/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup State Estimation * @brief Acquires sensor data and computes state estimate * @{ * * @file stateestimation.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2013. * @brief Module to handle all comms to the AHRS on a periodic basis. * * @see The GNU Public License (GPL) Version 3 * ******************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "inc/stateestimation.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "revosettings.h" #include "flightstatus.h" #include "CoordinateConversions.h" // Private constants #define STACK_SIZE_BYTES 256 #define CALLBACK_PRIORITY CALLBACK_PRIORITY_REGULAR #define TASK_PRIORITY CALLBACK_TASK_FLIGHTCONTROL #define TIMEOUT_MS 10 // local macros, ONLY to be used in the middle of StateEstimationCb in section RUNSTATE_LOAD after the update of states updated! #define FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(sensorname, shortname, a1, a2, a3) \ if (IS_SET(states.updated, SENSORUPDATES_##shortname)) { \ sensorname##Data s; \ sensorname##Get(&s); \ if (IS_REAL(s.a1) && IS_REAL(s.a2) && IS_REAL(s.a3)) { \ states.shortname[0] = s.a1; \ states.shortname[1] = s.a2; \ states.shortname[2] = s.a3; \ } \ else { \ UNSET_MASK(states.updated, SENSORUPDATES_##shortname); \ } \ } #define FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_1_DIMENSION_WITH_CUSTOM_EXTRA_CHECK(sensorname, shortname, a1, EXTRACHECK) \ if (IS_SET(states.updated, SENSORUPDATES_##shortname)) { \ sensorname##Data s; \ sensorname##Get(&s); \ if (IS_REAL(s.a1) && EXTRACHECK) { \ states.shortname[0] = s.a1; \ } \ else { \ UNSET_MASK(states.updated, SENSORUPDATES_##shortname); \ } \ } // local macros, ONLY to be used in the middle of StateEstimationCb in section RUNSTATE_SAVE before the check of alarms! #define EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(statename, shortname, a1, a2, a3) \ if (IS_SET(states.updated, SENSORUPDATES_##shortname)) { \ statename##Data s; \ statename##Get(&s); \ s.a1 = states.shortname[0]; \ s.a2 = states.shortname[1]; \ s.a3 = states.shortname[2]; \ statename##Set(&s); \ } #define EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_2_DIMENSIONS(statename, shortname, a1, a2) \ if (IS_SET(states.updated, SENSORUPDATES_##shortname)) { \ statename##Data s; \ statename##Get(&s); \ s.a1 = states.shortname[0]; \ s.a2 = states.shortname[1]; \ statename##Set(&s); \ } // Private types struct filterPipelineStruct; typedef const struct filterPipelineStruct { const stateFilter *filter; const struct filterPipelineStruct *next; } filterPipeline; // Private variables static DelayedCallbackInfo *stateEstimationCallback; static volatile RevoSettingsData revoSettings; static volatile sensorUpdates updatedSensors; static int32_t fusionAlgorithm = -1; static filterPipeline *filterChain = NULL; // different filters available to state estimation static stateFilter magFilter; static stateFilter baroFilter; static stateFilter airFilter; static stateFilter stationaryFilter; static stateFilter cfFilter; static stateFilter cfmFilter; static stateFilter ekf13iFilter; static stateFilter ekf13Filter; static stateFilter ekf16Filter; static stateFilter ekf16iFilter; // preconfigured filter chains selectable via revoSettings.FusionAlgorithm static filterPipeline *cfQueue = &(filterPipeline) { .filter = &magFilter, .next = &(filterPipeline) { .filter = &airFilter, .next = &(filterPipeline) { .filter = &baroFilter, .next = &(filterPipeline) { .filter = &cfFilter, .next = NULL, }, } } }; static const filterPipeline *cfmQueue = &(filterPipeline) { .filter = &magFilter, .next = &(filterPipeline) { .filter = &airFilter, .next = &(filterPipeline) { .filter = &baroFilter, .next = &(filterPipeline) { .filter = &cfmFilter, .next = NULL, } } } }; static const filterPipeline *ekf13iQueue = &(filterPipeline) { .filter = &magFilter, .next = &(filterPipeline) { .filter = &airFilter, .next = &(filterPipeline) { .filter = &baroFilter, .next = &(filterPipeline) { .filter = &stationaryFilter, .next = &(filterPipeline) { .filter = &ekf13iFilter, .next = NULL, } } } } }; static const filterPipeline *ekf13Queue = &(filterPipeline) { .filter = &magFilter, .next = &(filterPipeline) { .filter = &airFilter, .next = &(filterPipeline) { .filter = &baroFilter, .next = &(filterPipeline) { .filter = &ekf13Filter, .next = NULL, } } } }; static const filterPipeline *ekf16iQueue = &(filterPipeline) { .filter = &magFilter, .next = &(filterPipeline) { .filter = &airFilter, .next = &(filterPipeline) { .filter = &baroFilter, .next = &(filterPipeline) { .filter = &stationaryFilter, .next = &(filterPipeline) { .filter = &ekf16iFilter, .next = NULL, } } } } }; static const