE #else #define STACK_SIZE_BYTES 724 #endif #define TASK_PRIORITY (tskIDLE_PRIORITY+4) #define FAILSAFE_TIMEOUT_MS 30 enum {PID_RATE_ROLL, PID_RATE_PITCH, PID_RATE_YAW, PID_ROLL, PID_PITCH, PID_YAW, PID_VBAR_ROLL, PID_VBAR_PITCH, PID_VBAR_YAW, PID_MAX}; enum {ROLL,PITCH,YAW,MAX_AXES}; // Private types typedef struct { float p; float i; float d; float iLim; float iAccumulator; float lastErr; } pid_type; // Private variables static xTaskHandle taskHandle; static StabilizationSettingsData settings; static xQueueHandle queue; float gyro_alpha = 0; float gyro_filtered[3] = {0,0,0}; float axis_lock_accum[3] = {0,0,0}; uint8_t max_axis_lock = 0; uint8_t max_axislock_rate = 0; float weak_leveling_kp = 0; uint8_t weak_leveling_max = 0; bool lowThrottleZeroIntegral; float vbar_integral[3] = {0, 0, 0}; float vbar_decay = 0.991f; pid_type pids[PID_MAX]; bool vbar_gyros_suppress; bool vbar_piro_comp = false; // Private functions static void stabilizationTask(void* parameters); static float ApplyPid(pid_type * pid, const float err, float dT); static float bound(float val); static void ZeroPids(void); static void SettingsUpdatedCb(UAVObjEvent * ev); /** * Module initialization */ int32_t StabilizationStart() { // Initialize variables // Create object queue queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent)); // Listen for updates. // AttitudeActualConnectQueue(queue); GyrosConnectQueue(queue); StabilizationSettingsConnectCallback(SettingsUpdatedCb); SettingsUpdatedCb(StabilizationSettingsHandle()); // Start main task xTaskCreate(stabilizationTask, (signed char*)"Stabilization", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &taskHandle); TaskMonitorAdd(TASKINFO_RUNNING_STABILIZATION, taskHandle); PIOS_WDG_RegisterFlag(PIOS_WDG_STABILIZATION); return 0; } /** * Module initialization */ int32_t StabilizationInitialize() { // Initialize variables StabilizationSettingsInitialize(); ActuatorDesiredInitialize(); #if defined(DIAGNOSTICS) RateDesiredInitialize(); #endif return 0; } MODULE_INITCALL(StabilizationInitialize, StabilizationStart) /** * Module task */ static void stabilizationTask(void* parameters) { UAVObjEvent ev; uint32_t timeval = PIOS_DELAY_GetRaw(); ActuatorDesiredData actuatorDesired; StabilizationDesiredData stabDesired; RateDesiredData rateDesired; AttitudeActualData attitudeActual; GyrosData gyrosData; FlightStatusData flightStatus; SettingsUpdatedCb((UAVObjEvent *) NULL); // Main task loop ZeroPids(); while(1) { float dT; PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION); // Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe if ( xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE ) { AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION,SYSTEMALARMS_ALARM_WARNING); continue; } dT = PIOS_DELAY_DiffuS(timeval) * 1.0e-6f; timeval = PIOS_DELAY_GetRaw(); FlightStatusGet(&flightStatus); StabilizationDesiredGet(&stabDesired); AttitudeActualGet(&attitudeActual); GyrosGet(&gyrosData); #if defined(DIAGNOSTICS) RateDesiredGet(&rateDesired); #endif #if defined(PIOS_QUATERNION_STABILIZATION) // Quaternion calculation of error in each axis. Uses more memory. float rpy_desired[3]; float q_desired[4]; float q_error[4]; float local_error[3]; // Essentially zero errors for anything in rate or none if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) rpy_desired[0] = stabDesired.Roll; else rpy_desired[0] = attitudeActual.Roll; if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) rpy_desired[1] = stabDesired.Pitch; else