/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_RFM22B Radio Functions * @brief PIOS interface for for the RFM22B radio * @{ * * @file pios_rfm22b.c * @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2016. * The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief Implements a driver the the RFM22B driver * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ // ***************************************************************** // RFM22B hardware layer // // This module uses the RFM22B's internal packet handling hardware to // encapsulate our own packet data. // // The RFM22B internal hardware packet handler configuration is as follows: // // 6-byte (32-bit) preamble .. alternating 0's & 1's // 4-byte (32-bit) sync // 1-byte packet length (number of data bytes to follow) // 0 to 251 user data bytes // 4 byte ECC // // OR in PPM only mode: // // 6-byte (32-bit) preamble .. alternating 0's & 1's // 4-byte (32-bit) sync // 1-byte packet length (number of data bytes to follow) // 1 byte PPM values LSB (bit 0) // 8 bytes PPM values MSBs (bit 8:1) // 1 byte CRC // // ***************************************************************** #include "pios.h" #ifdef PIOS_INCLUDE_RFM22B #include #include #include #include #include #include /* Local Defines */ #define STACK_SIZE_BYTES 200 #define TASK_PRIORITY (tskIDLE_PRIORITY + 4) // flight control relevant device driver (ppm link) #define ISR_TIMEOUT 1 // ms #define EVENT_QUEUE_SIZE 5 #define RFM22B_DEFAULT_RX_DATARATE RFM22_datarate_9600 #define RFM22B_DEFAULT_TX_POWER RFM22_tx_pwr_txpow_0 #define RFM22B_NOMINAL_CARRIER_FREQUENCY_433 430000000 #define RFM22B_NOMINAL_CARRIER_FREQUENCY_868 860000000 #define RFM22B_NOMINAL_CARRIER_FREQUENCY_915 900000000 #define RFM22B_LINK_QUALITY_THRESHOLD 20 #define RFM22B_DEFAULT_MIN_CHANNEL 0 #define RFM22B_DEFAULT_MAX_CHANNEL 250 #define RFM22B_PPM_ONLY_DATARATE RFM22_datarate_9600 // PPM encoding limits #define RFM22B_PPM_MIN 1 #define RFM22B_PPM_MAX 511 #define RFM22B_PPM_INVALID 0 #define RFM22B_PPM_SCALE 2 #define RFM22B_PPM_MIN_US 990 #define RFM22B_PPM_MAX_US (RFM22B_PPM_MIN_US + (RFM22B_PPM_MAX - RFM22B_PPM_MIN) * RFM22B_PPM_SCALE) // The maximum amount of time without activity before initiating a reset. #define PIOS_RFM22B_SUPERVISOR_TIMEOUT 150 // ms // this is too adjust the RF module so that it is on frequency #define OSC_LOAD_CAP 0x7F // cap = 12.5pf .. default #define TX_PREAMBLE_NIBBLES 12 // 7 to 511 (number of nibbles) #define RX_PREAMBLE_NIBBLES 6 // 5 to 31 (number of nibbles) #define SYNC_BYTES 4 #define HEADER_BYTES 4 #define LENGTH_BYTES 1 // the size of the rf modules internal FIFO buffers #define FIFO_SIZE 64 #define TX_FIFO_HI_WATERMARK 62 // 0-63 #define TX_FIFO_LO_WATERMARK 32 // 0-63 #define RX_FIFO_HI_WATERMARK 32 // 0-63 // preamble byte (preceeds SYNC_BYTE's) #define PREAMBLE_BYTE 0x55 // RF sync bytes (32-bit in all) #define SYNC_BYTE_1 0x2D #define SYNC_BYTE_2 0xD4 #define SYNC_BYTE_3 0x4B #define SYNC_BYTE_4 0x59 #ifndef RX_LED_ON #define RX_LED_ON #define RX_LED_OFF #define TX_LED_ON #define TX_LED_OFF #define LINK_LED_ON #define LINK_LED_OFF #define USB_LED_ON #define USB_LED_OFF #endif #define CONNECTED_TIMEOUT (250 / portTICK_RATE_MS) /* ms */ #define MAX_CHANNELS 32 /* Local type definitions */ struct pios_rfm22b_transition { enum pios_radio_event (*entry_fn)(struct pios_rfm22b_dev *rfm22b_dev); enum pios_radio_state next_state[RADIO_EVENT_NUM_EVENTS]; }; // Must ensure these prefilled arrays match the define sizes static const uint8_t FULL_PREAMBLE[FIFO_SIZE] = { PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE }; // 64 bytes static const uint8_t HEADER[(TX_PREAMBLE_NIBBLES + 1) / 2 + 2] = { PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, PREAMBLE_BYTE, SYNC_BYTE_1, SYNC_BYTE_2 }; static const uint8_t OUT_FF[64] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; /* Local function forwared declarations */ static void pios_rfm22_task(void *parameters); static bool pios_rfm22_readStatus(struct pios_rfm22b_dev *rfm22b_dev); static void pios_rfm22_setDatarate(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_rxFailure(struct pios_rfm22b_dev *rfm22b_dev); static