/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup TelemetryModule Telemetry Module * @brief Main telemetry module * Starts three tasks (RX, TX, and priority TX) that watch event queues * and handle all the telemetry of the UAVobjects * @{ * * @file telemetry.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Telemetry module, handles telemetry and UAVObject updates * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include "telemetry.h" #include "flighttelemetrystats.h" #include "gcstelemetrystats.h" #include "hwsettings.h" #include "taskinfo.h" // Private constants #define MAX_QUEUE_SIZE TELEM_QUEUE_SIZE // Three different stack size parameter are accepted for Telemetry(RX PIOS_TELEM_RX_STACK_SIZE) // Tx(PIOS_TELEM_TX_STACK_SIZE) and Radio RX(PIOS_TELEM_RADIO_RX_STACK_SIZE) #ifdef PIOS_TELEM_RX_STACK_SIZE #define STACK_SIZE_RX_BYTES PIOS_TELEM_RX_STACK_SIZE #define STACK_SIZE_TX_BYTES PIOS_TELEM_TX_STACK_SIZE #else #define STACK_SIZE_RX_BYTES PIOS_TELEM_STACK_SIZE #define STACK_SIZE_TX_BYTES PIOS_TELEM_STACK_SIZE #endif #ifdef PIOS_TELEM_RADIO_RX_STACK_SIZE #define STACK_SIZE_RADIO_RX_BYTES PIOS_TELEM_RADIO_RX_STACK_SIZE #else #define STACK_SIZE_RADIO_RX_BYTES STACK_SIZE_RX_BYTES #endif #define TASK_PRIORITY_RX (tskIDLE_PRIORITY + 2) #define TASK_PRIORITY_TX (tskIDLE_PRIORITY + 2) #define TASK_PRIORITY_RADRX (tskIDLE_PRIORITY + 2) #define REQ_TIMEOUT_MS 250 #define MAX_RETRIES 2 #define STATS_UPDATE_PERIOD_MS 4000 #define CONNECTION_TIMEOUT_MS 8000 // Private types // Private variables static uint32_t telemetryPort; #ifdef PIOS_INCLUDE_RFM22B static uint32_t radioPort; #endif static xQueueHandle queue; #if defined(PIOS_TELEM_PRIORITY_QUEUE) static xQueueHandle priorityQueue; #else #define priorityQueue queue #endif static xTaskHandle telemetryTxTaskHandle; static xTaskHandle telemetryRxTaskHandle; #ifdef PIOS_INCLUDE_RFM22B static xTaskHandle radioRxTaskHandle; #endif static uint32_t txErrors; static uint32_t txRetries; static uint32_t timeOfLastObjectUpdate; static UAVTalkConnection uavTalkCon; #ifdef PIOS_INCLUDE_RFM22B static UAVTalkConnection radioUavTalkCon; #endif // Private functions static void telemetryTxTask(void *parameters); static void telemetryRxTask(void *parameters); #ifdef PIOS_INCLUDE_RFM22B static void radioRxTask(void *parameters); static int32_t transmitRadioData(uint8_t *data, int32_t length); #endif static int32_t transmitData(uint8_t *data, int32_t length); static void registerObject(UAVObjHandle obj); static void updateObject(UAVObjHandle obj, int32_t eventType); static int32_t setUpdatePeriod(UAVObjHandle obj, int32_t updatePeriodMs); static int32_t setLoggingPeriod(UAVObjHandle obj, int32_t updatePeriodMs); static void processObjEvent(UAVObjEvent *ev); static void updateTelemetryStats(); static void gcsTelemetryStatsUpdated(); static void updateSettings(); static uint32_t getComPort(bool input); /** * Initialise the telemetry module * \return -1 if initialisation failed * \return 0 on success */ int32_t TelemetryStart(void) { // Process all registered objects and connect queue for updates UAVObjIterate(®isterObject); // Listen to objects of interest GCSTelemetryStatsConnectQueue(priorityQueue); // Start telemetry tasks xTaskCreate(telemetryTxTask, (const char *)"TelTx", STACK_SIZE_TX_BYTES / 4, NULL, TASK_PRIORITY_TX, &telemetryTxTaskHandle); PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_TELEMETRYTX, telemetryTxTaskHandle); xTaskCreate(telemetryRxTask, (const char *)"TelRx", STACK_SIZE_RX_BYTES / 4, NULL, TASK_PRIORITY_RX, &telemetryRxTaskHandle); PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_TELEMETRYRX, telemetryRxTaskHandle); #ifdef PIOS_INCLUDE_RFM22B xTaskCreate(radioRxTask, (const char *)"RadioRx", STACK_SIZE_RADIO_RX_BYTES / 4, NULL, TASK_PRIORITY_RADRX, &radioRxTaskHandle); PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_RADIORX, radioRxTaskHandle); #endif return 0; } /** * Initialise the telemetry module * \return -1 if initialisation failed * \return 0 on success */ int32_t TelemetryInitialize(void) { FlightTelemetryStatsInitialize(); GCSTelemetryStatsInitialize(); // Initialize vars timeOfLastObjectUpdate = 0; // Create object queues queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent)); #if defined(PIOS_TELEM_PRIORITY_QUEUE) priorityQueue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent)); #endif // Update telemetry settings telemetryPort = PIOS_COM_TELEM_RF; #ifdef PIOS_INCLUDE_RFM22B radioPort = PIOS_COM_RF; #endif HwSettingsInitialize(); updateSettings(); // Initialise UAVTalk uavTalkCon = UAVTalkInitialize(&transmitData); #ifdef PIOS_INCLUDE_RFM22B radioUavTalkCon = UAVTalkInitialize(&transmitRadioData); #endif // Create periodic event that will be used to update the telemetry stats // FIXME STATS_UPDATE_PERIOD_MS is 4000ms while FlighTelemetryStats update period is 5000ms... txErrors = 0; txRetries = 0; UAVObjEvent ev; memset(&ev, 0, sizeof(UAVObjEvent)); EventPeriodicQueueCreate(&ev, priorityQueue, STATS_UPDATE_PERIOD_MS); return 0; } MODULE_INITCALL(TelemetryInitialize, TelemetryStart); /** * Register a new object, adds object to local list and connects the queue depending on the object's * telemetry settings. * \param[in] obj Object to connect */ static void registerObject(UAVObjHandle obj) { if (UAVObjIsMetaobject(obj)) { // Only connect change notifications for meta objects. No periodic updates UAVObjConnectQueue(obj, priorityQueue, EV_MASK_ALL_UPDATES); } else { // Setup object for periodic updates updateObject(obj, EV_NONE); } } /** * Update object's queue connections and timer, depending on object's settings * \param[in] obj Object to updates */ static void updateObject(UAVObjHandle obj, int32_t eventType) { UAVObjMetadata metadata; UAVObjUpdateMode updateMode, loggingMode; int32_t eventMask; if (UAVObjIsMetaobject(obj)) { // This function updates the periodic updates for the object. // Meta Objects cannot have periodic updates. PIOS_Assert(false); return; } // Get metadata UAVObjGetMetadata(obj, &metadata); updateMode = UAVObjGetTelemetryUpdateMode(&metadata); loggingMode = UAVObjGetLoggingUpdateMode(&metadata); // Setup object depending on update mode eventMask = 0; switch (updateMode) { case UPDATEMODE_PERIODIC: // Set update period setUpdatePeriod(obj, metadata.telemetryUpdatePeriod); // Connect queue eventMask |= EV_UPDATED_PERIODIC | EV_UPDATED_MANUAL | EV_UPDATE_REQ; break; case UPDATEMODE_ONCHANGE: // Set update period setUpdatePeriod(obj, 0); // Connect queue eventMask |= EV_UPDATED | EV_UPDATED_MANUAL | EV_UPDATE_REQ; break; case UPDATEMODE_THROTTLED: if ((eventType == EV_UPDATED_PERIODIC) || (eventType == EV_NONE)) { // If we received a periodic update, we can change back to update on change eventMask |= EV_UPDATED | EV_UPDATED_MANUAL | EV_UPDATE_REQ; // Set update period on initialization and metadata change if (eventType == EV_NONE) { setUpdatePeriod(obj, metadata.telemetryUpdatePeriod); } } else { // Otherwise, we just received