/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_MPU6000 MPU6000 Functions * @brief Deals with the hardware interface to the 3-axis gyro * @{ * * @file pios_mpu000.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief MPU6000 6-axis gyro and accel chip * @see The GNU Public License (GPL) Version 3 * ****************************************************************************** */ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Project Includes */ #include "pios.h" #if defined(PIOS_INCLUDE_MPU6000) #include "fifo_buffer.h" /* Global Variables */ uint32_t pios_spi_gyro; /* Local Variables */ #define DEG_TO_RAD (M_PI / 180.0) static void PIOS_MPU6000_Config(struct pios_mpu6000_cfg const * cfg); static int32_t PIOS_MPU6000_SetReg(uint8_t address, uint8_t buffer); static int32_t PIOS_MPU6000_GetReg(uint8_t address); #define PIOS_MPU6000_MAX_DOWNSAMPLE 100 static int16_t pios_mpu6000_buffer[PIOS_MPU6000_MAX_DOWNSAMPLE * sizeof(struct pios_mpu6000_data)]; static t_fifo_buffer pios_mpu6000_fifo; volatile bool mpu6000_configured = false; static struct pios_mpu6000_cfg const * cfg; #define GRAV 9.81f /** * @brief Initialize the MPU6000 3-axis gyro sensor. * @return none */ void PIOS_MPU6000_Init(const struct pios_mpu6000_cfg * new_cfg) { cfg = new_cfg; fifoBuf_init(&pios_mpu6000_fifo, (uint8_t *) pios_mpu6000_buffer, sizeof(pios_mpu6000_buffer)); /* Configure the MPU6000 Sensor */ PIOS_SPI_SetPrescalar(pios_spi_gyro, SPI_BaudRatePrescaler_256); PIOS_MPU6000_Config(cfg); PIOS_SPI_SetPrescalar(pios_spi_gyro, SPI_BaudRatePrescaler_8); /* Set up EXTI line */ PIOS_EXTI_Init(cfg->exti_cfg); } /** * @brief Initialize the MPU6000 3-axis gyro sensor * \return none * \param[in] PIOS_MPU6000_ConfigTypeDef struct to be used to configure sensor. * */ static void PIOS_MPU6000_Config(struct pios_mpu6000_cfg const * cfg) { // Reset chip while (PIOS_MPU6000_SetReg(PIOS_MPU6000_PWR_MGMT_REG, 0x80) != 0); PIOS_DELAY_WaitmS(100); // Reset chip and fifo while (PIOS_MPU6000_SetReg(PIOS_MPU6000_USER_CTRL_REG, 0x01 | 0x02 | 0x04) != 0); // Wait for reset to finish while (PIOS_MPU6000_GetReg(PIOS_MPU6000_USER_CTRL_REG) & 0x07); //Power management configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_PWR_MGMT_REG, cfg->Pwr_mgmt_clk) != 0) ; // Interrupt configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_INT_CFG_REG, cfg->interrupt_cfg) != 0) ; // Interrupt configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_INT_EN_REG, cfg->interrupt_en) != 0) ; // FIFO storage #if defined(PIOS_MPU6000_ACCEL) // Set the accel to 8g mode while(PIOS_MPU6000_SetReg(PIOS_MPU6000_ACCEL_CFG_REG, 0x10) != 0); while (PIOS_MPU6000_SetReg(PIOS_MPU6000_FIFO_EN_REG, cfg->Fifo_store | PIOS_MPU6000_ACCEL_OUT) != 0); #else while (PIOS_MPU6000_SetReg(PIOS_MPU6000_FIFO_EN_REG, cfg->Fifo_store) != 0); #endif // Sample rate divider while (PIOS_MPU6000_SetReg(PIOS_MPU6000_SMPLRT_DIV_REG, cfg->Smpl_rate_div) != 0) ; // Digital low-pass filter and scale while (PIOS_MPU6000_SetReg(PIOS_MPU6000_DLPF_CFG_REG, cfg->filter) != 0) ; // Digital low-pass filter and scale while (PIOS_MPU6000_SetReg(PIOS_MPU6000_GYRO_CFG_REG, cfg->gyro_range) != 0) ; // Interrupt configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_USER_CTRL_REG, cfg->User_ctl) != 0) ; // Interrupt configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_PWR_MGMT_REG, cfg->Pwr_mgmt_clk) != 0) ; // Interrupt configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_INT_CFG_REG, cfg->interrupt_cfg) != 0) ; // Interrupt configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_INT_EN_REG, cfg->interrupt_en) != 