/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup Attitude Copter Control Attitude Estimation * @brief Acquires sensor data and computes attitude estimate * Specifically updates the the @ref AttitudeActual "AttitudeActual" and @ref AttitudeRaw "AttitudeRaw" settings objects * @{ * * @file attitude.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Module to handle all comms to the AHRS on a periodic basis. * * @see The GNU Public License (GPL) Version 3 * ******************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /** * Input objects: None, takes sensor data via pios * Output objects: @ref AttitudeRaw @ref AttitudeActual * * This module computes an attitude estimate from the sensor data * * The module executes in its own thread. * * UAVObjects are automatically generated by the UAVObjectGenerator from * the object definition XML file. * * Modules have no API, all communication to other modules is done through UAVObjects. * However modules may use the API exposed by shared libraries. * See the OpenPilot wiki for more details. * http://www.openpilot.org/OpenPilot_Application_Architecture * */ #include "pios.h" #include "attitude.h" #include "accels.h" #include "airspeedsensor.h" #include "airspeedactual.h" #include "attitudeactual.h" #include "attitudesettings.h" #include "baroaltitude.h" #include "flightstatus.h" #include "gpsposition.h" #include "gpsvelocity.h" #include "gyros.h" #include "gyrosbias.h" #include "homelocation.h" #include "magnetometer.h" #include "positionactual.h" #include "revocalibration.h" #include "revosettings.h" #include "velocityactual.h" #include "CoordinateConversions.h" #include // Private constants #define STACK_SIZE_BYTES 2048 #define TASK_PRIORITY (tskIDLE_PRIORITY+3) #define FAILSAFE_TIMEOUT_MS 10 // low pass filter configuration to calculate offset // of barometric altitude sensor // reasoning: updates at: 10 Hz, tau= 300 s settle time // exp(-(1/f) / tau ) ~=~ 0.9997 #define BARO_OFFSET_LOWPASS_ALPHA 0.9997f // simple IAS to TAS aproximation - 2% increase per 1000ft // since we do not have flowing air temperature information #define IAS2TAS(alt) (1.0f + (0.02f*(alt)/304.8f)) // Private types // Private variables static xTaskHandle attitudeTaskHandle; static xQueueHandle gyroQueue; static xQueueHandle accelQueue; static xQueueHandle magQueue; static xQueueHandle airspeedQueue; static xQueueHandle baroQueue; static xQueueHandle gpsQueue; static xQueueHandle gpsVelQueue; static AttitudeSettingsData attitudeSettings; static HomeLocationData homeLocation; static RevoCalibrationData revoCalibration; static RevoSettingsData revoSettings; static bool gyroBiasSettingsUpdated = false; const uint32_t SENSOR_QUEUE_SIZE = 10; // Private functions static void AttitudeTask(void *parameters); static int32_t updateAttitudeComplementary(bool first_run); static int32_t updateAttitudeINSGPS(bool first_run, bool outdoor_mode); static void settingsUpdatedCb(UAVObjEvent * objEv); static int32_t getNED(GPSPositionData * gpsPosition, float * NED); /** * API for sensor fusion algorithms: * Configure(xQueueHandle gyro, xQueueHandle accel, xQueueHandle mag, xQueueHandle baro) * Stores all the queues the algorithm will pull data from * FinalizeSensors() -- before saving the sensors modifies them based on internal state (gyro bias) * Update() -- queries queues and updates the attitude estiamte */ /** * Initialise the module. Called before the start function * \returns 0 on