/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup StabilizationModule Stabilization Module * @brief Virtual flybar mode * @note This file implements the logic for a virtual flybar * @{ * * @file virtualflybar.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief Attitude stabilization module. * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "openpilot.h" #include #include #include "stabilization.h" #include "stabilizationsettings.h" // ! Private variables static float vbar_integral[MAX_AXES]; static float vbar_decay = 0.991f; // ! Private methods static float bound(float val, float range); int stabilization_virtual_flybar(float gyro, float command, float *output, float dT, bool reinit, uint32_t axis, StabilizationSettingsData *settings) { float gyro_gain = 1.0f; float kp = 0, ki = 0; if (reinit) { vbar_integral[axis] = 0; } // Track the angle of the virtual flybar which includes a slow decay vbar_integral[axis] = vbar_integral[axis] * vbar_decay + gyro * dT; vbar_integral[axis] = bound(vbar_integral[axis], settings->VbarMaxAngle); // Command signal can indicate how much to disregard the gyro feedback (fast flips) if (settings->VbarGyroSuppress > 0) { gyro_gain = (1.0f - fabsf(command) * settings->VbarGyroSuppress / 100.0f); gyro_gain = (gyro_gain < 0) ? 0 : gyro_gain; } // Get the settings for the correct axis switch (axis) { case ROLL: kp = settings->VbarRollPI.Kp; ki = settings->VbarRollPI.Ki; break; case PITCH: kp = settings->VbarPitchPI.Kp; ki = settings->VbarPitchPI.Ki;; break; case YAW: kp = settings->VbarYawPI.Kp; ki = settings->VbarYawPI.Ki; break; default: PIOS_DEBUG_Assert(0); } // Command signal is composed of stick input added to the gyro and virtual flybar *output = command * cast_struct_to_array(settings->VbarSensitivity, settings->VbarSensitivity.Roll)[axis] - gyro_gain * (vbar_integral[axis] * ki + gyro * kp); return 0; } /** * Want to keep the virtual flybar fixed in world coordinates as we pirouette * @param[in] z_gyro The deg/s of rotation along the z axis * @param[in] dT The time since last sample */ int stabilization_virtual_flybar_pirocomp(float z_gyro, float dT) { float cy = cosf(DEG2RAD(z_gyro) * dT); float sy = sinf(DEG2RAD(z_gyro) * dT); float vbar_pitch = cy * vbar_integral[1] - sy * vbar_integral[0]; float vbar_roll = sy * vbar_integral[1] + cy * vbar_integral[0]; vbar_integral[1] = vbar_pitch; vbar_integral[0] = vbar_roll; return 0; } /** * Bound input value between limits */ static float bound(float val, float range) { if (val < -range) { val = -range; } else if (val > range) { val = range; } return val; }