an object update, so switch to periodic for the timeout period to prevent more updates eventMask |= EV_UPDATED_PERIODIC | EV_UPDATED_MANUAL | EV_UPDATE_REQ; } break; case UPDATEMODE_MANUAL: // Set update period setUpdatePeriod(obj, 0); // Connect queue eventMask |= EV_UPDATED_MANUAL | EV_UPDATE_REQ; break; } switch (loggingMode) { case UPDATEMODE_PERIODIC: // Set update period setLoggingPeriod(obj, metadata.loggingUpdatePeriod); // Connect queue eventMask |= EV_LOGGING_PERIODIC | EV_LOGGING_MANUAL; break; case UPDATEMODE_ONCHANGE: // Set update period setLoggingPeriod(obj, 0); // Connect queue eventMask |= EV_UPDATED | EV_LOGGING_MANUAL; break; case UPDATEMODE_THROTTLED: if ((eventType == EV_LOGGING_PERIODIC) || (eventType == EV_NONE)) { // If we received a periodic update, we can change back to update on change eventMask |= EV_UPDATED | EV_LOGGING_MANUAL; // Set update period on initialization and metadata change if (eventType == EV_NONE) { setLoggingPeriod(obj, metadata.loggingUpdatePeriod); } } else { // Otherwise, we just received an object update, so switch to periodic for the timeout period to prevent more updates eventMask |= EV_LOGGING_PERIODIC | EV_LOGGING_MANUAL; } break; case UPDATEMODE_MANUAL: // Set update period setLoggingPeriod(obj, 0); // Connect queue eventMask |= EV_LOGGING_MANUAL; break; } // note that all setting objects have implicitly IsPriority=true if (UAVObjIsPriority(obj)) { UAVObjConnectQueue(obj, priorityQueue, eventMask); } else { UAVObjConnectQueue(obj, queue, eventMask); } } /** * Processes queue events */ static void processObjEvent(UAVObjEvent *ev) { UAVObjMetadata metadata; UAVObjUpdateMode updateMode; int32_t retries; int32_t success; if (ev->obj == 0) { updateTelemetryStats(); } else if (ev->obj == GCSTelemetryStatsHandle()) { gcsTelemetryStatsUpdated(); } else { // Get object metadata UAVObjGetMetadata(ev->obj, &metadata); updateMode = UAVObjGetTelemetryUpdateMode(&metadata); // Act on event retries = 0; success = -1; if ((ev->event == EV_UPDATED && (updateMode == UPDATEMODE_ONCHANGE || updateMode == UPDATEMODE_THROTTLED)) || ev->event == EV_UPDATED_MANUAL || (ev->event == EV_UPDATED_PERIODIC && updateMode != UPDATEMODE_THROTTLED)) { // Send update to GCS (with retries) while (retries < MAX_RETRIES && success == -1) { // call blocks until ack is received or timeout success = UAVTalkSendObject(uavTalkCon, ev->obj, ev->instId, UAVObjGetTelemetryAcked(&metadata), REQ_TIMEOUT_MS); if (success == -1) { ++retries; } } // Update stats txRetries += retries; if (success == -1) { ++txErrors; } } else if (ev->event == EV_UPDATE_REQ) { // Request object update from GCS (with retries) while (retries < MAX_RETRIES && success == -1) { // call blocks until update is received or timeout success = UAVTalkSendObjectRequest(uavTalkCon, ev->obj, ev->instId, REQ_TIMEOUT_MS); if (success == -1) { ++retries; } } // Update stats txRetries += retries; if (success == -1) { ++txErrors; } } // If this is a metaobject then make necessary telemetry updates if (UAVObjIsMetaobject(ev->obj)) { // linked object will be the actual object the metadata are for updateObject(UAVObjGetLinkedObj(ev->obj), EV_NONE); } else { if (updateMode == UPDATEMODE_THROTTLED) { // If this is UPDATEMODE_THROTTLED, the event mask changes on every event. updateObject(ev->obj, ev->event); } } } // Log UAVObject if necessary if (ev->obj) { updateMode = UAVObjGetLoggingUpdateMode(&metadata); if ((ev->event == EV_UPDATED && (updateMode == UPDATEMODE_ONCHANGE || updateMode == UPDATEMODE_THROTTLED)) || ev->event == EV_LOGGING_MANUAL || (ev->event == EV_LOGGING_PERIODIC && updateMode != UPDATEMODE_THROTTLED)) { if (ev->instId == UAVOBJ_ALL_INSTANCES) { success = UAVObjGetNumInstances(ev->obj); for (retries = 0; retries < success; retries++) { UAVObjInstanceWriteToLog(ev->obj, retries); } } else { UAVObjInstanceWriteToLog(ev->obj, ev->instId); } } if (updateMode == UPDATEMODE_THROTTLED) { // If this is UPDATEMODE_THROTTLED, the event mask changes on every event. updateObject(ev->obj, ev->event); } } } /** * Telemetry transmit task, regular priority */ static void telemetryTxTask(__attribute__((unused)) void *parameters) { UAVObjEvent ev; // Loop forever while (1) { /** * Tries to empty the high priority queue before handling any standard priority item */ #if defined(PIOS_TELEM_PRIORITY_QUEUE) // empty priority queue, non-blocking while (xQueueReceive(priorityQueue, &ev, 0) == pdTRUE) { // Process event processObjEvent(&ev); } // check regular queue and process update - non-blocking if (xQueueReceive(queue, &ev, 0) == pdTRUE) { // Process event processObjEvent(&ev); // if both queues are empty, wait on priority queue for updates (1 tick) then repeat cycle } else if (xQueueReceive(priorityQueue, &ev, 1) == pdTRUE) { // Process event processObjEvent(&ev); } #else // wait on queue for updates (1 tick) then repeat cycle if (xQueueReceive(queue, &ev, 1) == pdTRUE) { // Process event processObjEvent(&ev); } #endif /* if defined(PIOS_TELEM_PRIORITY_QUEUE) */ } } /** * Telemetry receive task. Processes queue events and periodic updates. */ static void telemetryRxTask(__attribute__((unused)) void *parameters) { // Task loop while (1) { uint32_t inputPort = getComPort(true); if (inputPort) { // Block until data are available uint8_t serial_data[1]; uint16_t bytes_to_process; bytes_to_process = PIOS_COM_ReceiveBuffer(inputPort, serial_data, sizeof(serial_data), 500); if (bytes_to_process > 0) { for (uint8_t i = 0; i < bytes_to_process; i++) { UAVTalkProcessInputStream(uavTalkCon, serial_data[i]); } } } else { vTaskDelay(5); } } } #ifdef PIOS_INCLUDE_RFM22B /** * Radio telemetry receive task. Processes queue events and periodic updates. */ static void radioRxTask(__attribute__((unused)) void *parameters) { // Task loop while (1) { if (radioPort) { // Block until data are available uint8_t serial_data[1]; uint16_t bytes_to_process; bytes_to_process = PIOS_COM_ReceiveBuffer(radioPort, serial_data, sizeof(serial_data), 500); if (bytes_to_process > 0) { for (uint8_t i = 0; i < bytes_to_process; i++) { UAVTalkProcessInputStream(radioUavTalkCon, serial_data[i]); } } } else { vTaskDelay(5); } } } /** * Transmit data buffer to the radioport. * \param[in] data Data buffer to send * \param[in] length Length of buffer * \return -1 on failure * \return number of bytes transmitted on success */ static int32_t transmitRadioData(uint8_t *data, int32_t length) { if (radioPort) { return PIOS_COM_SendBuffer(radioPort, data, length); } return -1; } #endif /* PIOS_INCLUDE_RFM22B */ /** * Transmit data buffer to the modem or USB port. * \param[in] data Data buffer to send * \param[in] length Length of buffer * \return -1 on failure * \return number of bytes transmitted on success */ static int32_t transmitData(uint8_t *data, int32_t length) { uint32_t outputPort = getComPort(false); if (outputPort) { return PIOS_COM_SendBuffer(outputPort, data, length); } return -1; } /** * Set update period of object (it