filterPipeline *ekf16Queue = &(filterPipeline) { .filter = &magFilter, .next = &(filterPipeline) { .filter = &airFilter, .next = &(filterPipeline) { .filter = &baroFilter, .next = &(filterPipeline) { .filter = &ekf16Filter, .next = NULL, } } } }; // Private functions static void settingsUpdatedCb(UAVObjEvent *objEv); static void sensorUpdatedCb(UAVObjEvent *objEv); static void StateEstimationCb(void); static inline int32_t maxint32_t(int32_t a, int32_t b) { if (a > b) { return a; } return b; } /** * Initialise the module. Called before the start function * \returns 0 on success or -1 if initialisation failed */ int32_t StateEstimationInitialize(void) { RevoSettingsInitialize(); GyroSensorInitialize(); MagSensorInitialize(); BaroSensorInitialize(); AirspeedSensorInitialize(); PositionSensorInitialize(); GPSVelocitySensorInitialize(); GyroStateInitialize(); AccelStateInitialize(); MagStateInitialize(); AirspeedStateInitialize(); PositionStateInitialize(); VelocityStateInitialize(); RevoSettingsConnectCallback(&settingsUpdatedCb); GyroSensorConnectCallback(&sensorUpdatedCb); AccelSensorConnectCallback(&sensorUpdatedCb); MagSensorConnectCallback(&sensorUpdatedCb); BaroSensorConnectCallback(&sensorUpdatedCb); AirspeedSensorConnectCallback(&sensorUpdatedCb); PositionSensorConnectCallback(&sensorUpdatedCb); GPSVelocitySensorConnectCallback(&sensorUpdatedCb); uint32_t stack_required = STACK_SIZE_BYTES; // Initialize Filters stack_required = maxint32_t(stack_required, filterMagInitialize(&magFilter)); stack_required = maxint32_t(stack_required, filterBaroInitialize(&baroFilter)); stack_required = maxint32_t(stack_required, filterAirInitialize(&airFilter)); stack_required = maxint32_t(stack_required, filterStationaryInitialize(&stationaryFilter)); stack_required = maxint32_t(stack_required, filterCFInitialize(&cfFilter)); stack_required = maxint32_t(stack_required, filterCFMInitialize(&cfmFilter)); stack_required = maxint32_t(stack_required, filterEKF13iInitialize(&ekf13iFilter)); stack_required = maxint32_t(stack_required, filterEKF13Initialize(&ekf13Filter)); stack_required = maxint32_t(stack_required, filterEKF16Initialize(&ekf16Filter)); stack_required = maxint32_t(stack_required, filterEKF16iInitialize(&ekf16iFilter)); stateEstimationCallback = DelayedCallbackCreate(&StateEstimationCb, CALLBACK_PRIORITY, TASK_PRIORITY, stack_required); return 0; } /** * Start the task. Expects all objects to be initialized by this point. * \returns 0 on success or -1 if initialisation failed */ int32_t StateEstimationStart(void) { RevoSettingsConnectCallback(&settingsUpdatedCb); // Force settings update to make sure rotation loaded settingsUpdatedCb(NULL); return 0; } MODULE_INITCALL(StateEstimationInitialize, StateEstimationStart) /** * Module callback */ static void StateEstimationCb(void) { static enum { RUNSTATE_LOAD = 0, RUNSTATE_FILTER = 1, RUNSTATE_SAVE = 2 } runState = RUNSTATE_LOAD; static int8_t alarm = 0; static int8_t lastAlarm = -1; static uint16_t alarmcounter = 0; static filterPipeline *current; static stateEstimation states; static uint32_t last_time; switch (runState) { case RUNSTATE_LOAD: alarm = 0; // set alarm to warning if called through timeout if (updatedSensors == 0) { if (PIOS_DELAY_DiffuS(last_time) > 1000 * TIMEOUT_MS) { alarm = 1; } } else { last_time = PIOS_DELAY_GetRaw(); } // check if a new filter chain should be initialized if (fusionAlgorithm != revoSettings.FusionAlgorithm) { FlightStatusData fs; FlightStatusGet(&fs); if (fs.Armed == FLIGHTSTATUS_ARMED_DISARMED || fusionAlgorithm == -1) { const filterPipeline *newFilterChain; switch (revoSettings.FusionAlgorithm) { case REVOSETTINGS_FUSIONALGORITHM_COMPLEMENTARY: newFilterChain = cfQueue; break; case REVOSETTINGS_FUSIONALGORITHM_COMPLEMENTARYMAG: newFilterChain = cfmQueue; break; case REVOSETTINGS_FUSIONALGORITHM_INS13INDOOR: newFilterChain = ekf13iQueue; break; case REVOSETTINGS_FUSIONALGORITHM_INS13OUTDOOR: newFilterChain = ekf13Queue; break; case REVOSETTINGS_FUSIONALGORITHM_INS16INDOOR: newFilterChain = ekf16iQueue; break; case REVOSETTINGS_FUSIONALGORITHM_INS16OUTDOOR: newFilterChain = ekf16Queue; break; default: newFilterChain = NULL; } // initialize filters in chain current = (filterPipeline *)newFilterChain; bool error = 0; while (current != NULL) { int32_t result = current->filter->init((stateFilter *)current->filter); if (result != 0) { error = 1; break; } current = current->next; } if (error) { AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR); return; } else { // set new fusion algortithm filterChain = (filterPipeline *)newFilterChain; fusionAlgorithm = revoSettings.FusionAlgorithm; } } } // read updated sensor UAVObjects and set initial