success or -1 if initialisation failed */ int32_t AttitudeInitialize(void) { AttitudeActualInitialize(); AirspeedActualInitialize(); AirspeedSensorInitialize(); AttitudeSettingsInitialize(); PositionActualInitialize(); VelocityActualInitialize(); RevoSettingsInitialize(); RevoCalibrationInitialize(); // Initialize this here while we aren't setting the homelocation in GPS HomeLocationInitialize(); // Initialize quaternion AttitudeActualData attitude; AttitudeActualGet(&attitude); attitude.q1 = 1; attitude.q2 = 0; attitude.q3 = 0; attitude.q4 = 0; AttitudeActualSet(&attitude); // Cannot trust the values to init right above if BL runs GyrosBiasData gyrosBias; GyrosBiasGet(&gyrosBias); gyrosBias.x = 0; gyrosBias.y = 0; gyrosBias.z = 0; GyrosBiasSet(&gyrosBias); AttitudeSettingsConnectCallback(&settingsUpdatedCb); RevoSettingsConnectCallback(&settingsUpdatedCb); RevoCalibrationConnectCallback(&settingsUpdatedCb); HomeLocationConnectCallback(&settingsUpdatedCb); return 0; } /** * Start the task. Expects all objects to be initialized by this point. * \returns 0 on success or -1 if initialisation failed */ int32_t AttitudeStart(void) { // Create the queues for the sensors gyroQueue = xQueueCreate(1, sizeof(UAVObjEvent)); accelQueue = xQueueCreate(1, sizeof(UAVObjEvent)); magQueue = xQueueCreate(1, sizeof(UAVObjEvent)); airspeedQueue = xQueueCreate(1, sizeof(UAVObjEvent)); baroQueue = xQueueCreate(1, sizeof(UAVObjEvent)); gpsQueue = xQueueCreate(1, sizeof(UAVObjEvent)); gpsVelQueue = xQueueCreate(1, sizeof(UAVObjEvent)); // Start main task xTaskCreate(AttitudeTask, (signed char *)"Attitude", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &attitudeTaskHandle); TaskMonitorAdd(TASKINFO_RUNNING_ATTITUDE, attitudeTaskHandle); PIOS_WDG_RegisterFlag(PIOS_WDG_ATTITUDE); GyrosConnectQueue(gyroQueue); AccelsConnectQueue(accelQueue); MagnetometerConnectQueue(magQueue); AirspeedSensorConnectQueue(airspeedQueue); BaroAltitudeConnectQueue(baroQueue); GPSPositionConnectQueue(gpsQueue); GPSVelocityConnectQueue(gpsVelQueue); return 0; } MODULE_INITCALL(AttitudeInitialize, AttitudeStart) /** * Module thread, should not return. */ static void AttitudeTask(void *parameters) { bool first_run = true; uint32_t last_algorithm; AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE); // Force settings update to make sure rotation loaded settingsUpdatedCb(NULL); // Wait for all the sensors be to read vTaskDelay(100); // Invalidate previous algorithm to trigger a first run last_algorithm = 0xfffffff; // Main task loop while (1) { int32_t ret_val = -1; if (last_algorithm != revoSettings.FusionAlgorithm) { last_algorithm = revoSettings.FusionAlgorithm; first_run = true; } // This function blocks on data queue switch (revoSettings.FusionAlgorithm ) { case REVOSETTINGS_FUSIONALGORITHM_COMPLEMENTARY: ret_val = updateAttitudeComplementary(first_run); break; case REVOSETTINGS_FUSIONALGORITHM_INSOUTDOOR: ret_val = updateAttitudeINSGPS(first_run, true); break; case REVOSETTINGS_FUSIONALGORITHM_INSINDOOR: ret_val = updateAttitudeINSGPS(first_run, false); break; default: AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_CRITICAL); break; } if(ret_val == 0) first_run = false; PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE); } } float accel_mag; float qmag; float attitudeDt; float mag_err[3]; float magKi = 0.000001f; float magKp = 0.01f; static int32_t updateAttitudeComplementary(bool first_run) { UAVObjEvent ev; GyrosData