0) ; if((PIOS_MPU6000_GetReg(PIOS_MPU6000_INT_EN_REG)) != cfg->interrupt_en) return; mpu6000_configured = true; } /** * @brief Claim the SPI bus for the accel communications and select this chip * @return 0 if successful, -1 if unable to claim bus */ int32_t PIOS_MPU6000_ClaimBus() { if(PIOS_SPI_ClaimBus(pios_spi_gyro) != 0) return -1; PIOS_SPI_RC_PinSet(pios_spi_gyro,0,0); return 0; } /** * @brief Release the SPI bus for the accel communications and end the transaction * @return 0 if successful */ int32_t PIOS_MPU6000_ReleaseBus() { PIOS_SPI_RC_PinSet(pios_spi_gyro,0,1); return PIOS_SPI_ReleaseBus(pios_spi_gyro); } /** * @brief Connect to the correct SPI bus */ void PIOS_MPU6000_Attach(uint32_t spi_id) { pios_spi_gyro = spi_id; } /** * @brief Read a register from MPU6000 * @returns The register value or -1 if failure to get bus * @param reg[in] Register address to be read */ static int32_t PIOS_MPU6000_GetReg(uint8_t reg) { uint8_t data; if(PIOS_MPU6000_ClaimBus() != 0) return -1; PIOS_SPI_TransferByte(pios_spi_gyro,(0x80 | reg) ); // request byte data = PIOS_SPI_TransferByte(pios_spi_gyro,0 ); // receive response PIOS_MPU6000_ReleaseBus(); return data; } /** * @brief Writes one byte to the MPU6000 * \param[in] reg Register address * \param[in] data Byte to write * \return 0 if operation was successful * \return -1 if unable to claim SPI bus * \return -2 if unable to claim i2c device */ static int32_t PIOS_MPU6000_SetReg(uint8_t reg, uint8_t data) { if(PIOS_MPU6000_ClaimBus() != 0) return -1; if(PIOS_SPI_TransferByte(pios_spi_gyro, 0x7f & reg) != 0) { PIOS_MPU6000_ReleaseBus(); return -2; } if(PIOS_SPI_TransferByte(pios_spi_gyro, data) != 0) { PIOS_MPU6000_ReleaseBus(); return -3; } PIOS_MPU6000_ReleaseBus(); return 0; } /** * @brief Read current X, Z, Y values (in that order) * \param[out] int16_t array of size 3 to store X, Z, and Y magnetometer readings * \returns The number of samples remaining in the fifo */ int32_t PIOS_MPU6000_ReadGyros(struct pios_mpu6000_data * data) { uint8_t buf[7] = {PIOS_MPU6000_GYRO_X_OUT_MSB | 0x80, 0, 0, 0, 0, 0, 0}; uint8_t rec[7]; if(PIOS_MPU6000_ClaimBus() != 0) return -1; if(PIOS_SPI_TransferBlock(pios_spi_gyro, &buf[0], &rec[0], sizeof(buf), NULL) < 0) return -2; PIOS_MPU6000_ReleaseBus(); data->gyro_x = rec[1] << 8 | rec[2]; data->gyro_y = rec[3] << 8 | rec[4]; data->gyro_z = rec[5] << 8 | rec[6]; return 0; } /* * @brief Read the identification bytes from the MPU6000 sensor * \return ID read from MPU6000 or -1 if failure */ int32_t PIOS_MPU6000_ReadID() { int32_t mpu6000_id = PIOS_MPU6000_GetReg(PIOS_MPU6000_WHOAMI); if(mpu6000_id < 0) return -1; return mpu6000_id; } /** * \brief Reads the data from the MPU6000 FIFO * \param[out] buffer destination buffer * \param[in] len maximum number of bytes which should be read * \note This returns the data as X, Y, Z the temperature * \return number of bytes transferred if operation was successful * \return -1 if error during I2C transfer */ int32_t PIOS_MPU6000_ReadFifo(struct pios_mpu6000_data * buffer) { if(fifoBuf_getUsed(&pios_mpu6000_fifo) < sizeof(*buffer)) return -1; fifoBuf_getData(&pios_mpu6000_fifo, (uint8_t *) buffer, sizeof(*buffer)); return 0; } float PIOS_MPU6000_GetScale() { switch (cfg->gyro_range) { case PIOS_MPU6000_SCALE_250_DEG: return 1.0f / 131.0f; case PIOS_MPU6000_SCALE_500_DEG: return 1.0f / 65.5f; case PIOS_MPU6000_SCALE_1000_DEG: return 1.0f / 32.8f; case PIOS_MPU6000_SCALE_2000_DEG: return 1.0f / 16.4f; } return 0; } float PIOS_MPU6000_GetAccelScale() { return