rpy_desired[1] = attitudeActual.Pitch; if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) rpy_desired[2] = stabDesired.Yaw; else rpy_desired[2] = attitudeActual.Yaw; RPY2Quaternion(rpy_desired, q_desired); quat_inverse(q_desired); quat_mult(q_desired, &attitudeActual.q1, q_error); quat_inverse(q_error); Quaternion2RPY(q_error, local_error); #else // Simpler algorithm for CC, less memory float local_error[3] = {stabDesired.Roll - attitudeActual.Roll, stabDesired.Pitch - attitudeActual.Pitch, stabDesired.Yaw - attitudeActual.Yaw}; local_error[2] = fmodf(local_error[2] + 180, 360) - 180; #endif gyro_filtered[0] = gyro_filtered[0] * gyro_alpha + gyrosData.x * (1 - gyro_alpha); gyro_filtered[1] = gyro_filtered[1] * gyro_alpha + gyrosData.y * (1 - gyro_alpha); gyro_filtered[2] = gyro_filtered[2] * gyro_alpha + gyrosData.z * (1 - gyro_alpha); float *attitudeDesiredAxis = &stabDesired.Roll; float *actuatorDesiredAxis = &actuatorDesired.Roll; float *rateDesiredAxis = &rateDesired.Roll; //Calculate desired rate for(uint8_t i=0; i< MAX_AXES; i++) { switch(stabDesired.StabilizationMode[i]) { case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE: case STABILIZATIONDESIRED_STABILIZATIONMODE_VBAR: rateDesiredAxis[i] = attitudeDesiredAxis[i]; // Zero attitude and axis lock accumulators pids[PID_ROLL + i].iAccumulator = 0; axis_lock_accum[i] = 0; break; case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING: { float weak_leveling = local_error[i] * weak_leveling_kp; if(weak_leveling > weak_leveling_max) weak_leveling = weak_leveling_max; if(weak_leveling < -weak_leveling_max) weak_leveling = -weak_leveling_max; rateDesiredAxis[i] = attitudeDesiredAxis[i] + weak_leveling; // Zero attitude and axis lock accumulators pids[PID_ROLL + i].iAccumulator = 0; axis_lock_accum[i] = 0; break; } case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE: rateDesiredAxis[i] = ApplyPid(&pids[PID_ROLL + i], local_error[i], dT); if(rateDesiredAxis[i] > settings.MaximumRate[i]) rateDesiredAxis[i] = settings.MaximumRate[i]; else if(rateDesiredAxis[i] < -settings.MaximumRate[i]) rateDesiredAxis[i] = -settings.MaximumRate[i]; axis_lock_accum[i] = 0; break; case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK: if(fabs(attitudeDesiredAxis[i]) > max_axislock_rate) { // While getting strong commands act like rate mode rateDesiredAxis[i] = attitudeDesiredAxis[i]; axis_lock_accum[i] = 0; } else { // For weaker commands or no command simply attitude lock (almost) on no gyro change axis_lock_accum[i] += (attitudeDesiredAxis[i] - gyro_filtered[i]) * dT; if(axis_lock_accum[i] > max_axis_lock) axis_lock_accum[i] = max_axis_lock; else if(axis_lock_accum[i] < -max_axis_lock) axis_lock_accum[i] = -max_axis_lock; rateDesiredAxis[i] = ApplyPid(&pids[PID_ROLL + i], axis_lock_accum[i], dT); } if(rateDesiredAxis[i] > settings.MaximumRate[i]) rateDesiredAxis[i] = settings.MaximumRate[i]; else if(rateDesiredAxis[i] < -settings.MaximumRate[i]) rateDesiredAxis[i] = -settings.MaximumRate[i]; break; } } // Piro compensation rotates the virtual flybar by yaw step to keep it // rotated to external world if (vbar_piro_comp) { const float F_PI = 3.14159f; float cy = cosf(gyro_filtered[2] / 180.0f * F_PI * dT); float sy = sinf(gyro_filtered[2] / 180.0f * F_PI * dT); float vbar_pitch = cy * vbar_integral[1] - sy * vbar_integral[0]; float vbar_roll = sy * vbar_integral[1] + cy * vbar_integral[0]; vbar_integral[1] = vbar_pitch; vbar_integral[0] = vbar_roll; } uint8_t shouldUpdate = 1; #if defined(DIAGNOSTICS) RateDesiredSet(&rateDesired); #endif ActuatorDesiredGet(&actuatorDesired); //Calculate desired command