gyrosData; AccelsData accelsData; static int32_t timeval; float dT; static uint8_t init = 0; // Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe if ( xQueueReceive(gyroQueue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE || xQueueReceive(accelQueue, &ev, 1 / portTICK_RATE_MS) != pdTRUE ) { // When one of these is updated so should the other // Do not set attitude timeout warnings in simulation mode if (!AttitudeActualReadOnly()){ AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING); return -1; } } AccelsGet(&accelsData); // During initialization and FlightStatusData flightStatus; FlightStatusGet(&flightStatus); if(first_run) { #if defined(PIOS_INCLUDE_HMC5883) // To initialize we need a valid mag reading if ( xQueueReceive(magQueue, &ev, 0 / portTICK_RATE_MS) != pdTRUE ) return -1; MagnetometerData magData; MagnetometerGet(&magData); #else MagnetometerData magData; magData.x = 100; magData.y = 0; magData.z = 0; #endif AttitudeActualData attitudeActual; AttitudeActualGet(&attitudeActual); init = 0; attitudeActual.Roll = atan2f(-accelsData.y, -accelsData.z) * 180.0f / M_PI_F; attitudeActual.Pitch = atan2f(accelsData.x, -accelsData.z) * 180.0f / M_PI_F; attitudeActual.Yaw = atan2f(-magData.y, magData.x) * 180.0f / M_PI_F; RPY2Quaternion(&attitudeActual.Roll,&attitudeActual.q1); AttitudeActualSet(&attitudeActual); timeval = PIOS_DELAY_GetRaw(); return 0; } if((init == 0 && xTaskGetTickCount() < 7000) && (xTaskGetTickCount() > 1000)) { // For first 7 seconds use accels to get gyro bias attitudeSettings.AccelKp = 1; attitudeSettings.AccelKi = 0.9; attitudeSettings.YawBiasRate = 0.23; magKp = 1; } else if ((attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE) && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) { attitudeSettings.AccelKp = 1; attitudeSettings.AccelKi = 0.9; attitudeSettings.YawBiasRate = 0.23; magKp = 1; init = 0; } else if (init == 0) { // Reload settings (all the rates) AttitudeSettingsGet(&attitudeSettings); magKp = 0.01f; init = 1; } GyrosGet(&gyrosData); // Compute the dT using the cpu clock dT = PIOS_DELAY_DiffuS(timeval) / 1000000.0f; timeval = PIOS_DELAY_GetRaw(); float q[4]; AttitudeActualData attitudeActual; AttitudeActualGet(&attitudeActual); float grot[3]; float accel_err[3]; // Get the current attitude estimate quat_copy(&attitudeActual.q1, q); // Rotate gravity to body frame and cross with accels grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2])); grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1])); grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]); CrossProduct((const float *) &accelsData.x, (const float *) grot, accel_err); // Account for accel magnitude accel_mag = accelsData.x*accelsData.x + accelsData.y*accelsData.y + accelsData.z*accelsData.z; accel_mag = sqrtf(accel_mag); accel_err[0] /= accel_mag; accel_err[1] /= accel_mag; accel_err[2] /= accel_mag; if ( xQueueReceive(magQueue, &ev, 0) != pdTRUE ) { // Rotate gravity to body frame and cross with accels float brot[3]; float Rbe[3][3]; MagnetometerData mag; Quaternion2R(q, Rbe); MagnetometerGet(&mag); // If the mag is producing bad data don't use it (normally bad calibration) if (mag.x == mag.x && mag.y == mag.y && mag.z == mag.z) { rot_mult(Rbe, homeLocation.Be, brot); float mag_len = sqrtf(mag.x * mag.x + mag.y * mag.y + mag.z * mag.z); mag.x /= mag_len; mag.y /= mag_len; mag.z /= mag_len; float bmag = sqrtf(brot[0] * brot[0] + brot[1] * brot[1] + brot[2] * brot[2]); brot[0] /= bmag; brot[1] /= bmag; brot[2] /= bmag; // Only