/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup Attitude Copter Control Attitude Estimation * @brief Acquires sensor data and computes attitude estimate * Specifically updates the the @ref AttitudeState "AttitudeState" and @ref AttitudeRaw "AttitudeRaw" settings objects * @{ * * @file attitude.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Module to handle all comms to the AHRS on a periodic basis. * * @see The GNU Public License (GPL) Version 3 * ******************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /** * Input objects: None, takes sensor data via pios * Output objects: @ref AttitudeRaw @ref AttitudeState * * This module computes an attitude estimate from the sensor data * * The module executes in its own thread. * * UAVObjects are automatically generated by the UAVObjectGenerator from * the object definition XML file. * * Modules have no API, all communication to other modules is done through UAVObjects. * However modules may use the API exposed by shared libraries. * See the OpenPilot wiki for more details. * http://www.openpilot.org/OpenPilot_Application_Architecture * */ #include #include "attitude.h" #include "accelsensor.h" #include "accelstate.h" #include "airspeedsensor.h" #include "airspeedstate.h" #include "attitudestate.h" #include "attitudesettings.h" #include "barosensor.h" #include "flightstatus.h" #include "gpspositionsensor.h" #include "gpsvelocitysensor.h" #include "gyrostate.h" #include "gyrosensor.h" #include "homelocation.h" #include "magsensor.h" #include "magstate.h" #include "positionstate.h" #include "ekfconfiguration.h" #include "ekfstatevariance.h" #include "revocalibration.h" #include "revosettings.h" #include "velocitystate.h" #include "taskinfo.h" #include "CoordinateConversions.h" // Private constants #define STACK_SIZE_BYTES 2048 #define TASK_PRIORITY (tskIDLE_PRIORITY + 3) #define FAILSAFE_TIMEOUT_MS 10 #define CALIBRATION_DELAY 4000 #define CALIBRATION_DURATION 6000 // low pass filter configuration to calculate offset // of barometric altitude sensor // reasoning: updates at: 10 Hz, tau= 300 s settle time // exp(-(1/f) / tau ) ~=~ 0.9997 #define BARO_OFFSET_LOWPASS_ALPHA 0.9997f // simple IAS to TAS aproximation - 2% increase per 1000ft // since we do not have flowing air temperature information #define IAS2TAS(alt) (1.0f + (0.02f * (alt) / 304.8f)) // Private types // Private variables static xTaskHandle attitudeTaskHandle; static xQueueHandle gyroQueue; static xQueueHandle accelQueue; static xQueueHandle magQueue; static xQueueHandle airspeedQueue; static xQueueHandle baroQueue; static xQueueHandle gpsQueue; static xQueueHandle gpsVelQueue; static AttitudeSettingsData attitudeSettings; static HomeLocationData homeLocation; static RevoCalibrationData revoCalibration; static EKFConfigurationData ekfConfiguration; static RevoSettingsData revoSettings; static FlightStatusData flightStatus; const uint32_t SENSOR_QUEUE_SIZE = 10; static bool volatile variance_error = true; static bool volatile initialization_required = true; static uint32_t volatile running_algorithm = 0xffffffff; // we start with no algorithm running static float rollPitchBiasRate = 0; // Accel filtering static float accel_alpha = 0; static bool accel_filter_enabled = false; static float accels_filtered[3]; static float grot_filtered[3]; // Private functions static void AttitudeTask(void *parameters); static int32_t updateAttitudeComplementary(bool first_run); static int32_t updateAttitudeINSGPS(bool first_run, bool outdoor_mode); static void settingsUpdatedCb(UAVObjEvent *objEv); static int32_t getNED(GPSPositionSensorData *gpsPosition, float *NED); static void magOffsetEstimation(MagSensorData *mag); // check for invalid values static inline bool invalid(float data) { if (isnan(data) || isinf(data)) { return true; } return false; } // check for invalid variance values static inline bool invalid_var(float data) { if (invalid(data)) { return true; } if (data < 1e-15f) { // var should not be close to zero. And not negative either. return true; } return false; } /** * API for sensor fusion algorithms: * Configure(xQueueHandle gyro, xQueueHandle accel, xQueueHandle mag, xQueueHandle baro) * Stores all the queues the algorithm will pull data from * FinalizeSensors() -- before saving the sensors modifies them based on internal state (gyro bias) * Update() -- queries queues and updates the attitude estiamte */ /** * Initialise the module. Called before the start function * \returns 0 on success or -1 if initialisation failed */ int32_t AttitudeInitialize(void) { GyroSensorInitialize(); GyroStateInitialize(); AccelSensorInitialize(); AccelStateInitialize(); MagSensorInitialize(); MagStateInitialize(); AirspeedSensorInitialize(); AirspeedStateInitialize(); BaroSensorInitialize(); GPSPositionSensorInitialize(); GPSVelocitySensorInitialize(); AttitudeSettingsInitialize(); AttitudeStateInitialize(); PositionStateInitialize(); VelocityStateInitialize(); RevoSettingsInitialize(); RevoCalibrationInitialize(); EKFConfigurationInitialize(); EKFStateVarianceInitialize(); FlightStatusInitialize(); // Initialize