for(uint32_t i = 0; i < MAX_AXES; i++) { switch(stabDesired.StabilizationMode[i]) { case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE: case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE: case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK: case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING: { float command = ApplyPid(&pids[PID_RATE_ROLL + i], rateDesiredAxis[i] - gyro_filtered[i], dT); actuatorDesiredAxis[i] = bound(command); break; } case STABILIZATIONDESIRED_STABILIZATIONMODE_VBAR: { // Track the angle of the virtual flybar which includes a slow decay vbar_integral[i] = vbar_integral[i] * vbar_decay + gyro_filtered[i] * dT; if (vbar_integral[i] > settings.VbarMaxAngle) vbar_integral[i] = settings.VbarMaxAngle; if (-vbar_integral[i] < -settings.VbarMaxAngle) vbar_integral[i] = -settings.VbarMaxAngle; // Command signal is composed of stick input added to the gyro and virtual flybar float gyro_gain = 1.0f; if (vbar_gyros_suppress) { gyro_gain = (1.0f - fabs(rateDesiredAxis[i])); gyro_gain = (gyro_gain < 0) ? 0 : gyro_gain; } float command = rateDesiredAxis[i] - gyro_gain * ( vbar_integral[i] * pids[PID_VBAR_ROLL + i].i + gyro_filtered[i] * pids[PID_VBAR_ROLL + i].p); actuatorDesiredAxis[i] = bound(command); break; } case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE: switch (i) { case ROLL: actuatorDesiredAxis[i] = bound(attitudeDesiredAxis[i]); shouldUpdate = 1; pids[PID_RATE_ROLL].iAccumulator = 0; pids[PID_ROLL].iAccumulator = 0; break; case PITCH: actuatorDesiredAxis[i] = bound(attitudeDesiredAxis[i]); shouldUpdate = 1; pids[PID_RATE_PITCH].iAccumulator = 0; pids[PID_PITCH].iAccumulator = 0; break; case YAW: actuatorDesiredAxis[i] = bound(attitudeDesiredAxis[i]); shouldUpdate = 1; pids[PID_RATE_YAW].iAccumulator = 0; pids[PID_YAW].iAccumulator = 0; break; } break; } } // Save dT actuatorDesired.UpdateTime = dT * 1000; if(PARSE_FLIGHT_MODE(flightStatus.FlightMode) == FLIGHTMODE_MANUAL) shouldUpdate = 0; if(shouldUpdate) { actuatorDesired.Throttle = stabDesired.Throttle; if(dT > 15) actuatorDesired.NumLongUpdates++; ActuatorDesiredSet(&actuatorDesired); } if(flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED || (lowThrottleZeroIntegral && stabDesired.Throttle < 0) || !shouldUpdate) { ZeroPids(); } // Clear alarms AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION); } } float ApplyPid(pid_type * pid, const float err, float dT) { float diff = (err - pid->lastErr); pid->lastErr = err; // Scale up accumulator by 1000 while computing to avoid losing precision pid->iAccumulator += err * (pid->i * dT * 1000.0f); if(pid->iAccumulator > (pid->iLim * 1000.0f)) { pid->iAccumulator = pid->iLim * 1000.0f; } else if (pid->iAccumulator < -(pid->iLim * 1000.0f)) { pid->iAccumulator = -pid->iLim * 1000.0f; } return ((err * pid->p) + pid->iAccumulator / 1000.0f + (diff * pid->d / dT)); } static void ZeroPids(void) { for(int8_t ct = 0; ct < PID_MAX; ct++) { pids[ct].iAccumulator = 0.0f; pids[ct].lastErr = 0.0f; } for(uint8_t i = 0; i < 3; i++) axis_lock_accum[i] = 0.0f; } /** * Bound input value between limits */ static float bound(float val) { if(val < -1.0f) { val = -1.0f; } else if(val > 1.0f) { val = 1.0f; } return val; } static void SettingsUpdatedCb(UAVObjEvent * ev) { memset(pids,0,sizeof (pid_type) * PID_MAX); StabilizationSettingsGet(&settings); // Set the roll rate PID constants pids[PID_RATE_ROLL].p = settings.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KP]; pids[PID_RATE_ROLL].i = settings.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KI]; pids[PID_RATE_ROLL].d = settings.