compute if neither vector is null if (bmag < 1 || mag_len < 1) mag_err[0] = mag_err[1] = mag_err[2] = 0; else CrossProduct((const float *) &mag.x, (const float *) brot, mag_err); } } else { mag_err[0] = mag_err[1] = mag_err[2] = 0; } // Accumulate integral of error. Scale here so that units are (deg/s) but Ki has units of s GyrosBiasData gyrosBias; GyrosBiasGet(&gyrosBias); gyrosBias.x -= accel_err[0] * attitudeSettings.AccelKi; gyrosBias.y -= accel_err[1] * attitudeSettings.AccelKi; gyrosBias.z -= mag_err[2] * magKi; GyrosBiasSet(&gyrosBias); // Correct rates based on error, integral component dealt with in updateSensors gyrosData.x += accel_err[0] * attitudeSettings.AccelKp / dT; gyrosData.y += accel_err[1] * attitudeSettings.AccelKp / dT; gyrosData.z += accel_err[2] * attitudeSettings.AccelKp / dT + mag_err[2] * magKp / dT; // Work out time derivative from INSAlgo writeup // Also accounts for the fact that gyros are in deg/s float qdot[4]; qdot[0] = (-q[1] * gyrosData.x - q[2] * gyrosData.y - q[3] * gyrosData.z) * dT * M_PI_F / 180 / 2; qdot[1] = (q[0] * gyrosData.x - q[3] * gyrosData.y + q[2] * gyrosData.z) * dT * M_PI_F / 180 / 2; qdot[2] = (q[3] * gyrosData.x + q[0] * gyrosData.y - q[1] * gyrosData.z) * dT * M_PI_F / 180 / 2; qdot[3] = (-q[2] * gyrosData.x + q[1] * gyrosData.y + q[0] * gyrosData.z) * dT * M_PI_F / 180 / 2; // Take a time step q[0] = q[0] + qdot[0]; q[1] = q[1] + qdot[1]; q[2] = q[2] + qdot[2]; q[3] = q[3] + qdot[3]; if(q[0] < 0) { q[0] = -q[0]; q[1] = -q[1]; q[2] = -q[2]; q[3] = -q[3]; } // Renomalize qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]); q[0] = q[0] / qmag; q[1] = q[1] / qmag; q[2] = q[2] / qmag; q[3] = q[3] / qmag; // If quaternion has become inappropriately short or is nan reinit. // THIS SHOULD NEVER ACTUALLY HAPPEN if((fabs(qmag) < 1.0e-3f) || (qmag != qmag)) { q[0] = 1; q[1] = 0; q[2] = 0; q[3] = 0; } quat_copy(q, &attitudeActual.q1); // Convert into eueler degrees (makes assumptions about RPY order) Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll); AttitudeActualSet(&attitudeActual); // Flush these queues for avoid errors xQueueReceive(baroQueue, &ev, 0); if ( xQueueReceive(gpsQueue, &ev, 0) == pdTRUE && homeLocation.Set == HOMELOCATION_SET_TRUE ) { float NED[3]; // Transform the GPS position into NED coordinates GPSPositionData gpsPosition; GPSPositionGet(&gpsPosition); getNED(&gpsPosition, NED); PositionActualData positionActual; PositionActualGet(&positionActual); positionActual.North = NED[0]; positionActual.East = NED[1]; positionActual.Down = NED[2]; PositionActualSet(&positionActual); } if ( xQueueReceive(gpsVelQueue, &ev, 0) == pdTRUE ) { // Transform the GPS position into NED coordinates GPSVelocityData gpsVelocity; GPSVelocityGet(&gpsVelocity); VelocityActualData velocityActual; VelocityActualGet(&velocityActual); velocityActual.North = gpsVelocity.North; velocityActual.East = gpsVelocity.East; velocityActual.Down = gpsVelocity.Down; VelocityActualSet(&velocityActual); } if ( xQueueReceive(airspeedQueue, &ev, 0) == pdTRUE ) { // Calculate true airspeed from indicated airspeed AirspeedSensorData airspeedSensor; AirspeedSensorGet(&airspeedSensor); AirspeedActualData airspeed; AirspeedActualGet(&airspeed); PositionActualData positionActual; PositionActualGet(&positionActual); if (airspeedSensor.SensorConnected==AIRSPEEDSENSOR_SENSORCONNECTED_TRUE) { // we have airspeed