void pios_rfm22_inject_event(struct pios_rfm22b_dev *rfm22b_dev, enum pios_radio_event event, bool inISR); static enum pios_radio_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_radio_event radio_setRxMode(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_radio_event radio_rxData(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_radio_event radio_receivePacket(struct pios_rfm22b_dev *rfm22b_dev, uint8_t *p, uint16_t rx_len); static enum pios_radio_event radio_txStart(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_radio_event radio_txData(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_radio_event rfm22_txFailure(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_radio_event rfm22_process_state_transition(struct pios_rfm22b_dev *rfm22b_dev, enum pios_radio_event event); static void rfm22_process_event(struct pios_rfm22b_dev *rfm22b_dev, enum pios_radio_event event); static enum pios_radio_event rfm22_timeout(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_radio_event rfm22_error(struct pios_rfm22b_dev *rfm22b_dev); static enum pios_radio_event rfm22_fatal_error(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22b_add_rx_status(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_rx_packet_status status); static void rfm22_setNominalCarrierFrequency(struct pios_rfm22b_dev *rfm22b_dev, uint8_t init_chan, uint32_t frequency_hz); static bool rfm22_setFreqHopChannel(struct pios_rfm22b_dev *rfm22b_dev, uint8_t channel); static void rfm22_generateDeviceID(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_updateStats(struct pios_rfm22b_dev *rfm22b_dev); static bool rfm22_checkTimeOut(struct pios_rfm22b_dev *rfm22b_dev); static bool rfm22_isConnected(struct pios_rfm22b_dev *rfm22b_dev); static bool rfm22_isCoordinator(struct pios_rfm22b_dev *rfm22b_dev); static uint32_t rfm22_destinationID(struct pios_rfm22b_dev *rfm22b_dev); static bool rfm22_timeToSend(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_synchronizeClock(struct pios_rfm22b_dev *rfm22b_dev); static uint32_t rfm22_coordinatorTime(struct pios_rfm22b_dev *rfm22b_dev); static uint8_t rfm22_calcChannel(struct pios_rfm22b_dev *rfm22b_dev, uint8_t index); static uint8_t rfm22_calcChannelFromClock(struct pios_rfm22b_dev *rfm22b_dev); static bool rfm22_changeChannel(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_clearLEDs(); // Utility functions. static uint32_t pios_rfm22_time_ms(); static uint32_t pios_rfm22_time_difference_ms(uint32_t start_time, uint32_t end_time); static struct pios_rfm22b_dev *pios_rfm22_alloc(void); static void rfm22_hmac_sha1(const uint8_t *data, size_t len, uint8_t key[SHA1_DIGEST_LENGTH], uint8_t digest[SHA1_DIGEST_LENGTH]); static bool rfm22_gen_channels(uint32_t coordid, enum rfm22b_datarate datarate, uint8_t min, uint8_t max, uint8_t channels[MAX_CHANNELS], uint8_t *clen); // SPI read/write functions static void rfm22_assertCs(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_deassertCs(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_claimBus(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_releaseBus(struct pios_rfm22b_dev *rfm22b_dev); static void rfm22_write_claim(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr, uint8_t data); static void rfm22_write(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr, uint8_t data); static uint8_t rfm22_read(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr); /* The state transition table */ static const struct pios_rfm22b_transition rfm22b_transitions[RADIO_STATE_NUM_STATES] = { // Initialization thread [RADIO_STATE_UNINITIALIZED] = { .entry_fn = 0, .next_state = { [RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING, [RADIO_EVENT_ERROR] = RADIO_STATE_ERROR, }, }, [RADIO_STATE_INITIALIZING] = { .entry_fn = rfm22_init, .next_state = { [RADIO_EVENT_INITIALIZED] = RADIO_STATE_RX_MODE, [RADIO_EVENT_ERROR] = RADIO_STATE_ERROR, [RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING, [RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR, }, }, [RADIO_STATE_RX_MODE] = { .entry_fn = radio_setRxMode, .next_state = { [RADIO_EVENT_INT_RECEIVED] = RADIO_STATE_RX_DATA, [RADIO_EVENT_TX_START] = RADIO_STATE_TX_START, [RADIO_EVENT_RX_MODE] = RADIO_STATE_RX_MODE, [RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT, [RADIO_EVENT_ERROR] = RADIO_STATE_ERROR, [RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING, [RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR, }, }, [RADIO_STATE_RX_DATA] = { .entry_fn = radio_rxData, .next_state = { [RADIO_EVENT_INT_RECEIVED] = RADIO_STATE_RX_DATA, [RADIO_EVENT_TX_START] = RADIO_STATE_TX_START, [RADIO_EVENT_RX_COMPLETE] = RADIO_STATE_TX_START, [RADIO_EVENT_RX_MODE] = RADIO_STATE_RX_MODE, [RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT, [RADIO_EVENT_ERROR] = RADIO_STATE_ERROR, [RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING, [RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR, }, }, [RADIO_STATE_TX_START] = { .entry_fn = radio_txStart, .next_state = { [RADIO_EVENT_INT_RECEIVED] = RADIO_STATE_TX_DATA, [RADIO_EVENT_RX_MODE] = RADIO_STATE_RX_MODE, [RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT, [RADIO_EVENT_ERROR] = RADIO_STATE_ERROR, [RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING, [RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR, }, }, [RADIO_STATE_TX_DATA] = { .entry_fn = radio_txData, .next_state = { [RADIO_EVENT_INT_RECEIVED] = RADIO_STATE_TX_DATA, [RADIO_EVENT_RX_MODE] = RADIO_STATE_RX_MODE, [RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT, [RADIO_EVENT_ERROR] = RADIO_STATE_ERROR, [RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING, [RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR, }, }, [RADIO_STATE_TX_FAILURE] = { .entry_fn = rfm22_txFailure, .next_state = { [RADIO_EVENT_TX_START] = RADIO_STATE_TX_START, [RADIO_EVENT_TIMEOUT] = RADIO_STATE_TIMEOUT, [RADIO_EVENT_ERROR] = RADIO_STATE_ERROR, [RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING, [RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR, }, }, [RADIO_STATE_TIMEOUT] = { .entry_fn = rfm22_timeout, .next_state = { [RADIO_EVENT_TX_START] = RADIO_STATE_TX_START, [RADIO_EVENT_RX_MODE] = RADIO_STATE_RX_MODE, [RADIO_EVENT_ERROR] = RADIO_STATE_ERROR, [RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING, [RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR, }, }, [RADIO_STATE_ERROR] = { .entry_fn = rfm22_error, .next_state = { [RADIO_EVENT_INITIALIZE] = RADIO_STATE_INITIALIZING, [RADIO_EVENT_FATAL_ERROR] = RADIO_STATE_FATAL_ERROR, }, }, [RADIO_STATE_FATAL_ERROR] = { .entry_fn = rfm22_fatal_error, .next_state = {}, }, }; // xtal 10 ppm, 434MHz static const uint32_t data_rate[] = { 9600, // 96 kbps, 433 HMz, 30 khz freq dev 19200, // 19.2 kbps, 433 MHz, 45 khz freq dev 32000, // 32 kbps, 433 MHz, 45 khz freq dev 57600, // 57.6 kbps, 433 MHz, 45 khz freq dev 64000, // 64 kbps, 433 MHz, 45 khz freq dev 100000, // 100 kbps, 433 MHz, 60 khz freq dev 128000, // 128 kbps, 433 MHz, 90 khz freq dev 192000, // 192 kbps, 433 MHz, 128 khz freq dev 256000, // 256 kbps, 433 MHz, 150 khz freq dev }; static const uint8_t channel_spacing[] = { 1, /* 9.6kbps */ 2, /* 19.2kbps */ 2, /* 32kbps */ 2, /* 57.6kbps */ 2, /* 64kbps */ 3, /* 100kbps */ 4, /* 128kbps */ 4, /* 192kbps */ 5, /* 256kbps */ }; static const uint8_t channel_limits[] = { 1, /* 9.6kbps */ 1, /* 19.2kbps */ 1, /* 32kbps */ 1, /* 57.6kbps */ 1, /* 64kbps */ 1, /* 100kbps */ 2, /* 128kbps */ 2, /* 192kbps */ 2, /* 256kbps */ }; static const uint8_t reg_1C[] = { 0x01, 0x05, 0x06, 0x95, 0x95, 0x81, 0x88, 0x8B, 0x8D }; // rfm22_if_filter_bandwidth static const uint8_t reg_1D[] = { 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40 }; // rfm22_afc_loop_gearshift_override static const uint8_t reg_1E[] = { 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x02 }; // rfm22_afc_timing_control static const uint8_t reg_1F[] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 }; // rfm22_clk_recovery_gearshift_override static const uint8_t reg_20[] = { 0xA1, 0xD0, 0x7D, 0x68, 0x5E, 0x78, 0x5E, 0x3F, 0x2F }; // rfm22_clk_recovery_oversampling_ratio static const uint8_t reg_21[] = { 0x20, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x02, 0x02 }; // rfm22_clk_recovery_offset2 static const uint8_t reg_22[] = { 0x4E, 0x9D, 0x06, 0x3A, 0x5D, 0x11, 