GRAV / 2048.0f; } /** * @brief Run self-test operation. * \return 0 if test succeeded * \return non-zero value if test succeeded */ uint8_t PIOS_MPU6000_Test(void) { /* Verify that ID matches (MPU6000 ID is 0x69) */ int32_t mpu6000_id = PIOS_MPU6000_ReadID(); if(mpu6000_id < 0) return -1; if(mpu6000_id != 0x68); return -2; return 0; } /** * @brief Run self-test operation. * \return 0 if test succeeded * \return non-zero value if test succeeded */ static int32_t PIOS_MPU6000_FifoDepth(void) { uint8_t mpu6000_send_buf[3] = {PIOS_MPU6000_FIFO_CNT_MSB | 0x80, 0, 0}; uint8_t mpu6000_rec_buf[3]; if(PIOS_MPU6000_ClaimBus() != 0) return -1; if(PIOS_SPI_TransferBlock(pios_spi_gyro, &mpu6000_send_buf[0], &mpu6000_rec_buf[0], sizeof(mpu6000_send_buf), NULL) < 0) { PIOS_MPU6000_ReleaseBus(); return -1; } PIOS_MPU6000_ReleaseBus(); return (mpu6000_rec_buf[1] << 8) | mpu6000_rec_buf[2]; } /** * @brief IRQ Handler. Read all the data from onboard buffer */ uint32_t mpu6000_irq = 0; int32_t mpu6000_count; uint32_t mpu6000_fifo_full = 0; uint8_t mpu6000_last_read_count = 0; uint32_t mpu6000_fails = 0; uint32_t mpu6000_interval_us; uint32_t mpu6000_time_us; uint32_t mpu6000_transfer_size; void PIOS_MPU6000_IRQHandler(void) { static uint32_t timeval; mpu6000_interval_us = PIOS_DELAY_DiffuS(timeval); timeval = PIOS_DELAY_GetRaw(); if(!mpu6000_configured) return; mpu6000_count = PIOS_MPU6000_FifoDepth(); if(mpu6000_count < sizeof(struct pios_mpu6000_data)) return; if(PIOS_MPU6000_ClaimBus() != 0) return; uint8_t mpu6000_send_buf[1+sizeof(struct pios_mpu6000_data)] = {PIOS_MPU6000_FIFO_REG | 0x80, 0, 0, 0, 0, 0, 0, 0, 0}; uint8_t mpu6000_rec_buf[1+sizeof(struct pios_mpu6000_data)]; if(PIOS_SPI_TransferBlock(pios_spi_gyro, &mpu6000_send_buf[0], &mpu6000_rec_buf[0], sizeof(mpu6000_send_buf), NULL) < 0) { PIOS_MPU6000_ReleaseBus(); mpu6000_fails++; return; } PIOS_MPU6000_ReleaseBus(); struct pios_mpu6000_data data; if(fifoBuf_getFree(&pios_mpu6000_fifo) < sizeof(data)) { mpu6000_fifo_full++; return; } // In the case where extras samples backed up grabbed an extra if (mpu6000_count >= (sizeof(data) * 2)) { if(PIOS_MPU6000_ClaimBus() != 0) return; uint8_t mpu6000_send_buf[1+sizeof(struct pios_mpu6000_data)] = {PIOS_MPU6000_FIFO_REG | 0x80, 0, 0, 0, 0, 0, 0, 0, 0}; uint8_t mpu6000_rec_buf[1+sizeof(struct pios_mpu6000_data)]; if(PIOS_SPI_TransferBlock(pios_spi_gyro, &mpu6000_send_buf[0], &mpu6000_rec_buf[0], sizeof(mpu6000_send_buf), NULL) < 0) { PIOS_MPU6000_ReleaseBus(); mpu6000_fails++; return; } PIOS_MPU6000_ReleaseBus(); struct pios_mpu6000_data data; if(fifoBuf_getFree(&pios_mpu6000_fifo) < sizeof(data)) { mpu6000_fifo_full++; return; } } #if defined(PIOS_MPU6000_ACCEL) data.accel_x = mpu6000_rec_buf[1] << 8 | mpu6000_rec_buf[2]; data.accel_y = mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]; data.accel_z = mpu6000_rec_buf[5] << 8 | mpu6000_rec_buf[6]; data.temperature = mpu6000_rec_buf[7] << 8 | mpu6000_rec_buf[8]; data.gyro_x = mpu6000_rec_buf[9] << 8 | mpu6000_rec_buf[10]; data.gyro_y = mpu6000_rec_buf[11] << 8 | mpu6000_rec_buf[12]; data.gyro_z = mpu6000_rec_buf[13] << 8 | mpu6000_rec_buf[14]; #else data.temperature = mpu6000_rec_buf[1] << 8 | mpu6000_rec_buf[2]; data.gyro_x = mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]; data.gyro_y = mpu6000_rec_buf[5] << 8 | mpu6000_rec_buf[6]; data.gyro_z = mpu6000_rec_buf[7] << 8 | mpu6000_rec_buf[8]; #endif fifoBuf_putData(&pios_mpu6000_fifo, (uint8_t *) &data, sizeof(data)); mpu6000_irq++; mpu6000_time_us = PIOS_DELAY_DiffuS(timeval); } #endif /** * @} * @} */