this here while we aren't setting the homelocation in GPS HomeLocationInitialize(); // Initialize quaternion AttitudeStateData attitude; AttitudeStateGet(&attitude); attitude.q1 = 1.0f; attitude.q2 = 0.0f; attitude.q3 = 0.0f; attitude.q4 = 0.0f; AttitudeStateSet(&attitude); AttitudeSettingsConnectCallback(&settingsUpdatedCb); RevoSettingsConnectCallback(&settingsUpdatedCb); RevoCalibrationConnectCallback(&settingsUpdatedCb); HomeLocationConnectCallback(&settingsUpdatedCb); EKFConfigurationConnectCallback(&settingsUpdatedCb); FlightStatusConnectCallback(&settingsUpdatedCb); return 0; } /** * Start the task. Expects all objects to be initialized by this point. * \returns 0 on success or -1 if initialisation failed */ int32_t AttitudeStart(void) { // Create the queues for the sensors gyroQueue = xQueueCreate(1, sizeof(UAVObjEvent)); accelQueue = xQueueCreate(1, sizeof(UAVObjEvent)); magQueue = xQueueCreate(1, sizeof(UAVObjEvent)); airspeedQueue = xQueueCreate(1, sizeof(UAVObjEvent)); baroQueue = xQueueCreate(1, sizeof(UAVObjEvent)); gpsQueue = xQueueCreate(1, sizeof(UAVObjEvent)); gpsVelQueue = xQueueCreate(1, sizeof(UAVObjEvent)); // Start main task xTaskCreate(AttitudeTask, (signed char *)"Attitude", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &attitudeTaskHandle); PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_ATTITUDE, attitudeTaskHandle); #ifdef PIOS_INCLUDE_WDG PIOS_WDG_RegisterFlag(PIOS_WDG_ATTITUDE); #endif GyroSensorConnectQueue(gyroQueue); AccelSensorConnectQueue(accelQueue); MagSensorConnectQueue(magQueue); AirspeedSensorConnectQueue(airspeedQueue); BaroSensorConnectQueue(baroQueue); GPSPositionSensorConnectQueue(gpsQueue); GPSVelocitySensorConnectQueue(gpsVelQueue); return 0; } MODULE_INITCALL(AttitudeInitialize, AttitudeStart); /** * Module thread, should not return. */ static void AttitudeTask(__attribute__((unused)) void *parameters) { AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE); // Force settings update to make sure rotation loaded settingsUpdatedCb(NULL); // Wait for all the sensors be to read vTaskDelay(100); // Main task loop - TODO: make it run as delayed callback while (1) { int32_t ret_val = -1; bool first_run = false; if (initialization_required) { initialization_required = false; first_run = true; } // This function blocks on data queue switch (running_algorithm) { case REVOSETTINGS_FUSIONALGORITHM_COMPLEMENTARY: ret_val = updateAttitudeComplementary(first_run); break; case REVOSETTINGS_FUSIONALGORITHM_INS13OUTDOOR: ret_val = updateAttitudeINSGPS(first_run, true); break; case REVOSETTINGS_FUSIONALGORITHM_INS13INDOOR: ret_val = updateAttitudeINSGPS(first_run, false); break; default: AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_CRITICAL); break; } if (ret_val != 0) { initialization_required = true; } #ifdef PIOS_INCLUDE_WDG PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE); #endif } } static inline void apply_accel_filter(const float *raw, float *filtered) { if (accel_filter_enabled) { filtered[0] = filtered[0] * accel_alpha + raw[0] * (1 - accel_alpha); filtered[1] = filtered[1] * accel_alpha + raw[1] * (1 - accel_alpha); filtered[2] = filtered[2] * accel_alpha + raw[2] * (1 - accel_alpha); } else { filtered[0] = raw[0]; filtered[1] = raw[1]; filtered[2] = raw[2]; } } float accel_mag; float qmag; float attitudeDt; float mag_err[3]; static int32_t updateAttitudeComplementary(bool first_run) { UAVObjEvent ev; GyroSensorData gyroSensorData; GyroStateData gyroStateData; AccelSensorData accelSensorData; static int32_t timeval; float dT; static uint8_t init = 0; static float gyro_bias[3] = { 0, 0, 0 }; static bool magCalibrated = true; static uint32_t initStartupTime = 0; // Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe if (xQueueReceive(gyroQueue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE || xQueueReceive(accelQueue, &ev, 1 / portTICK_RATE_MS) != pdTRUE) { // When one of these is updated so should the other // Do not set attitude timeout warnings in simulation mode if (!AttitudeStateReadOnly()) { AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_WARNING); return -1; } } AccelSensorGet(&accelSensorData); // TODO: put in separate filter AccelStateData accelState; accelState.x = accelSensorData.x; accelState.y = accelSensorData.y; accelState.z = accelSensorData.z; AccelStateSet(&accelState); // During initialization and if (first_run) { #if defined(PIOS_INCLUDE_HMC5883) // To initialize we need a valid mag reading if (xQueueReceive(magQueue, &ev, 0 / portTICK_RATE_MS) != pdTRUE) { return -1; } MagSensorData magData; MagSensorGet(&magData); #else MagSensorData magData; magData.x = 100.0f; magData.y = 0.0f; magData.z = 0.0f; #endif float magBias[3]; RevoCalibrationmag_biasGet(magBias); // don't trust Mag for initial orientation if it has not been calibrated if (magBias[0] < 1e-6f && magBias[1] < 