0x5D, 0x0C, 0xBB }; // rfm22_clk_recovery_offset1 static const uint8_t reg_23[] = { 0xA5, 0x49, 0x25, 0x93, 0x86, 0x11, 0x86, 0x4A, 0x0D }; // rfm22_clk_recovery_offset0 static const uint8_t reg_24[] = { 0x00, 0x00, 0x01, 0x03, 0x03, 0x03, 0x03, 0x06, 0x07 }; // rfm22_clk_recovery_timing_loop_gain1 static const uint8_t reg_25[] = { 0x34, 0x88, 0x77, 0x29, 0xE2, 0x90, 0xE2, 0x1A, 0xFF }; // rfm22_clk_recovery_timing_loop_gain0 static const uint8_t reg_2A[] = { 0x1E, 0x24, 0x28, 0x3C, 0x3C, 0x50, 0x50, 0x50, 0x50 }; // rfm22_afc_limiter .. AFC_pull_in_range = ±AFCLimiter[7:0] x (hbsel+1) x 625 Hz static const uint8_t reg_58[] = { 0x80, 0x80, 0x80, 0x80, 0x80, 0xC0, 0xC0, 0xC0, 0xED }; // rfm22_cpcuu static const uint8_t reg_69[] = { 0x60, 0x60, 0x60, 0x60, 0x60, 0x60, 0x60, 0x60, 0x60 }; // rfm22_agc_override1 static const uint8_t reg_6E[] = { 0x4E, 0x9D, 0x08, 0x0E, 0x10, 0x19, 0x20, 0x31, 0x41 }; // rfm22_tx_data_rate1 static const uint8_t reg_6F[] = { 0xA5, 0x49, 0x31, 0xBF, 0x62, 0x9A, 0xC5, 0x27, 0x89 }; // rfm22_tx_data_rate0 static const uint8_t reg_70[] = { 0x2C, 0x2C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C }; // rfm22_modulation_mode_control1 static const uint8_t reg_71[] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23 }; // rfm22_modulation_mode_control2 static const uint8_t reg_72[] = { 0x30, 0x48, 0x48, 0x48, 0x48, 0x60, 0x90, 0xCD, 0xF0 }; // rfm22_frequency_deviation static const uint8_t packet_time[] = { 80, 40, 25, 15, 13, 10, 8, 6, 5 }; static const uint8_t packet_time_ppm[] = { 26, 25, 25, 15, 13, 10, 8, 6, 5 }; static const uint8_t num_channels[] = { 32, 32, 32, 32, 32, 32, 32, 32, 32 }; static struct pios_rfm22b_dev *g_rfm22b_dev = NULL; /***************************************************************************** * External Interface Functions *****************************************************************************/ /** * Initialise an RFM22B device * * @param[out] rfm22b_id A pointer to store the device ID in. * @param[in] spi_id The SPI bus index. * @param[in] slave_num The SPI bus slave number. * @param[in] cfg The device configuration. */ int32_t PIOS_RFM22B_Init(uint32_t *rfm22b_id, uint32_t spi_id, uint32_t slave_num, const struct pios_rfm22b_cfg *cfg, OPLinkSettingsRFBandOptions band) { PIOS_DEBUG_Assert(rfm22b_id); PIOS_DEBUG_Assert(cfg); // Allocate the device structure. struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)pios_rfm22_alloc(); if (!rfm22b_dev) { return -1; } *rfm22b_id = (uint32_t)rfm22b_dev; g_rfm22b_dev = rfm22b_dev; // Store the SPI handle rfm22b_dev->slave_num = slave_num; rfm22b_dev->spi_id = spi_id; // Initialize our configuration parameters rfm22b_dev->datarate = RFM22B_DEFAULT_RX_DATARATE; rfm22b_dev->tx_power = RFM22B_DEFAULT_TX_POWER; // Set the frequency band switch (band) { case OPLINKSETTINGS_RFBAND_915MHZ: rfm22b_dev->base_freq = RFM22B_NOMINAL_CARRIER_FREQUENCY_915; break; case OPLINKSETTINGS_RFBAND_868MHZ: rfm22b_dev->base_freq = RFM22B_NOMINAL_CARRIER_FREQUENCY_868; break; case OPLINKSETTINGS_RFBAND_433MHZ: default: rfm22b_dev->base_freq = RFM22B_NOMINAL_CARRIER_FREQUENCY_433; break; } // Initialize the channels. PIOS_RFM22B_SetChannelConfig(*rfm22b_id, RFM22B_DEFAULT_RX_DATARATE, RFM22B_DEFAULT_MIN_CHANNEL, RFM22B_DEFAULT_MAX_CHANNEL, false, true, false); // Create the event queue rfm22b_dev->eventQueue = xQueueCreate(EVENT_QUEUE_SIZE, sizeof(enum pios_radio_event)); // Bind the configuration to the device instance rfm22b_dev->cfg = *cfg; // Create a semaphore to know if an ISR needs responding to vSemaphoreCreateBinary(rfm22b_dev->isrPending); // Create default (hopefully) unique 32 bit id from the processor serial number. rfm22_generateDeviceID(rfm22b_dev); // Initialize the external interrupt. PIOS_EXTI_Init(cfg->exti_cfg); // Register the watchdog timer for the radio driver task #if defined(PIOS_INCLUDE_WDG) && defined(PIOS_WDG_RFM22B) PIOS_WDG_RegisterFlag(PIOS_WDG_RFM22B); #endif /* PIOS_WDG_RFM22B */ // Initialize the ECC library. initialize_ecc(); // Set the state to initializing. rfm22b_dev->state = RADIO_STATE_UNINITIALIZED; // Initialize the radio