must be already setup for periodic updates) * \param[in] obj The object to update * \param[in] updatePeriodMs The update period in ms, if zero then periodic updates are disabled * \return 0 Success * \return -1 Failure */ static int32_t setUpdatePeriod(UAVObjHandle obj, int32_t updatePeriodMs) { UAVObjEvent ev; int32_t ret; // Add or update object for periodic updates ev.obj = obj; ev.instId = UAVOBJ_ALL_INSTANCES; ev.event = EV_UPDATED_PERIODIC; ev.lowPriority = true; xQueueHandle targetQueue = UAVObjIsPriority(obj) ? priorityQueue : queue; ret = EventPeriodicQueueUpdate(&ev, targetQueue, updatePeriodMs); if (ret == -1) { ret = EventPeriodicQueueCreate(&ev, targetQueue, updatePeriodMs); } return ret; } /** * Set logging update period of object (it must be already setup for periodic updates) * \param[in] obj The object to update * \param[in] updatePeriodMs The update period in ms, if zero then periodic updates are disabled * \return 0 Success * \return -1 Failure */ static int32_t setLoggingPeriod(UAVObjHandle obj, int32_t updatePeriodMs) { UAVObjEvent ev; int32_t ret; // Add or update object for periodic updates ev.obj = obj; ev.instId = UAVOBJ_ALL_INSTANCES; ev.event = EV_LOGGING_PERIODIC; ev.lowPriority = true; xQueueHandle targetQueue = UAVObjIsPriority(obj) ? priorityQueue : queue; ret = EventPeriodicQueueUpdate(&ev, targetQueue, updatePeriodMs); if (ret == -1) { ret = EventPeriodicQueueCreate(&ev, targetQueue, updatePeriodMs); } return ret; } /** * Called each time the GCS telemetry stats object is updated. * Trigger a flight telemetry stats update if a connection is not * yet established. */ static void gcsTelemetryStatsUpdated() { FlightTelemetryStatsData flightStats; GCSTelemetryStatsData gcsStats; FlightTelemetryStatsGet(&flightStats); GCSTelemetryStatsGet(&gcsStats); if (flightStats.Status != FLIGHTTELEMETRYSTATS_STATUS_CONNECTED || gcsStats.Status != GCSTELEMETRYSTATS_STATUS_CONNECTED) { updateTelemetryStats(); } } /** * Update telemetry statistics and handle connection handshake */ static void updateTelemetryStats() { UAVTalkStats utalkStats; FlightTelemetryStatsData flightStats; GCSTelemetryStatsData gcsStats; uint8_t forceUpdate; uint8_t connectionTimeout; uint32_t timeNow; // Get stats UAVTalkGetStats(uavTalkCon, &utalkStats, true); #ifdef PIOS_INCLUDE_RFM22B UAVTalkAddStats(radioUavTalkCon, &utalkStats, true); #endif // Get object data FlightTelemetryStatsGet(&flightStats); GCSTelemetryStatsGet(&gcsStats); // Update stats object if (flightStats.Status == FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) { flightStats.TxDataRate = (float)utalkStats.txBytes / ((float)STATS_UPDATE_PERIOD_MS / 1000.0f); flightStats.TxBytes += utalkStats.txBytes; flightStats.TxFailures += txErrors; flightStats.TxRetries += txRetries; flightStats.RxDataRate = (float)utalkStats.rxBytes / ((float)STATS_UPDATE_PERIOD_MS / 1000.0f); flightStats.RxBytes += utalkStats.rxBytes; flightStats.RxFailures += utalkStats.rxErrors; flightStats.RxSyncErrors += utalkStats.rxSyncErrors; flightStats.RxCrcErrors += utalkStats.rxCrcErrors; } else { flightStats.TxDataRate = 0; flightStats.TxBytes = 0; flightStats.TxFailures = 0; flightStats.TxRetries = 0; flightStats.RxDataRate = 0; flightStats.RxBytes = 0; flightStats.RxFailures = 0; flightStats.RxSyncErrors = 0; flightStats.RxCrcErrors = 0; } txErrors = 0; txRetries = 0; // Check for connection timeout timeNow = xTaskGetTickCount() * portTICK_RATE_MS; if (utalkStats.rxObjects > 0) { timeOfLastObjectUpdate = timeNow; } if ((timeNow - timeOfLastObjectUpdate) > CONNECTION_TIMEOUT_MS) { connectionTimeout = 1; } else { connectionTimeout = 0; } // Update connection state forceUpdate = 1; if (flightStats.Status == FLIGHTTELEMETRYSTATS_STATUS_DISCONNECTED) { // Wait for connection request if (gcsStats.Status == GCSTELEMETRYSTATS_STATUS_HANDSHAKEREQ) { flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_HANDSHAKEACK; } } else if (flightStats.Status == FLIGHTTELEMETRYSTATS_STATUS_HANDSHAKEACK) { // Wait for connection if (gcsStats.Status == GCSTELEMETRYSTATS_STATUS_CONNECTED) { flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_CONNECTED; } else if (gcsStats.Status == GCSTELEMETRYSTATS_STATUS_DISCONNECTED) { flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_DISCONNECTED; } } else if (flightStats.Status == FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) { if (gcsStats.Status != GCSTELEMETRYSTATS_STATUS_CONNECTED || connectionTimeout) { flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_DISCONNECTED; } else { forceUpdate = 0; } } else { flightStats.Status = FLIGHTTELEMETRYSTATS_STATUS_DISCONNECTED; } // TODO: check whether is there any error condition worth raising an alarm // Disconnection is actually a normal (non)working status so it is not raising alarms anymore. if (flightStats.Status == FLIGHTTELEMETRYSTATS_STATUS_CONNECTED) { AlarmsClear(SYSTEMALARMS_ALARM_TELEMETRY); } // Update object FlightTelemetryStatsSet(&flightStats); // Force telemetry update if not connected if (forceUpdate) { FlightTelemetryStatsUpdated(); } } /** * Update the telemetry settings, called on startup. * FIXME: This should be in the TelemetrySettings object. But objects * have too much overhead yet. Also the telemetry has no any specific * settings, etc. Thus the HwSettings object which contains the * telemetry port speed is used for now. */ static void updateSettings() { if (telemetryPort) { // Retrieve settings uint8_t speed; HwSettingsTelemetrySpeedGet(&speed); // Set port speed switch (speed) { case HWSETTINGS_TELEMETRYSPEED_2400: PIOS_COM_ChangeBaud(telemetryPort, 2400); break; case HWSETTINGS_TELEMETRYSPEED_4800: PIOS_COM_ChangeBaud(telemetryPort, 4800); break; case HWSETTINGS_TELEMETRYSPEED_9600: PIOS_COM_ChangeBaud(telemetryPort, 9600); break; case HWSETTINGS_TELEMETRYSPEED_19200: PIOS_COM_ChangeBaud(telemetryPort, 19200); break; case HWSETTINGS_TELEMETRYSPEED_38400: PIOS_COM_ChangeBaud(telemetryPort, 38400); break; case HWSETTINGS_TELEMETRYSPEED_57600: PIOS_COM_ChangeBaud(telemetryPort, 57600); break; case HWSETTINGS_TELEMETRYSPEED_115200: PIOS_COM_ChangeBaud(telemetryPort, 115200); break; } } } /** * Determine input/output com port as highest priority available * @param[in] input Returns the approproate input com port if true, else the appropriate output com port */ #ifdef PIOS_INCLUDE_RFM22B static uint32_t getComPort(bool input) #else static uint32_t getComPort(__attribute__((unused)) bool input) #endif { #if defined(PIOS_INCLUDE_USB) // if USB is connected, USB takes precedence for telemetry if (PIOS_COM_Available(PIOS_COM_TELEM_USB)) { return PIOS_COM_TELEM_USB; } else #endif /* PIOS_INCLUDE_USB */ #ifdef PIOS_INCLUDE_RFM22B // PIOS_COM_RF input is handled by a separate RX thread and therefore must be ignored if (input && telemetryPort == PIOS_COM_RF) { return 0; } else #endif /* PIOS_INCLUDE_RFM22B */ if (PIOS_COM_Available(telemetryPort)) { return telemetryPort; } else { return 0; } } /** * @} * @} */