1e-6f && magBias[2] < 1e-6f) { magCalibrated = false; magData.x = 100.0f; magData.y = 0.0f; magData.z = 0.0f; } AttitudeStateData attitudeState; AttitudeStateGet(&attitudeState); init = 0; // Set initial attitude. Use accels to determine roll and pitch, rotate magnetic measurement accordingly, // so pseudo "north" vector can be estimated even if the board is not level attitudeState.Roll = atan2f(-accelSensorData.y, -accelSensorData.z); float zn = cosf(attitudeState.Roll) * magData.z + sinf(attitudeState.Roll) * magData.y; float yn = cosf(attitudeState.Roll) * magData.y - sinf(attitudeState.Roll) * magData.z; // rotate accels z vector according to roll float azn = cosf(attitudeState.Roll) * accelSensorData.z + sinf(attitudeState.Roll) * accelSensorData.y; attitudeState.Pitch = atan2f(accelSensorData.x, -azn); float xn = cosf(attitudeState.Pitch) * magData.x + sinf(attitudeState.Pitch) * zn; attitudeState.Yaw = atan2f(-yn, xn); // TODO: This is still a hack // Put this in a proper generic function in CoordinateConversion.c // should take 4 vectors: g (0,0,-9.81), accels, Be (or 1,0,0 if no home loc) and magnetometers (or 1,0,0 if no mags) // should calculate the rotation in 3d space using proper cross product math // SUBTODO: formulate the math required attitudeState.Roll = RAD2DEG(attitudeState.Roll); attitudeState.Pitch = RAD2DEG(attitudeState.Pitch); attitudeState.Yaw = RAD2DEG(attitudeState.Yaw); RPY2Quaternion(&attitudeState.Roll, &attitudeState.q1); AttitudeStateSet(&attitudeState); timeval = PIOS_DELAY_GetRaw(); // wait calibration_delay only at powerup if (xTaskGetTickCount() < 3000) { initStartupTime = 0; } else { initStartupTime = xTaskGetTickCount() - CALIBRATION_DELAY; } // Zero gyro bias // This is really needed after updating calibration settings. gyro_bias[0] = 0.0f; gyro_bias[1] = 0.0f; gyro_bias[2] = 0.0f; return 0; } if ((xTaskGetTickCount() - initStartupTime < CALIBRATION_DURATION + CALIBRATION_DELAY) && (xTaskGetTickCount() - initStartupTime > CALIBRATION_DELAY)) { // For first CALIBRATION_DURATION seconds after CALIBRATION_DELAY from startup // Zero gyro bias assuming it is steady, smoothing the gyro input value applying rollPitchBiasRate. attitudeSettings.AccelKp = 1.0f; attitudeSettings.AccelKi = 0.0f; attitudeSettings.YawBiasRate = 0.23f; accel_filter_enabled = false; rollPitchBiasRate = 0.01f; attitudeSettings.MagKp = magCalibrated ? 1.0f : 0.0f; init = 0; } else if ((attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE) && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) { attitudeSettings.AccelKp = 1.0f; attitudeSettings.AccelKi = 0.0f; attitudeSettings.YawBiasRate = 0.23f; accel_filter_enabled = false; rollPitchBiasRate = 0.01f; attitudeSettings.MagKp = magCalibrated ? 1.0f : 0.0f; init = 0; } else if (init == 0) { // Reload settings (all the rates) AttitudeSettingsGet(&attitudeSettings); rollPitchBiasRate = 0.0f; if (accel_alpha > 0.0f) { accel_filter_enabled = true; } init = 1; } GyroSensorGet(&gyroSensorData); gyroStateData.x = gyroSensorData.x; gyroStateData.y = gyroSensorData.y; gyroStateData.z = gyroSensorData.z; // Compute the dT using the cpu clock dT = PIOS_DELAY_DiffuS(timeval) / 1000000.0f; timeval = PIOS_DELAY_GetRaw(); float q[4]; AttitudeStateData attitudeState; AttitudeStateGet(&attitudeState); float grot[3]; float accel_err[3]; // Get the current attitude estimate quat_copy(&attitudeState.q1, q); // Apply smoothing to accel values, to reduce vibration noise before main calculations. apply_accel_filter((const float *)&accelSensorData.x, accels_filtered); // Rotate gravity to body frame and cross with accels grot[0] = -(2.0f * (q[1] * q[3] - q[0] * q[2])); grot[1] = -(2.0f * (q[2] * q[3] + q[0] * q[1])); grot[2] = -(q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); apply_accel_filter(grot, grot_filtered); CrossProduct((const float *)accels_filtered, (const float *)grot_filtered, accel_err); // Account for accel magnitude accel_mag = accels_filtered[0] * accels_filtered[0] + accels_filtered[1] * accels_filtered[1] + accels_filtered[2] * accels_filtered[2]; accel_mag = sqrtf(accel_mag); float grot_mag; if (accel_filter_enabled) { grot_mag = sqrtf(grot_filtered[0] * grot_filtered[0] + grot_filtered[1] * grot_filtered[1] + grot_filtered[2] * grot_filtered[2]); } else { grot_mag = 1.0f; } // TODO! check grot_mag & accel vector magnitude values for correctness. accel_err[0] /= (accel_mag * grot_mag); accel_err[1] /= (accel_mag * grot_mag); accel_err[2] /= (accel_mag * grot_mag); if (xQueueReceive(magQueue, &ev, 0) != pdTRUE) { // Rotate gravity to body frame and cross with accels float brot[3]; float Rbe[3][3]; MagSensorData mag; Quaternion2R(q, Rbe); MagSensorGet(&mag); // TODO: separate filter! if (revoCalibration.MagBiasNullingRate > 0) { magOffsetEstimation(&mag); } MagStateData mags; mags.x = mag.x; mags.y = mag.y; mags.z = mag.z; MagStateSet(&mags); // If the mag is producing bad data don't use it (normally bad calibration) if (!isnan(mag.x) && !isinf(mag.x) && !isnan(mag.y) && !isinf(mag.y) && !isnan(mag.z) && !isinf(mag.z)) { rot_mult(Rbe, homeLocation.Be, brot); float mag_len = sqrtf(mag.x * mag.x + mag.y * mag.y + mag.z * mag.z); mag.x /= mag_len; mag.y /= mag_len; mag.z /= mag_len; float bmag = sqrtf(brot[0] * brot[0] + brot[1] * brot[1] + brot[2] * brot[2]); brot[0] /= bmag; brot[1] /= bmag; brot[2] /= bmag; // Only compute if neither vector is null if (bmag < 1.0f || mag_len < 1.0f) { mag_err[0] = mag_err[1] = mag_err[2] = 0.0f; } else { CrossProduct((const float *)&mag.x, (const float *)brot, mag_err); } } } else { mag_err[0] = mag_err[1] = mag_err[2] = 0.0f; } // Accumulate integral of error. Scale here so that units are (deg/s) but Ki has units of s // Correct rates based on integral coefficient gyroStateData.x -= gyro_bias[0]; gyroStateData.y -= gyro_bias[1]; gyroStateData.z -= gyro_bias[2]; gyro_bias[0] -= accel_err[0] * attitudeSettings.AccelKi - (gyroStateData.x) * rollPitchBiasRate; gyro_bias[1] -= accel_err[1] * attitudeSettings.AccelKi - (gyroStateData.y) * rollPitchBiasRate; gyro_bias[2] -= -mag_err[2] * attitudeSettings.MagKi - (gyroStateData.z) * rollPitchBiasRate; // save gyroscope state GyroStateSet(&gyroStateData); // Correct rates based on proportional coefficient gyroStateData.x += accel_err[0] * attitudeSettings.AccelKp / dT; gyroStateData.y += accel_err[1] * attitudeSettings.AccelKp / dT; gyroStateData.z += accel_err[2] * attitudeSettings.AccelKp / dT + mag_err[2] * attitudeSettings.MagKp / dT; // Work out time derivative from INSAlgo writeup // Also accounts for the fact that gyros are in deg/s float qdot[4]; qdot[0] = DEG2RAD(-q[1] * gyroStateData.x - q[2] * gyroStateData.y - q[3] * gyroStateData.z) * dT / 2; qdot[1] = DEG2RAD(q[0] * gyroStateData.x - q[3] * gyroStateData.y + q[2] * gyroStateData.z) * dT / 2; qdot[2] = DEG2RAD(q[3] * gyroStateData.x + q[0] * gyroStateData.y - q[1] * gyroStateData.z) * dT / 2; qdot[3] = DEG2RAD(-q[2] * gyroStateData.x + q[1] * gyroStateData.y + q[0] * gyroStateData.z) * dT / 2; // Take a time step q[0] = q[0] + qdot[0]; q[1] = q[1] + qdot[1]; q[2] = q[2] + qdot[2]; q[3] = q[3] + qdot[3]; if (q[0] < 0.0f) { q[0] = -q[0]; q[1] = -q[1]; q[2] = -q[2]; q[3] = -q[3]; } // Renomalize qmag = sqrtf(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]); q[0] = q[0] / qmag; q[1] = q[1] / qmag; q[2] = q[2] / qmag; q[3] = q[3] / qmag; // If quaternion has become inappropriately short or is nan reinit. // THIS SHOULD NEVER ACTUALLY HAPPEN if ((fabsf(qmag) < 1.0e-3f) || isnan(qmag)) { q[0] = 1.0f; q[1] = 0.0f; q[2] = 0.0f; q[3] = 0.0f; } quat_copy(q, &attitudeState.q1); // Convert into eueler degrees (makes assumptions about RPY order) Quaternion2RPY(&attitudeState.q1, &attitudeState.Roll); AttitudeStateSet(&attitudeState); // Flush these queues for avoid errors xQueueReceive(baroQueue, &ev, 0); if (xQueueReceive(gpsQueue, &ev, 0) == pdTRUE && homeLocation.Set == HOMELOCATION_SET_TRUE) { float NED[3]; // Transform the GPS position into NED coordinates GPSPositionSensorData gpsPosition; GPSPositionSensorGet(&gpsPosition); getNED(&gpsPosition, NED); PositionStateData positionState; PositionStateGet(&positionState); positionState.North = NED[0]; positionState.East = NED[1]; positionState.Down = NED[2]; PositionStateSet(&positionState); } if (xQueueReceive(gpsVelQueue, &ev, 0) == pdTRUE) { // Transform the GPS position into NED coordinates GPSVelocitySensorData gpsVelocity; GPSVelocitySensorGet(&gpsVelocity); VelocityStateData velocityState; VelocityStateGet(&velocityState); velocityState.North = gpsVelocity.North; velocityState.East = gpsVelocity.East; velocityState.Down = gpsVelocity.Down; VelocityStateSet(&velocityState); } if (xQueueReceive(airspeedQueue, &ev, 0) == pdTRUE) { // Calculate true airspeed from indicated airspeed AirspeedSensorData airspeedSensor; AirspeedSensorGet(&airspeedSensor); AirspeedStateData airspeed; AirspeedStateGet(&airspeed); PositionStateData positionState; PositionStateGet(&positionState); if (airspeedSensor.SensorConnected == AIRSPEEDSENSOR_SENSORCONNECTED_TRUE) { // we have airspeed available airspeed.CalibratedAirspeed = airspeedSensor.CalibratedAirspeed; airspeed.TrueAirspeed = airspeed.CalibratedAirspeed * IAS2TAS(homeLocation.Altitude - positionState.Down); AirspeedStateSet(&airspeed); } } if (!init && flightStatus.Armed == FLIGHTSTATUS_ARMED_DISARMED) { AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR); } else if (variance_error) { AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_CRITICAL); } else { AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE); } return 0; } #include "insgps.h" int32_t ins_failed = 0; extern struct NavStruct Nav; int32_t init_stage = 0; /** * @brief Use the INSGPS fusion algorithm in either indoor or outdoor mode (use GPS) * @params[in] first_run This is the first run so trigger reinitialization * @params[in] outdoor_mode If true use the GPS for position, if false weakly pull to (0,0) * @return 0 