available airspeed.CalibratedAirspeed = airspeedSensor.CalibratedAirspeed; airspeed.TrueAirspeed = airspeed.CalibratedAirspeed * IAS2TAS( homeLocation.Altitude - positionActual.Down ); AirspeedActualSet(&airspeed); } } AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE); return 0; } #include "insgps.h" int32_t ins_failed = 0; extern struct NavStruct Nav; int32_t init_stage = 0; /** * @brief Use the INSGPS fusion algorithm in either indoor or outdoor mode (use GPS) * @params[in] first_run This is the first run so trigger reinitialization * @params[in] outdoor_mode If true use the GPS for position, if false weakly pull to (0,0) * @return 0 for success, -1 for failure */ static int32_t updateAttitudeINSGPS(bool first_run, bool outdoor_mode) { UAVObjEvent ev; GyrosData gyrosData; AccelsData accelsData; MagnetometerData magData; AirspeedSensorData airspeedData; BaroAltitudeData baroData; GPSPositionData gpsData; GPSVelocityData gpsVelData; GyrosBiasData gyrosBias; static bool mag_updated = false; static bool baro_updated; static bool airspeed_updated; static bool gps_updated; static bool gps_vel_updated; static float baroOffset = 0; static uint32_t ins_last_time = 0; static bool inited; float NED[3] = {0.0f, 0.0f, 0.0f}; float vel[3] = {0.0f, 0.0f, 0.0f}; float zeros[3] = {0.0f, 0.0f, 0.0f}; // Perform the update uint16_t sensors = 0; float dT; // Wait until the gyro and accel object is updated, if a timeout then go to failsafe if ( (xQueueReceive(gyroQueue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE) || (xQueueReceive(accelQueue, &ev, 1 / portTICK_RATE_MS) != pdTRUE) ) { // Do not set attitude timeout warnings in simulation mode if (!AttitudeActualReadOnly()){ AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING); return -1; } } if (inited) { mag_updated = 0; baro_updated = 0; airspeed_updated = 0; gps_updated = 0; gps_vel_updated = 0; } if (first_run) { inited = false; init_stage = 0; mag_updated = 0; baro_updated = 0; airspeed_updated = 0; gps_updated = 0; gps_vel_updated = 0; ins_last_time = PIOS_DELAY_GetRaw(); return 0; } mag_updated |= (xQueueReceive(magQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE); baro_updated |= xQueueReceive(baroQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE; airspeed_updated |= xQueueReceive(airspeedQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE; gps_updated |= (xQueueReceive(gpsQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE) && outdoor_mode; gps_vel_updated |= (xQueueReceive(gpsVelQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE) && outdoor_mode; // Get most recent data GyrosGet(&gyrosData); AccelsGet(&accelsData); MagnetometerGet(&magData); BaroAltitudeGet(&baroData); AirspeedSensorGet(&airspeedData); GPSPositionGet(&gpsData); GPSVelocityGet(&gpsVelData); GyrosBiasGet(&gyrosBias); // Discard mag if it has NAN (normally from bad calibration) mag_updated &= (magData.x == magData.x && magData.y == magData.y && magData.z == magData.z); // Don't require HomeLocation.Set to be true but at least require a mag configuration (allows easily // switching between indoor and outdoor mode with Set = false) mag_updated &= (homeLocation.Be[0] != 0 || homeLocation.Be[1] != 0 || homeLocation.Be[2]); // Discard airspeed if sensor not connected airspeed_updated &= ( airspeedData.SensorConnected == AIRSPEEDSENSOR_SENSORCONNECTED_TRUE ); // Have a minimum requirement for gps usage gps_updated &= (gpsData.Satellites >= 7) && (gpsData.PDOP <= 4.0f) && (homeLocation.Set == HOMELOCATION_SET_TRUE); if (!inited) AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_ERROR); else if (outdoor_mode && gpsData.Satellites < 7) AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_ERROR); else AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE); if (!inited && mag_updated && baro_updated && (gps_updated || !outdoor_mode)) { // Don't initialize until all sensors are read if (init_stage == 0 && !outdoor_mode) { float Pdiag[16]={25.0f,25.0f,25.0f,5.0f,5.0f,5.0f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-4f,1e-4f,1e-4f}; float q[4]; float pos[3] = {0.0f, 0.0f, 0.0f}; // Initialize barometric offset to homelocation altitude baroOffset = -baroData.Altitude; pos[2] = -(baroData.Altitude + baroOffset); // Reset the INS algorithm INSGPSInit(); INSSetMagVar(revoCalibration.mag_var); INSSetAccelVar(revoCalibration.accel_var); INSSetGyroVar(revoCalibration.gyro_var); INSSetBaroVar(revoCalibration.baro_var); // Initialize the gyro bias from the settings float gyro_bias[3] = {gyrosBias.x * M_PI_F / 180.0f, gyrosBias.y * M_PI_F / 180.0f, gyrosBias.z * M_PI_F / 180.0f}; INSSetGyroBias(gyro_bias); xQueueReceive(magQueue, &ev, 100 / portTICK_RATE_MS); MagnetometerGet(&magData); // Set initial attitude AttitudeActualData attitudeActual; attitudeActual.Roll = atan2f(-accelsData.y, -accelsData.z) * 180.0f / M_PI_F; attitudeActual.Pitch = atan2f(accelsData.x, -accelsData.z) * 180.0f / M_PI_F; attitudeActual.Yaw = atan2f(-magData.y, magData.x) * 180.0f / M_PI_F; RPY2Quaternion(&attitudeActual.Roll,&attitudeActual.q1); AttitudeActualSet(&attitudeActual); q[0] = attitudeActual.q1; q[1] = attitudeActual.q2; q[2] = attitudeActual.q3; q[3] = attitudeActual.q4; INSSetState(pos, zeros, q, zeros, zeros); INSResetP(Pdiag); } else if (init_stage == 0 && outdoor_mode) { float Pdiag[16]={25.0f,25.0f,25.0f,5.0f,5.0f,5.0f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-4f,1e-4f,1e-4f}; float q[4]; float NED[3]; // Reset the INS algorithm INSGPSInit(); INSSetMagVar(revoCalibration.mag_var); INSSetAccelVar(revoCalibration.accel_var); INSSetGyroVar(revoCalibration.gyro_var); INSSetBaroVar(revoCalibration.baro_var); INSSetMagNorth(homeLocation.Be); // Initialize the gyro bias from the settings float gyro_bias[3] = {gyrosBias.x * M_PI_F / 180.0f, gyrosBias.y * M_PI_F / 180.0f, gyrosBias.z * M_PI_F / 180.0f}; INSSetGyroBias(gyro_bias); GPSPositionData gpsPosition; GPSPositionGet(&gpsPosition); // Transform the GPS position into NED coordinates getNED(&gpsPosition, NED); // Initialize barometric offset to cirrent GPS NED coordinate baroOffset = -NED[2] - baroData.Altitude; xQueueReceive(magQueue, &ev, 100 / portTICK_RATE_MS); MagnetometerGet(&magData); // Set initial attitude AttitudeActualData attitudeActual; attitudeActual.Roll = atan2f(-accelsData.y, -accelsData.z) * 180.0f / M_PI_F; attitudeActual.Pitch = atan2f(accelsData.x, -accelsData.z) * 180.0f / M_PI_F; attitudeActual.Yaw = atan2f(-magData.y, magData.x) * 180.0f / M_PI_F; RPY2Quaternion(&attitudeActual.Roll,&attitudeActual.q1); AttitudeActualSet(&attitudeActual); q[0] = attitudeActual.q1; q[1] = attitudeActual.q2; q[2] = attitudeActual.q3; q[3] = attitudeActual.q4; INSSetState(NED, zeros, q, zeros, zeros); INSResetP(Pdiag); } else if (init_stage > 0) { // Run prediction a bit before any corrections dT = PIOS_DELAY_DiffuS(ins_last_time) / 1.0e6f; GyrosBiasGet(&gyrosBias); float gyros[3] = {(gyrosData.x + gyrosBias.x) * M_PI_F / 180.0f, (gyrosData.y + gyrosBias.y) * M_PI_F / 180.0f, (gyrosData.z + gyrosBias.z) * M_PI_F / 180.0f}; INSStatePrediction(gyros, &accelsData.x, dT); AttitudeActualData attitude; AttitudeActualGet(&attitude); attitude.q1 = Nav.q[0]; attitude.q2 = Nav.q[1]; attitude.q3 = Nav.q[2]; attitude.q4 = Nav.q[3]; Quaternion2RPY(&attitude.q1,&attitude.Roll); AttitudeActualSet(&attitude); } init_stage++; if(init_stage > 10) inited = true; ins_last_time = PIOS_DELAY_GetRaw(); return 0; } if (!inited) return 0; dT = PIOS_DELAY_DiffuS(ins_last_time) / 1.0e6f; ins_last_time = PIOS_DELAY_GetRaw(); // This should only happen at start up or at mode switches if(dT > 0.01f) dT = 0.01f; else if(dT <= 0.001f) dT = 0.001f; // If the gyro bias setting was updated we should reset // the state estimate of the EKF if(gyroBiasSettingsUpdated) { float gyro_bias[3] = {gyrosBias.x * M_PI_F / 180.0f, gyrosBias.y * M_PI_F / 180.0f, gyrosBias.z * M_PI_F / 180.0f}; INSSetGyroBias(gyro_bias); gyroBiasSettingsUpdated = false; } // Because the sensor module remove the bias we need to add it // back in here so that the INS algorithm can track it correctly float gyros[3] = {gyrosData.x * M_PI_F / 180.0f, gyrosData.y * M_PI_F / 180.0f, gyrosData.z * M_PI_F / 180.0f}; if (revoCalibration.BiasCorrectedRaw == REVOCALIBRATION_BIASCORRECTEDRAW_TRUE) { gyros[0] += gyrosBias.x * M_PI_F / 180.0f; gyros[1] += gyrosBias.y * M_PI_F / 180.0f; gyros[2] += gyrosBias.z * M_PI_F / 180.0f; } // Advance the state estimate INSStatePrediction(gyros, &accelsData.x, dT); // Copy the attitude into the UAVO AttitudeActualData attitude; AttitudeActualGet(&attitude); attitude.q1 = Nav.q[0]; attitude.q2 = Nav.q[1]; attitude.q3 = Nav.q[2]; attitude.q4 = Nav.q[3]; Quaternion2RPY(&attitude.q1,&attitude.Roll); AttitudeActualSet(&attitude); // Advance the covariance estimate INSCovariancePrediction(dT); if(mag_updated) sensors |= MAG_SENSORS; if(baro_updated) sensors |= BARO_SENSOR; INSSetMagNorth(homeLocation.Be); if (gps_updated && outdoor_mode) { INSSetPosVelVar(revoCalibration.gps_var[REVOCALIBRATION_GPS_VAR_POS], revoCalibration.gps_var[REVOCALIBRATION_GPS_VAR_VEL]); sensors |= POS_SENSORS; if (0) { // Old code to take horizontal velocity from GPS Position update sensors |= HORIZ_SENSORS; vel[0] = gpsData.Groundspeed * cosf(gpsData.Heading * M_PI_F / 180.0f); vel[1] = gpsData.Groundspeed * sinf(gpsData.Heading * M_PI_F / 180.0f); vel[2] = 0; } // Transform the GPS position into NED coordinates getNED(&gpsData, NED); // Track barometric altitude offset with a low pass filter baroOffset = BARO_OFFSET_LOWPASS_ALPHA * baroOffset + (1.0f - BARO_OFFSET_LOWPASS_ALPHA ) * ( -NED[2] - baroData.Altitude ); } else if (!outdoor_mode) { INSSetPosVelVar(1e6f, 1e5f); vel[0] = vel[1] = vel[2] = 0; NED[0] = NED[1] = 0; NED[2] = -(baroData.Altitude + baroOffset); sensors |= HORIZ_SENSORS | HORIZ_POS_SENSORS; sensors |= POS_SENSORS |VERT_SENSORS; } if (gps_vel_updated && outdoor_mode) { sensors |= HORIZ_SENSORS | VERT_SENSORS; vel[0] = gpsVelData.North; vel[1] = gpsVelData.East; vel[2] = gpsVelData.Down; } if (airspeed_updated) { // we have airspeed available AirspeedActualData airspeed; AirspeedActualGet(&airspeed); airspeed.CalibratedAirspeed = airspeedData.CalibratedAirspeed; airspeed.TrueAirspeed = airspeed.CalibratedAirspeed * IAS2TAS( homeLocation.Altitude - Nav.Pos[2] ); AirspeedActualSet(&airspeed); if ( !gps_vel_updated && !gps_updated) { // feed