device. pios_rfm22_inject_event(rfm22b_dev, RADIO_EVENT_INITIALIZE, false); // Start the driver task. This task controls the radio state machine and removed all of the IO from the IRQ handler. xTaskCreate(pios_rfm22_task, "PIOS_RFM22B_Task", STACK_SIZE_BYTES, (void *)rfm22b_dev, TASK_PRIORITY, &(rfm22b_dev->taskHandle)); return 0; } /** * Re-initialize the modem after a configuration change. * * @param[in] rbm22b_id The RFM22B device ID. */ void PIOS_RFM22B_Reinit(uint32_t rfm22b_id) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (PIOS_RFM22B_Validate(rfm22b_dev)) { pios_rfm22_inject_event(rfm22b_dev, RADIO_EVENT_INITIALIZE, false); } } /** * The RFM22B external interrupt routine. */ bool PIOS_RFM22_EXT_Int(void) { if (!PIOS_RFM22B_Validate(g_rfm22b_dev)) { return false; } // Inject an interrupt event into the state machine. pios_rfm22_inject_event(g_rfm22b_dev, RADIO_EVENT_INT_RECEIVED, true); return false; } /** * Set the device ID for the RFM22B device. * * @param[in] rfm22b_id The RFM22B device index. * */ void PIOS_RFM22B_SetDeviceID(uint32_t rfm22b_id, uint32_t custom_device_id) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (custom_device_id > 0) { rfm22b_dev->deviceID = custom_device_id; } else { rfm22_generateDeviceID(rfm22b_dev); } DEBUG_PRINTF(2, "RF device ID: %x\n\r", rfm22b_dev->deviceID); } /** * Returns the unique device ID for the RFM22B device. * * @param[in] rfm22b_id The RFM22B device index. * @return The unique device ID */ uint32_t PIOS_RFM22B_DeviceID(uint32_t rfm22b_id) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (PIOS_RFM22B_Validate(rfm22b_dev)) { return rfm22b_dev->deviceID; } return 0; } /** * Are we connected to the remote modem? * * @param[in] rfm22b_dev The device structure */ static bool rfm22_isConnected(struct pios_rfm22b_dev *rfm22b_dev) { return (rfm22b_dev->stats.link_state == OPLINKSTATUS_LINKSTATE_CONNECTED) || (rfm22b_dev->stats.link_state == OPLINKSTATUS_LINKSTATE_CONNECTING); } /** * Returns true if the modem is not actively sending or receiving a packet. * * @param[in] rfm22b_id The RFM22B device index. * @return True if the modem is not actively sending or receiving a packet. */ bool PIOS_RFM22B_InRxWait(uint32_t rfm22b_id) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (PIOS_RFM22B_Validate(rfm22b_dev)) { return (rfm22b_dev->rfm22b_state == RFM22B_STATE_RX_WAIT) || (rfm22b_dev->rfm22b_state == RFM22B_STATE_TRANSITION); } return false; } /** * Sets the radio device transmit power. * * @param[in] rfm22b_id The RFM22B device index. * @param[in] tx_pwr The transmit power. */ void PIOS_RFM22B_SetTxPower(uint32_t rfm22b_id, enum rfm22b_tx_power tx_pwr) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_Validate(rfm22b_dev)) { return; } rfm22b_dev->tx_power = tx_pwr; } /** * Sets the range and number of channels to use for the radio. * The channels are 0 to 250 divided across the 430-440 MHz range. * The number of channels configured will be spread across the selected channel range. * The channel spacing is 10MHz / 250 = 40kHz * * @param[in] rfm22b_id The RFM22B device index. * @param[in] datarate The desired datarate. * @param[in] min_chan The minimum channel. * @param[in] max_chan The maximum channel. * @param[in] coordinator Is this modem an coordinator. * @param[in] data_mode Should this modem send/receive data packets? * @param[in] ppm_mode Should this modem send/receive ppm packets? */ void PIOS_RFM22B_SetChannelConfig(uint32_t rfm22b_id, enum rfm22b_datarate datarate, uint8_t min_chan, uint8_t max_chan, bool coordinator, bool data_mode, bool ppm_mode) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; bool ppm_only = ppm_mode && !data_mode; if (!PIOS_RFM22B_Validate(rfm22b_dev)) { return; } rfm22b_dev->coordinator = coordinator; rfm22b_dev->ppm_send_mode = ppm_mode && coordinator; rfm22b_dev->ppm_recv_mode = ppm_mode && !coordinator; if (ppm_mode && (datarate <= RFM22B_PPM_ONLY_DATARATE)) { ppm_only = true; } rfm22b_dev->ppm_only_mode = ppm_only; if (ppm_only) { rfm22b_dev->one_way_link = true; datarate = RFM22B_PPM_ONLY_DATARATE; rfm22b_dev->datarate = RFM22B_PPM_ONLY_DATARATE; } else { rfm22b_dev->one_way_link = false; rfm22b_dev->datarate = datarate; } rfm22b_dev->packet_time = (ppm_mode ? packet_time_ppm[datarate] : packet_time[datarate]); uint8_t num_found = 0; rfm22_gen_channels(rfm22_destinationID(rfm22b_dev), datarate, min_chan, max_chan, rfm22b_dev->channels, &num_found); rfm22b_dev->num_channels = num_found; // Calculate the maximum packet length from the datarate. float bytes_per_period = (float)data_rate[datarate] * (float)(rfm22b_dev->packet_time - 2) / 9000; rfm22b_dev->max_packet_len = bytes_per_period - TX_PREAMBLE_NIBBLES / 2 - SYNC_BYTES - HEADER_BYTES - LENGTH_BYTES; if (rfm22b_dev->max_packet_len > RFM22B_MAX_PACKET_LEN) { rfm22b_dev->max_packet_len = RFM22B_MAX_PACKET_LEN; } } /** * Set a XtalCap * * @param[in] rfm22b_id The RFM22B device index. * @param[in] XtalCap Value. */ void PIOS_RFM22B_SetXtalCap(uint32_t rfm22b_id, uint8_t xtal_cap) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (PIOS_RFM22B_Validate(rfm22b_dev)) { rfm22b_dev->cfg.RFXtalCap = xtal_cap; } } /** * Set a modem to be a coordinator or not. * * @param[in] rfm22b_id The RFM22B device index. * @param[in] coordinator If true, this modem will be configured as a coordinator. */ extern void PIOS_RFM22B_SetCoordinator(uint32_t rfm22b_id, bool coordinator) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (PIOS_RFM22B_Validate(rfm22b_dev)) { rfm22b_dev->coordinator = coordinator; } } /** * Sets the device coordinator ID. * * @param[in] rfm22b_id The RFM22B device index. * @param[in] coord_id The coordinator ID. */ void PIOS_RFM22B_SetCoordinatorID(uint32_t rfm22b_id, uint32_t coord_id) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (PIOS_RFM22B_Validate(rfm22b_dev)) { rfm22b_dev->coordinatorID = coord_id; } } /** * Returns the device statistics RFM22B device. * * @param[in] rfm22b_id The RFM22B device index. * @param[out] stats The stats are returned in this structure */ void PIOS_RFM22B_GetStats(uint32_t rfm22b_id, struct rfm22b_stats *stats) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_Validate(rfm22b_dev)) { return; } // Update the current stats rfm22_updateStats(rfm22b_dev); // Return the stats. *stats = rfm22b_dev->stats; } /** * Check the radio device for a valid connection * * @param[in] rfm22b_id The rfm22b device. * @return true if there is a valid connection to paired radio, false otherwise. */ bool PIOS_RFM22B_LinkStatus(uint32_t rfm22b_id) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_Validate(rfm22b_dev)) { return false; } return rfm22b_dev->stats.link_quality > RFM22B_LINK_QUALITY_THRESHOLD; } /** * Put the RFM22B device into receive mode. * * @param[in] rfm22b_id The rfm22b device. * @param[in] p The packet to receive into. * @return true if Rx mode was entered sucessfully. */ bool PIOS_RFM22B_ReceivePacket(uint32_t rfm22b_id, uint8_t *p) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_Validate(rfm22b_dev)) { return false; } rfm22b_dev->rx_packet_handle = p; // Claim the SPI bus. rfm22_claimBus(rfm22b_dev); // disable interrupts rfm22_write(rfm22b_dev, RFM22_interrupt_enable1, 0x00); rfm22_write(rfm22b_dev, RFM22_interrupt_enable2, 0x00); // Switch to TUNE mode rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); #ifdef PIOS_RFM22B_DEBUG_ON_TELEM D2_LED_OFF; #endif // PIOS_RFM22B_DEBUG_ON_TELEM RX_LED_OFF; TX_LED_OFF; // empty the rx buffer rfm22b_dev->rx_buffer_wr = 0; // Clear the TX buffer. rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0; // clear FIFOs rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx); rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl2, 0x00); // enable RX interrupts rfm22_write(rfm22b_dev, RFM22_interrupt_enable1, RFM22_ie1_encrcerror | RFM22_ie1_enpkvalid | RFM22_ie1_enrxffafull | RFM22_ie1_enfferr); rfm22_write(rfm22b_dev, RFM22_interrupt_enable2, RFM22_ie2_enpreaval | RFM22_ie2_enswdet); // enable the receiver rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_rxon); // Release the SPI bus. rfm22_releaseBus(rfm22b_dev); // Indicate that we're in RX wait mode. rfm22b_dev->rfm22b_state = RFM22B_STATE_RX_WAIT; return true; } /** * Transmit a packet via the RFM22B device. * * @param[in] rfm22b_id The rfm22b device. * @param[in] p The packet to transmit. * @return true if there