for success, -1 for failure */ static int32_t updateAttitudeINSGPS(bool first_run, bool outdoor_mode) { UAVObjEvent ev; GyroSensorData gyroSensorData; AccelSensorData accelSensorData; MagStateData magData; AirspeedSensorData airspeedData; BaroSensorData baroData; GPSPositionSensorData gpsData; GPSVelocitySensorData gpsVelData; static bool mag_updated = false; static bool baro_updated; static bool airspeed_updated; static bool gps_updated; static bool gps_vel_updated; static bool value_error = false; static float baroOffset = 0.0f; static uint32_t ins_last_time = 0; static bool inited; float NED[3] = { 0.0f, 0.0f, 0.0f }; float vel[3] = { 0.0f, 0.0f, 0.0f }; float zeros[3] = { 0.0f, 0.0f, 0.0f }; // Perform the update uint16_t sensors = 0; float dT; // Wait until the gyro and accel object is updated, if a timeout then go to failsafe if ((xQueueReceive(gyroQueue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE) || (xQueueReceive(accelQueue, &ev, 1 / portTICK_RATE_MS) != pdTRUE)) { // Do not set attitude timeout warnings in simulation mode if (!AttitudeStateReadOnly()) { AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_WARNING); return -1; } } if (inited) { mag_updated = 0; baro_updated = 0; airspeed_updated = 0; gps_updated = 0; gps_vel_updated = 0; } if (first_run) { inited = false; init_stage = 0; mag_updated = 0; baro_updated = 0; airspeed_updated = 0; gps_updated = 0; gps_vel_updated = 0; ins_last_time = PIOS_DELAY_GetRaw(); return 0; } mag_updated |= (xQueueReceive(magQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE); baro_updated |= xQueueReceive(baroQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE; airspeed_updated |= xQueueReceive(airspeedQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE; // Check if we are running simulation if (!GPSPositionSensorReadOnly()) { gps_updated |= (xQueueReceive(gpsQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE) && outdoor_mode; } else { gps_updated |= pdTRUE && outdoor_mode; } if (!GPSVelocitySensorReadOnly()) { gps_vel_updated |= (xQueueReceive(gpsVelQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE) && outdoor_mode; } else { gps_vel_updated |= pdTRUE && outdoor_mode; } // Get most recent data GyroSensorGet(&gyroSensorData); AccelSensorGet(&accelSensorData); // TODO: separate filter! if (mag_updated) { MagSensorData mags; MagSensorGet(&mags); if (revoCalibration.MagBiasNullingRate > 0) { magOffsetEstimation(&mags); } magData.x = mags.x; magData.y = mags.y; magData.z = mags.z; MagStateSet(&magData); } else { MagStateGet(&magData); } BaroSensorGet(&baroData); AirspeedSensorGet(&airspeedData); GPSPositionSensorGet(&gpsData); GPSVelocitySensorGet(&gpsVelData); // TODO: put in separate filter AccelStateData accelState; accelState.x = accelSensorData.x; accelState.y = accelSensorData.y; accelState.z = accelSensorData.z; AccelStateSet(&accelState); value_error = false; // safety checks if (invalid(gyroSensorData.x) || invalid(gyroSensorData.y) || invalid(gyroSensorData.z) || invalid(accelSensorData.x) || invalid(accelSensorData.y) || invalid(accelSensorData.z)) { // cannot run process update, raise error! AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR); return 0; } if (invalid(magData.x) || invalid(magData.y) || invalid(magData.z)) { // magnetometers can be ignored for a while mag_updated = false; value_error = true; } // Don't require HomeLocation.Set to be true but at least require a mag configuration (allows easily // switching between indoor and outdoor mode with Set = false) if ((homeLocation.Be[0] * homeLocation.Be[0] + homeLocation.Be[1] * homeLocation.Be[1] + homeLocation.Be[2] * homeLocation.Be[2] < 1e-5f)) { mag_updated = false; value_error = true; } if (invalid(baroData.Altitude)) { baro_updated = false; value_error = true; } if (invalid(airspeedData.CalibratedAirspeed)) { airspeed_updated = false; value_error = true; } if (invalid(gpsData.Altitude)) { gps_updated = false; value_error = true; } if (invalid_var(ekfConfiguration.R[EKFCONFIGURATION_R_GPSPOSNORTH]) || invalid_var(ekfConfiguration.R[EKFCONFIGURATION_R_GPSPOSEAST]) || invalid_var(ekfConfiguration.R[EKFCONFIGURATION_R_GPSPOSDOWN]) || invalid_var(ekfConfiguration.R[EKFCONFIGURATION_R_GPSVELNORTH]) || invalid_var(ekfConfiguration.R[EKFCONFIGURATION_R_GPSVELEAST]) || invalid_var(ekfConfiguration.R[EKFCONFIGURATION_R_GPSVELDOWN])) { gps_updated = false; value_error = true; } if (invalid(gpsVelData.North) || invalid(gpsVelData.East) || invalid(gpsVelData.Down)) { gps_vel_updated = false; value_error = true; } // Discard airspeed if sensor not connected if (airspeedData.SensorConnected != AIRSPEEDSENSOR_SENSORCONNECTED_TRUE) { airspeed_updated = false; } // Have a minimum requirement for gps usage if ((gpsData.Satellites < 7) || (gpsData.PDOP > 4.0f) || (gpsData.Latitude == 0 && gpsData.Longitude == 0) || (homeLocation.Set != HOMELOCATION_SET_TRUE)) { gps_updated = false; gps_vel_updated = false; } if (!inited) { AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR); } else