airspeed into EKF, treat wind as 1e2 variance sensors |= HORIZ_SENSORS | VERT_SENSORS; INSSetPosVelVar(1e6f, 1e2f); // rotate airspeed vector into NED frame - airspeed is measured in X axis only float R[3][3]; Quaternion2R(Nav.q,R); float vtas[3] = {airspeed.TrueAirspeed,0,0}; rot_mult(R,vtas,vel); } } /* * TODO: Need to add a general sanity check for all the inputs to make sure their kosher * although probably should occur within INS itself */ if (sensors) INSCorrection(&magData.x, NED, vel, ( baroData.Altitude + baroOffset ), sensors); // Copy the position and velocity into the UAVO PositionActualData positionActual; PositionActualGet(&positionActual); positionActual.North = Nav.Pos[0]; positionActual.East = Nav.Pos[1]; positionActual.Down = Nav.Pos[2]; PositionActualSet(&positionActual); VelocityActualData velocityActual; VelocityActualGet(&velocityActual); velocityActual.North = Nav.Vel[0]; velocityActual.East = Nav.Vel[1]; velocityActual.Down = Nav.Vel[2]; VelocityActualSet(&velocityActual); if (revoCalibration.BiasCorrectedRaw == REVOCALIBRATION_BIASCORRECTEDRAW_TRUE && !gyroBiasSettingsUpdated) { // Copy the gyro bias into the UAVO except when it was updated // from the settings during the calculation, then consume it // next cycle gyrosBias.x = Nav.gyro_bias[0] * 180.0f / M_PI_F; gyrosBias.y = Nav.gyro_bias[1] * 180.0f / M_PI_F; gyrosBias.z = Nav.gyro_bias[2] * 180.0f / M_PI_F; GyrosBiasSet(&gyrosBias); } return 0; } /** * @brief Convert the GPS LLA position into NED coordinates * @note this method uses a taylor expansion around the home coordinates * to convert to NED which allows it to be done with all floating * calculations * @param[in] Current GPS coordinates * @param[out] NED frame coordinates * @returns 0 for success, -1 for failure */ float T[3]; const float DEG2RAD = 3.141592653589793f / 180.0f; static int32_t getNED(GPSPositionData * gpsPosition, float * NED) { float dL[3] = {(gpsPosition->Latitude - homeLocation.Latitude) / 10.0e6f * DEG2RAD, (gpsPosition->Longitude - homeLocation.Longitude) / 10.0e6f * DEG2RAD, (gpsPosition->Altitude + gpsPosition->GeoidSeparation - homeLocation.Altitude)}; NED[0] = T[0] * dL[0]; NED[1] = T[1] * dL[1]; NED[2] = T[2] * dL[2]; return 0; } static void settingsUpdatedCb(UAVObjEvent * ev) { if (ev == NULL || ev->obj == RevoCalibrationHandle()) { RevoCalibrationGet(&revoCalibration); /* When the revo calibration is updated, update the GyroBias object */ GyrosBiasData gyrosBias; GyrosBiasGet(&gyrosBias); gyrosBias.x = revoCalibration.gyro_bias[REVOCALIBRATION_GYRO_BIAS_X]; gyrosBias.y = revoCalibration.gyro_bias[REVOCALIBRATION_GYRO_BIAS_Y]; gyrosBias.z = revoCalibration.gyro_bias[REVOCALIBRATION_GYRO_BIAS_Z]; GyrosBiasSet(&gyrosBias); gyroBiasSettingsUpdated = true; // In case INS currently running INSSetMagVar(revoCalibration.mag_var); INSSetAccelVar(revoCalibration.accel_var); INSSetGyroVar(revoCalibration.gyro_var); INSSetBaroVar(revoCalibration.baro_var); } if(ev == NULL || ev->obj == HomeLocationHandle()) { HomeLocationGet(&homeLocation); // Compute matrix to convert deltaLLA to NED float lat, alt; lat = homeLocation.Latitude / 10.0e6f * DEG2RAD; alt = homeLocation.Altitude; T[0] = alt+6.378137E6f; T[1] = cosf(lat)*(alt+6.378137E6f); T[2] = -1.0f; } if (ev == NULL || ev->obj == AttitudeSettingsHandle()) AttitudeSettingsGet(&attitudeSettings); if (ev == NULL || ev->obj == RevoSettingsHandle()) RevoSettingsGet(&revoSettings); } /** * @} * @} */