if the packet was queued for transmission. */ bool PIOS_RFM22B_TransmitPacket(uint32_t rfm22b_id, uint8_t *p, uint8_t len) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_Validate(rfm22b_dev)) { return false; } rfm22b_dev->tx_packet_handle = p; rfm22b_dev->packet_start_time = pios_rfm22_time_ms(); if (rfm22b_dev->packet_start_time == 0) { rfm22b_dev->packet_start_time = 1; } // Claim the SPI bus. rfm22_claimBus(rfm22b_dev); // Disable interrupts rfm22_write(rfm22b_dev, RFM22_interrupt_enable1, 0x00); rfm22_write(rfm22b_dev, RFM22_interrupt_enable2, 0x00); // set the tx power rfm22_write(rfm22b_dev, RFM22_tx_power, RFM22_tx_pwr_lna_sw | rfm22b_dev->tx_power); // TUNE mode rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon); // Queue the data up for sending rfm22b_dev->tx_data_wr = len; RX_LED_OFF; // Set the destination address in the transmit header. uint32_t id = rfm22_destinationID(rfm22b_dev); rfm22_write(rfm22b_dev, RFM22_transmit_header0, id & 0xff); rfm22_write(rfm22b_dev, RFM22_transmit_header1, (id >> 8) & 0xff); rfm22_write(rfm22b_dev, RFM22_transmit_header2, (id >> 16) & 0xff); rfm22_write(rfm22b_dev, RFM22_transmit_header3, (id >> 24) & 0xff); // FIFO mode, GFSK modulation uint8_t fd_bit = rfm22_read(rfm22b_dev, RFM22_modulation_mode_control2) & RFM22_mmc2_fd; rfm22_write(rfm22b_dev, RFM22_modulation_mode_control2, fd_bit | RFM22_mmc2_dtmod_fifo | RFM22_mmc2_modtyp_gfsk); // Clear the FIFOs. rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl2, RFM22_opfc2_ffclrrx | RFM22_opfc2_ffclrtx); rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl2, 0x00); // Set the total number of data bytes we are going to transmit. rfm22_write(rfm22b_dev, RFM22_transmit_packet_length, len); // Add some data to the chips TX FIFO before enabling the transmitter uint8_t *tx_buffer = rfm22b_dev->tx_packet_handle; rfm22_assertCs(rfm22b_dev); PIOS_SPI_TransferByte(rfm22b_dev->spi_id, RFM22_fifo_access | 0x80); int bytes_to_write = (rfm22b_dev->tx_data_wr - rfm22b_dev->tx_data_rd); bytes_to_write = (bytes_to_write > FIFO_SIZE) ? FIFO_SIZE : bytes_to_write; PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, &tx_buffer[rfm22b_dev->tx_data_rd], NULL, bytes_to_write, NULL); rfm22b_dev->tx_data_rd += bytes_to_write; rfm22_deassertCs(rfm22b_dev); // Enable TX interrupts. rfm22_write(rfm22b_dev, RFM22_interrupt_enable1, RFM22_ie1_enpksent | RFM22_ie1_entxffaem); // Enable the transmitter. rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_pllon | RFM22_opfc1_txon); // Release the SPI bus. rfm22_releaseBus(rfm22b_dev); // We're in Tx mode. rfm22b_dev->rfm22b_state = RFM22B_STATE_TX_MODE; #ifdef PIOS_RFM22B_DEBUG_ON_TELEM D1_LED_ON; #endif return true; } /** * Process a Tx interrupt from the RFM22B device. * * @param[in] rfm22b_id The rfm22b device. * @return PIOS_RFM22B_TX_COMPLETE on completed Tx, or PIOS_RFM22B_INT_SUCCESS/PIOS_RFM22B_INT_FAILURE. */ pios_rfm22b_int_result PIOS_RFM22B_ProcessTx(uint32_t rfm22b_id) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_Validate(rfm22b_dev)) { return PIOS_RFM22B_INT_FAILURE; } // Read the device status registers if (!pios_rfm22_readStatus(rfm22b_dev)) { return PIOS_RFM22B_INT_FAILURE; } // TX FIFO almost empty, it needs filling up if (rfm22b_dev->status_regs.int_status_1.tx_fifo_almost_empty) { // Add data to the TX FIFO buffer uint8_t *tx_buffer = rfm22b_dev->tx_packet_handle; uint16_t max_bytes = FIFO_SIZE - TX_FIFO_LO_WATERMARK - 1; rfm22_claimBus(rfm22b_dev); rfm22_assertCs(rfm22b_dev); PIOS_SPI_TransferByte(rfm22b_dev->spi_id, RFM22_fifo_access | 0x80); int bytes_to_write = (rfm22b_dev->tx_data_wr - rfm22b_dev->tx_data_rd); bytes_to_write = (bytes_to_write > max_bytes) ? max_bytes : bytes_to_write; PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, &tx_buffer[rfm22b_dev->tx_data_rd], NULL, bytes_to_write, NULL); rfm22b_dev->tx_data_rd += bytes_to_write; rfm22_deassertCs(rfm22b_dev); rfm22_releaseBus(rfm22b_dev); return PIOS_RFM22B_INT_SUCCESS; } else if (rfm22b_dev->status_regs.int_status_1.packet_sent_interrupt) { // Transition out of Tx mode. rfm22b_dev->rfm22b_state = RFM22B_STATE_TRANSITION; return PIOS_RFM22B_TX_COMPLETE; } return 