if (value_error) { AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_CRITICAL); } else if (variance_error) { AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_CRITICAL); } else if (outdoor_mode && gpsData.Satellites < 7) { AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR); } else { AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE); } dT = PIOS_DELAY_DiffuS(ins_last_time) / 1.0e6f; ins_last_time = PIOS_DELAY_GetRaw(); // This should only happen at start up or at mode switches if (dT > 0.01f) { dT = 0.01f; } else if (dT <= 0.001f) { dT = 0.001f; } if (!inited && mag_updated && baro_updated && (gps_updated || !outdoor_mode) && !variance_error) { // Don't initialize until all sensors are read if (init_stage == 0) { // Reset the INS algorithm INSGPSInit(); INSSetMagVar((float[3]) { ekfConfiguration.R[EKFCONFIGURATION_R_MAGX], ekfConfiguration.R[EKFCONFIGURATION_R_MAGY], ekfConfiguration.R[EKFCONFIGURATION_R_MAGZ] } ); INSSetAccelVar((float[3]) { ekfConfiguration.Q[EKFCONFIGURATION_Q_ACCELX], ekfConfiguration.Q[EKFCONFIGURATION_Q_ACCELY], ekfConfiguration.Q[EKFCONFIGURATION_Q_ACCELZ] } ); INSSetGyroVar((float[3]) { ekfConfiguration.Q[EKFCONFIGURATION_Q_GYROX], ekfConfiguration.Q[EKFCONFIGURATION_Q_GYROY], ekfConfiguration.Q[EKFCONFIGURATION_Q_GYROZ] } ); INSSetGyroBiasVar((float[3]) { ekfConfiguration.Q[EKFCONFIGURATION_Q_GYRODRIFTX], ekfConfiguration.Q[EKFCONFIGURATION_Q_GYRODRIFTY], ekfConfiguration.Q[EKFCONFIGURATION_Q_GYRODRIFTZ] } ); INSSetBaroVar(ekfConfiguration.R[EKFCONFIGURATION_R_BAROZ]); // Initialize the gyro bias float gyro_bias[3] = { 0.0f, 0.0f, 0.0f }; INSSetGyroBias(gyro_bias); float pos[3] = { 0.0f, 0.0f, 0.0f }; if (outdoor_mode) { GPSPositionSensorData gpsPosition; GPSPositionSensorGet(&gpsPosition); // Transform the GPS position into NED coordinates getNED(&gpsPosition, pos); // Initialize barometric offset to current GPS NED coordinate baroOffset = -pos[2] - baroData.Altitude; } else { // Initialize barometric offset to homelocation altitude baroOffset = -baroData.Altitude; pos[2] = -(baroData.Altitude + baroOffset); } // xQueueReceive(magQueue, &ev, 100 / portTICK_RATE_MS); // MagSensorGet(&magData); AttitudeStateData attitudeState; AttitudeStateGet(&attitudeState); // Set initial attitude. Use accels to determine roll and pitch, rotate magnetic measurement accordingly, // so pseudo "north" vector can be estimated even if the board is not level attitudeState.Roll = atan2f(-accelSensorData.y, -accelSensorData.z); float zn = cosf(attitudeState.Roll) * magData.z + sinf(attitudeState.Roll) * magData.y; float yn = cosf(attitudeState.Roll) * magData.y - sinf(attitudeState.Roll) * magData.z; // rotate accels z vector according to roll float azn = cosf(attitudeState.Roll) * accelSensorData.z + sinf(attitudeState.Roll) * accelSensorData.y; attitudeState.Pitch = atan2f(accelSensorData.x, -azn); float xn = cosf(attitudeState.Pitch) * magData.x + sinf(attitudeState.Pitch) * zn; attitudeState.Yaw = atan2f(-yn, xn); // TODO: This is still a hack // Put this in a proper generic function in CoordinateConversion.c // should take 4 vectors: g (0,0,-9.81), accels, Be (or 1,0,0 if no home loc) and magnetometers (or 1,0,0 if no mags) // should calculate the rotation in 3d space using proper cross product math // SUBTODO: formulate the math required attitudeState.Roll = RAD2DEG(attitudeState.Roll); attitudeState.Pitch = RAD2DEG(attitudeState.Pitch); attitudeState.Yaw = RAD2DEG(attitudeState.Yaw); RPY2Quaternion(&attitudeState.Roll, &attitudeState.q1); AttitudeStateSet(&attitudeState); float q[4] = { attitudeState.q1, attitudeState.q2, attitudeState.q3, attitudeState.q4 }; INSSetState(pos, zeros, q, zeros, zeros); INSResetP(ekfConfiguration.P); } else { // Run prediction a bit before any corrections // Because the sensor module remove the bias we need to add it // back in here so that the INS algorithm can track it correctly float gyros[3] = { DEG2RAD(gyroSensorData.x), DEG2RAD(gyroSensorData.y), DEG2RAD(gyroSensorData.z) }; INSStatePrediction(gyros, &accelSensorData.x, dT); AttitudeStateData attitude; AttitudeStateGet(&attitude); attitude.q1 = Nav.q[0]; attitude.q2 = Nav.q[1]; attitude.q3 = Nav.q[2]; attitude.q4 = Nav.q[3]; Quaternion2RPY(&attitude.q1, &attitude.Roll); AttitudeStateSet(&attitude); } init_stage++; if (init_stage > 10) { inited = true; } return 0; } if (!inited) { return 0; } // Because the sensor module remove the bias we need to add it // back in here so that the INS algorithm can track it correctly float gyros[3] = { DEG2RAD(gyroSensorData.x), DEG2RAD(gyroSensorData.y), DEG2RAD(gyroSensorData.z) }; // Advance the state estimate INSStatePrediction(gyros, &accelSensorData.x, dT); // Copy the attitude into the UAVO AttitudeStateData attitude; AttitudeStateGet(&attitude); attitude.q1 = Nav.q[0]; attitude.q2 = Nav.q[1]; attitude.q3 = Nav.q[2]; attitude.q4 = Nav.q[3]; Quaternion2RPY(&attitude.q1, &attitude.Roll); AttitudeStateSet(&attitude); // Advance