state states.updated = updatedSensors; updatedSensors = 0; // fetch sensors, check values, and load into state struct FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(GyroSensor, gyro, x, y, z); FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(AccelSensor, accel, x, y, z); FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(MagSensor, mag, x, y, z); FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(PositionSensor, pos, North, East, Down); FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_3_DIMENSIONS(GPSVelocitySensor, vel, North, East, Down); FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_1_DIMENSION_WITH_CUSTOM_EXTRA_CHECK(BaroSensor, baro, Altitude, true); FETCH_SENSOR_FROM_UAVOBJECT_CHECK_AND_LOAD_TO_STATE_1_DIMENSION_WITH_CUSTOM_EXTRA_CHECK(AirspeedSensor, airspeed, CalibratedAirspeed, s.SensorConnected == AIRSPEEDSENSOR_SENSORCONNECTED_TRUE); states.airspeed[1] = 0.0f; // sensor does not provide true airspeed, needs to be calculated by filter, set to zero for now // at this point sensor state is stored in "states" with some rudimentary filtering applied // apply all filters in the current filter chain current = (filterPipeline *)filterChain; // we are not done, re-dispatch self execution runState = RUNSTATE_FILTER; DelayedCallbackDispatch(stateEstimationCallback); break; case RUNSTATE_FILTER: if (current != NULL) { int32_t result = current->filter->filter((stateFilter *)current->filter, &states); if (result > alarm) { alarm = result; } current = current->next; } // we are not done, re-dispatch self execution if (!current) { runState = RUNSTATE_SAVE; } DelayedCallbackDispatch(stateEstimationCallback); break; case RUNSTATE_SAVE: // the final output of filters is saved in state variables EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(GyroState, gyro, x, y, z); EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(AccelState, accel, x, y, z); EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(MagState, mag, x, y, z); EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(PositionState, pos, North, East, Down); EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_3_DIMENSIONS(VelocityState, vel, North, East, Down); EXPORT_STATE_TO_UAVOBJECT_IF_UPDATED_2_DIMENSIONS(AirspeedState, airspeed, CalibratedAirspeed, TrueAirspeed); // attitude nees manual conversion from quaternion to euler if (IS_SET(states.updated, SENSORUPDATES_attitude)) { \ AttitudeStateData s; AttitudeStateGet(&s); s.q1 = states.attitude[0]; s.q2 = states.attitude[1]; s.q3 = states.attitude[2]; s.q4 = states.attitude[3]; Quaternion2RPY(&s.q1, &s.Roll); AttitudeStateSet(&s); } // throttle alarms, raise alarm flags immediately // but require system to run for a while before decreasing // to prevent alarm flapping if (alarm >= lastAlarm) { lastAlarm = alarm; alarmcounter = 0; } else { if (alarmcounter < 100) { alarmcounter++; } else { lastAlarm = alarm; alarmcounter = 0; } } // clear alarms if everything is alright, then schedule callback execution after timeout if (lastAlarm == 1) { AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_WARNING); } else if (lastAlarm == 2) { AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR); } else if (lastAlarm >= 3) { AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_CRITICAL); } else { AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE); } // we are done, re-schedule next self execution runState = RUNSTATE_LOAD; if (updatedSensors) { DelayedCallbackDispatch(stateEstimationCallback); } else { DelayedCallbackSchedule(stateEstimationCallback, TIMEOUT_MS, CALLBACK_UPDATEMODE_SOONER); } break; } } /** * Callback for eventdispatcher when RevoSettings has been updated */ static void settingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev) { RevoSettingsGet((RevoSettingsData *)&revoSettings); } /** * Callback for eventdispatcher when any sensor UAVObject has been updated * updates the list of "recently updated UAVObjects" and dispatches the state estimator callback */ static void sensorUpdatedCb(UAVObjEvent *ev) { if (!ev) { return; } if (ev->obj == GyroSensorHandle()) { updatedSensors |= SENSORUPDATES_gyro; } if (ev->obj == AccelSensorHandle()) { updatedSensors |= SENSORUPDATES_accel; } if (ev->obj == MagSensorHandle()) { updatedSensors |= SENSORUPDATES_mag; } if (ev->obj == PositionSensorHandle()) { updatedSensors |= SENSORUPDATES_pos; } if (ev->obj == GPSVelocitySensorHandle()) { updatedSensors |= SENSORUPDATES_vel; } if (ev->obj == BaroSensorHandle()) { updatedSensors |= SENSORUPDATES_baro; } if (ev->obj == AirspeedSensorHandle()) { updatedSensors |= SENSORUPDATES_airspeed; } DelayedCallbackDispatch(stateEstimationCallback); } /** * @} * @} */