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KD]; pids[PID_RATE_ROLL].iLim = settings.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_ILIMIT]; // Set the pitch rate PID constants pids[PID_RATE_PITCH].p = settings.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KP]; pids[PID_RATE_PITCH].i = settings.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KI]; pids[PID_RATE_PITCH].d = settings.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KD]; pids[PID_RATE_PITCH].iLim = settings.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_ILIMIT]; // Set the yaw rate PID constants pids[PID_RATE_YAW].p = settings.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_KP]; pids[PID_RATE_YAW].i = settings.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_KI]; pids[PID_RATE_YAW].d = settings.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_KD]; pids[PID_RATE_YAW].iLim = settings.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_ILIMIT]; // Set the roll attitude PI constants pids[PID_ROLL].p = settings.RollPI[STABILIZATIONSETTINGS_ROLLPI_KP]; pids[PID_ROLL].i = settings.RollPI[STABILIZATIONSETTINGS_ROLLPI_KI]; pids[PID_ROLL].iLim = settings.RollPI[STABILIZATIONSETTINGS_ROLLPI_ILIMIT]; // Set the pitch attitude PI constants pids[PID_PITCH].p = settings.PitchPI[STABILIZATIONSETTINGS_PITCHPI_KP]; pids[PID_PITCH].i = settings.PitchPI[STABILIZATIONSETTINGS_PITCHPI_KI]; pids[PID_PITCH].iLim = settings.PitchPI[STABILIZATIONSETTINGS_PITCHPI_ILIMIT]; // Set the yaw attitude PI constants pids[PID_YAW].p = settings.YawPI[STABILIZATIONSETTINGS_YAWPI_KP]; pids[PID_YAW].i = settings.YawPI[STABILIZATIONSETTINGS_YAWPI_KI]; pids[PID_YAW].iLim = settings.YawPI[STABILIZATIONSETTINGS_YAWPI_ILIMIT]; // Set the roll attitude PI constants pids[PID_VBAR_ROLL].p = settings.VbarRollPI[STABILIZATIONSETTINGS_VBARROLLPI_KP]; pids[PID_VBAR_ROLL].i = settings.VbarRollPI[STABILIZATIONSETTINGS_VBARROLLPI_KI]; // Set the pitch attitude PI constants pids[PID_VBAR_PITCH].p = settings.VbarPitchPI[STABILIZATIONSETTINGS_VBARPITCHPI_KP]; pids[PID_VBAR_PITCH].i = settings.VbarPitchPI[STABILIZATIONSETTINGS_VBARPITCHPI_KI]; // Set the yaw attitude PI constants pids[PID_VBAR_YAW].p = settings.VbarYawPI[STABILIZATIONSETTINGS_VBARYAWPI_KP]; pids[PID_VBAR_YAW].i = settings.VbarYawPI[STABILIZATIONSETTINGS_VBARYAWPI_KI]; // Maximum deviation to accumulate for axis lock max_axis_lock = settings.MaxAxisLock; max_axislock_rate = settings.MaxAxisLockRate; // Settings for weak leveling weak_leveling_kp = settings.WeakLevelingKp; weak_leveling_max = settings.MaxWeakLevelingRate; // Whether to zero the PID integrals while throttle is low lowThrottleZeroIntegral = settings.LowThrottleZeroIntegral == STABILIZATIONSETTINGS_LOWTHROTTLEZEROINTEGRAL_TRUE; // The dT has some jitter iteration to iteration that we don't want to // make thie result unpredictable. Still, it's nicer to specify the constant // based on a time (in ms) rather than a fixed multiplier. The error between // update rates on OP (~300 Hz) and CC (~475 Hz) is negligible for this // calculation const float fakeDt = 0.0025; if(settings.GyroTau < 0.0001) gyro_alpha = 0; // not trusting this to resolve to 0 else gyro_alpha = expf(-fakeDt / settings.GyroTau); // Compute time constant for vbar decay term based on a tau vbar_decay = expf(-fakeDt / settings.VbarTau); vbar_gyros_suppress = settings.VbarGyroSuppress == STABILIZATIONSETTINGS_VBARGYROSUPPRESS_TRUE; vbar_piro_comp = settings.VbarPiroComp == STABILIZATIONSETTINGS_VBARPIROCOMP_TRUE; } /** * @} * @} */