the covariance estimate INSCovariancePrediction(dT); if (mag_updated) { sensors |= MAG_SENSORS; } if (baro_updated) { sensors |= BARO_SENSOR; } INSSetMagNorth(homeLocation.Be); if (gps_updated && outdoor_mode) { INSSetPosVelVar((float[3]) { ekfConfiguration.R[EKFCONFIGURATION_R_GPSPOSNORTH], ekfConfiguration.R[EKFCONFIGURATION_R_GPSPOSEAST], ekfConfiguration.R[EKFCONFIGURATION_R_GPSPOSDOWN] }, (float[3]) { ekfConfiguration.R[EKFCONFIGURATION_R_GPSVELNORTH], ekfConfiguration.R[EKFCONFIGURATION_R_GPSVELEAST], ekfConfiguration.R[EKFCONFIGURATION_R_GPSVELDOWN] } ); sensors |= POS_SENSORS; if (0) { // Old code to take horizontal velocity from GPS Position update sensors |= HORIZ_SENSORS; vel[0] = gpsData.Groundspeed * cosf(DEG2RAD(gpsData.Heading)); vel[1] = gpsData.Groundspeed * sinf(DEG2RAD(gpsData.Heading)); vel[2] = 0.0f; } // Transform the GPS position into NED coordinates getNED(&gpsData, NED); // Track barometric altitude offset with a low pass filter baroOffset = BARO_OFFSET_LOWPASS_ALPHA * baroOffset + (1.0f - BARO_OFFSET_LOWPASS_ALPHA) * (-NED[2] - baroData.Altitude); } else if (!outdoor_mode) { INSSetPosVelVar((float[3]) { ekfConfiguration.FakeR[EKFCONFIGURATION_FAKER_FAKEGPSPOSINDOOR], ekfConfiguration.FakeR[EKFCONFIGURATION_FAKER_FAKEGPSPOSINDOOR], ekfConfiguration.FakeR[EKFCONFIGURATION_FAKER_FAKEGPSPOSINDOOR] }, (float[3]) { ekfConfiguration.FakeR[EKFCONFIGURATION_FAKER_FAKEGPSVELINDOOR], ekfConfiguration.FakeR[EKFCONFIGURATION_FAKER_FAKEGPSVELINDOOR], ekfConfiguration.FakeR[EKFCONFIGURATION_FAKER_FAKEGPSVELINDOOR] } ); vel[0] = vel[1] = vel[2] = 0.0f; NED[0] = NED[1] = 0.0f; NED[2] = -(baroData.Altitude + baroOffset); sensors |= HORIZ_SENSORS | HORIZ_POS_SENSORS; sensors |= POS_SENSORS | VERT_SENSORS; } if (gps_vel_updated && outdoor_mode) { sensors |= HORIZ_SENSORS | VERT_SENSORS; vel[0] = gpsVelData.North; vel[1] = gpsVelData.East; vel[2] = gpsVelData.Down; } if (airspeed_updated) { // we have airspeed available AirspeedStateData airspeed; AirspeedStateGet(&airspeed); airspeed.CalibratedAirspeed = airspeedData.CalibratedAirspeed; airspeed.TrueAirspeed = airspeed.CalibratedAirspeed * IAS2TAS(homeLocation.Altitude - Nav.Pos[2]); AirspeedStateSet(&airspeed); if (!gps_vel_updated && !gps_updated) { // feed airspeed into EKF, treat wind as 1e2 variance sensors |= HORIZ_SENSORS | VERT_SENSORS; INSSetPosVelVar((float[3]) { ekfConfiguration.FakeR[EKFCONFIGURATION_FAKER_FAKEGPSPOSINDOOR], ekfConfiguration.FakeR[EKFCONFIGURATION_FAKER_FAKEGPSPOSINDOOR], ekfConfiguration.FakeR[EKFCONFIGURATION_FAKER_FAKEGPSPOSINDOOR] }, (float[3]) { ekfConfiguration.FakeR[EKFCONFIGURATION_FAKER_FAKEGPSVELAIRSPEED], ekfConfiguration.FakeR[EKFCONFIGURATION_FAKER_FAKEGPSVELAIRSPEED], ekfConfiguration.FakeR[EKFCONFIGURATION_FAKER_FAKEGPSVELAIRSPEED] } ); // rotate airspeed vector into NED frame - airspeed is measured in X axis only float R[3][3]; Quaternion2R(Nav.q, R); float vtas[3] = { airspeed.TrueAirspeed, 0.0f, 0.0f }; rot_mult(R, vtas, vel); } } /* * TODO: Need to add a general sanity check for all the inputs to make sure their kosher * although probably should occur within INS itself */ if (sensors) { INSCorrection(&magData.x, NED, vel, (baroData.Altitude + baroOffset), sensors); } // Copy the position and velocity into the UAVO PositionStateData positionState; PositionStateGet(&positionState); positionState.North = Nav.Pos[0]; positionState.East = Nav.Pos[1]; positionState.Down = Nav.Pos[2]; PositionStateSet(&positionState); VelocityStateData velocityState; VelocityStateGet(&velocityState); velocityState.North = Nav.Vel[0]; velocityState.East = Nav.Vel[1]; velocityState.Down = Nav.Vel[2]; VelocityStateSet(&velocityState); GyroStateData gyroState; gyroState.x = RAD2DEG(gyros[0] - RAD2DEG(Nav.gyro_bias[0])); gyroState.y = RAD2DEG(gyros[1] - RAD2DEG(Nav.gyro_bias[1])); gyroState.z = RAD2DEG(gyros[2] - RAD2DEG(Nav.gyro_bias[2])); GyroStateSet(&gyroState); EKFStateVarianceData vardata; EKFStateVarianceGet(&vardata); INSGetP(vardata.P); EKFStateVarianceSet(&vardata); return 0; } /** * @brief Convert the GPS LLA position into NED coordinates * @note this method uses a taylor expansion around the home coordinates * to convert to NED which allows it to be done with all floating * calculations * @param[in] Current GPS coordinates * @param[out] NED frame coordinates * @returns 0 for success, -1 for failure */ float T[3]; static int32_t getNED(GPSPositionSensorData *gpsPosition, float *NED) { float dL[3] = { DEG2RAD((gpsPosition->Latitude - homeLocation.Latitude) / 10.0e6f), DEG2RAD((gpsPosition->Longitude - homeLocation.Longitude) / 10.0e6f), (gpsPosition->Altitude + gpsPosition->GeoidSeparation - homeLocation.Altitude) }; NED[0] = T[0] * dL[0]; NED[1] = T[1] * dL[1]; NED[2] = T[2] * dL[2]; return 0; } static void settingsUpdatedCb(UAVObjEvent *ev) { if (ev == NULL || ev->obj == FlightStatusHandle()) { FlightStatusGet(&flightStatus); } if (ev == NULL || ev->obj == RevoCalibrationHandle()) { RevoCalibrationGet(&revoCalibration); } // change of these settings require reinitialization of the EKF // when an error flag has been risen, we also listen to flightStatus updates, // since we are waiting for the system to get disarmed so we can reinitialize safely. if (ev == NULL || ev->obj == EKFConfigurationHandle() || ev->obj == RevoSettingsHandle() || (variance_error == true && ev->obj == FlightStatusHandle()) ) { bool error = false; EKFConfigurationGet(&ekfConfiguration); int t; for (t = 0; t < EKFCONFIGURATION_P_NUMELEM; t++) { if (invalid_var(ekfConfiguration.P[t])) { error = true; } } for (t = 0; t < EKFCONFIGURATION_Q_NUMELEM; t++) { if (invalid_var(ekfConfiguration.Q[t])) { error = true; } } for (t = 0; t < EKFCONFIGURATION_R_NUMELEM; t++) { if (invalid_var(ekfConfiguration.R[t])) { error = true; } } RevoSettingsGet(&revoSettings); // Reinitialization of the EKF is not desired during flight. // It will be delayed until the board is disarmed by raising the error flag. // We will not prevent the initial initialization though, since the board could be in always armed mode. if (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED && !initialization_required) { error = true; } if (error) { variance_error = true; } else { // trigger reinitialization - possibly with new algorithm running_algorithm = revoSettings.FusionAlgorithm; variance_error = false; initialization_required = true; } } if (ev == NULL || ev->obj == HomeLocationHandle()) { HomeLocationGet(&homeLocation); // Compute matrix to convert deltaLLA to NED float lat, alt; lat = DEG2RAD(homeLocation.Latitude / 10.0e6f); alt = homeLocation.Altitude; T[0] = alt + 6.378137E6f; T[1] = cosf(lat) * (alt + 6.378137E6f); T[2] = -1.0f; // TODO: convert positionState to new reference frame and gracefully update EKF state! // needed for long range flights where the reference coordinate is adjusted in flight } if (ev == NULL || ev->obj == AttitudeSettingsHandle()) { AttitudeSettingsGet(&attitudeSettings); // Calculate accel filter alpha, in the same way as for gyro data in stabilization module. const float fakeDt = 0.0015f; if (attitudeSettings.AccelTau < 0.0001f) { accel_alpha = 0; // not trusting this to resolve to 0 accel_filter_enabled = false; } else { accel_alpha = expf(-fakeDt / attitudeSettings.AccelTau); accel_filter_enabled = true; } } } /** * Perform an update of the @ref MagBias based on * Magmeter Offset Cancellation: Theory and Implementation, * revisited William Premerlani, October 14, 2011 */ static void magOffsetEstimation(MagSensorData *mag) { #if 0 // Constants, to possibly go into a UAVO static const float MIN_NORM_DIFFERENCE = 50; static float B2[3] = { 0, 0, 0 }; MagBiasData magBias; MagBiasGet(&magBias); // Remove the current estimate of the bias mag->x -= magBias.x; mag->y -= magBias.y; mag->z -= magBias.z; // First call if (B2[0] == 0 && B2[1] == 0 && B2[2] == 0) { B2[0] = mag->x; B2[1] = mag->y; B2[2] = mag->z; return; } float B1[3] = { mag->x, mag->y, mag->z }; float norm_diff = sqrtf(powf(B2[0] - B1[0], 2) + powf(B2[1] - B1[1], 2) + powf(B2[2] - B1[2], 2)); if (norm_diff > MIN_NORM_DIFFERENCE) { float norm_b1 = sqrtf(B1[0] * B1[0] + B1[1] * B1[1] + B1[2] * B1[2]); float norm_b2 = sqrtf(B2[0] * B2[0] + B2[1] * B2[1] + B2[2] * B2[2]); float scale = cal.MagBiasNullingRate * (norm_b2 - norm_b1) / norm_diff; float b_error[3] = { (B2[0] - B1[0]) * scale, (B2[1] - B1[1]) * scale, (B2[2] - B1[2]) * scale }; magBias.x += b_error[0]; magBias.y += b_error[1]; magBias.z += b_error[2]; MagBiasSet(&magBias); // Store this value to compare against next update B2[0] = B1[0]; B2[1] = B1[1]; B2[2] = B1[2]; } #else // if 0 static float magBias[3] = { 0 }; // Remove the current estimate of the bias mag->x -= magBias[0]; mag->y -= magBias[1]; mag->z -= magBias[2]; AttitudeStateData attitude; AttitudeStateGet(&attitude); const float Rxy = sqrtf(homeLocation.Be[0] * homeLocation.Be[0] + homeLocation.Be[1] * homeLocation.Be[1]); const float Rz = homeLocation.Be[2]; const float rate = revoCalibration.MagBiasNullingRate; float Rot[3][3]; float B_e[3]; float xy[2]; float delta[3]; // Get the rotation matrix Quaternion2R(&attitude.q1, Rot); // Rotate the mag into the NED frame B_e[0] = Rot[0][0] * mag->x + Rot[1][0] * mag->y + Rot[2][0] * mag->z; B_e[1] = Rot[0][1] * mag->x + Rot[1][1] * mag->y + Rot[2][1] * mag->z; B_e[2] = Rot[0][2] * mag->x + Rot[1][2] * mag->y + Rot[2][2] * mag->z; float cy = cosf(DEG2RAD(attitude.Yaw)); float sy = sinf(DEG2RAD(attitude.Yaw)); xy[0] = cy * B_e[0] + sy * B_e[1]; xy[1] = -sy * B_e[0] + cy * B_e[1]; float xy_norm = sqrtf(xy[0] * xy[0] + xy[1] * xy[1]); delta[0] = -rate * (xy[0] / xy_norm * Rxy - xy[0]); delta[1] = -rate * (xy[1] / xy_norm * Rxy - xy[1]); delta[2] = -rate * (Rz - B_e[2]); if (!isnan(delta[0]) && !isinf(delta[0]) && !isnan(delta[1]) && !isinf(delta[1]) && !isnan(delta[2]) && !isinf(delta[2])) { magBias[0] += delta[0]; magBias[1] += delta[1]; magBias[2] += delta[2]; } #endif // if 0 } /** * @} * @} */