0; } /** * Process a Rx interrupt from the RFM22B device. * * @param[in] rfm22b_id The rfm22b device. * @return PIOS_RFM22B_RX_COMPLETE on completed Rx, or PIOS_RFM22B_INT_SUCCESS/PIOS_RFM22B_INT_FAILURE. */ pios_rfm22b_int_result PIOS_RFM22B_ProcessRx(uint32_t rfm22b_id) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_Validate(rfm22b_dev)) { return PIOS_RFM22B_INT_FAILURE; } uint8_t *rx_buffer = rfm22b_dev->rx_packet_handle; pios_rfm22b_int_result ret = PIOS_RFM22B_INT_SUCCESS; // Read the device status registers if (!pios_rfm22_readStatus(rfm22b_dev)) { rfm22_rxFailure(rfm22b_dev); return PIOS_RFM22B_INT_FAILURE; } // FIFO under/over flow error. Restart RX mode. if (rfm22b_dev->status_regs.int_status_1.fifo_underoverflow_error || rfm22b_dev->status_regs.int_status_1.crc_error) { rfm22_rxFailure(rfm22b_dev); return PIOS_RFM22B_INT_FAILURE; } // Valid packet received if (rfm22b_dev->status_regs.int_status_1.valid_packet_received) { // Claim the SPI bus. rfm22_claimBus(rfm22b_dev); // read the total length of the packet data uint32_t len = rfm22_read(rfm22b_dev, RFM22_received_packet_length); // The received packet is going to be larger than the receive buffer if (len > rfm22b_dev->max_packet_len) { rfm22_releaseBus(rfm22b_dev); rfm22_rxFailure(rfm22b_dev); return PIOS_RFM22B_INT_FAILURE; } // there must still be data in the RX FIFO we need to get if (rfm22b_dev->rx_buffer_wr < len) { int32_t bytes_to_read = len - rfm22b_dev->rx_buffer_wr; // Fetch the data from the RX FIFO rfm22_assertCs(rfm22b_dev); PIOS_SPI_TransferByte(rfm22b_dev->spi_id, RFM22_fifo_access & 0x7F); rfm22b_dev->rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, OUT_FF, (uint8_t *)&rx_buffer[rfm22b_dev->rx_buffer_wr], bytes_to_read, NULL) == 0) ? bytes_to_read : 0; rfm22_deassertCs(rfm22b_dev); } // Read the packet header (destination ID) rfm22b_dev->rx_destination_id = rfm22_read(rfm22b_dev, RFM22_received_header0); rfm22b_dev->rx_destination_id |= (rfm22_read(rfm22b_dev, RFM22_received_header1) << 8); rfm22b_dev->rx_destination_id |= (rfm22_read(rfm22b_dev, RFM22_received_header2) << 16); rfm22b_dev->rx_destination_id |= (rfm22_read(rfm22b_dev, RFM22_received_header3) << 24); // Release the SPI bus. rfm22_releaseBus(rfm22b_dev); // Is there a length error? if (rfm22b_dev->rx_buffer_wr != len) { rfm22_rxFailure(rfm22b_dev); return PIOS_RFM22B_INT_FAILURE; } // Increment the total byte received count. rfm22b_dev->stats.rx_byte_count += rfm22b_dev->rx_buffer_wr; // We're finished with Rx mode rfm22b_dev->rfm22b_state = RFM22B_STATE_TRANSITION; ret = PIOS_RFM22B_RX_COMPLETE; } else if (rfm22b_dev->status_regs.int_status_1.rx_fifo_almost_full) { // RX FIFO almost full, it needs emptying // read data from the rf chips FIFO buffer // Claim the SPI bus. rfm22_claimBus(rfm22b_dev); // Read the total length of the packet data uint16_t len = rfm22_read(rfm22b_dev, RFM22_received_packet_length); // The received packet is going to be larger than the specified length if ((rfm22b_dev->rx_buffer_wr + RX_FIFO_HI_WATERMARK) > len) { rfm22_releaseBus(rfm22b_dev); rfm22_rxFailure(rfm22b_dev); return PIOS_RFM22B_INT_FAILURE; } // The received packet is going to be larger than the receive buffer if ((rfm22b_dev->rx_buffer_wr + RX_FIFO_HI_WATERMARK) > rfm22b_dev->max_packet_len) { rfm22_releaseBus(rfm22b_dev); rfm22_rxFailure(rfm22b_dev); return PIOS_RFM22B_INT_FAILURE; } // Fetch the data from the RX FIFO rfm22_assertCs(rfm22b_dev); PIOS_SPI_TransferByte(rfm22b_dev->spi_id, RFM22_fifo_access & 0x7F); rfm22b_dev->rx_buffer_wr += (PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, OUT_FF, (uint8_t *)&rx_buffer[rfm22b_dev->rx_buffer_wr], RX_FIFO_HI_WATERMARK, NULL) == 0) ? RX_FIFO_HI_WATERMARK : 0; rfm22_deassertCs(rfm22b_dev); // Release the SPI bus. rfm22_releaseBus(rfm22b_dev); // Make sure that we're in RX mode. rfm22b_dev->rfm22b_state = RFM22B_STATE_RX_MODE; } else if (rfm22b_dev->status_regs.int_status_2.valid_preamble_detected) { // Valid preamble detected RX_LED_ON; // Sync word detected #ifdef PIOS_RFM22B_DEBUG_ON_TELEM D2_LED_ON; #endif // PIOS_RFM22B_DEBUG_ON_TELEM rfm22b_dev->packet_start_time = pios_rfm22_time_ms(); if (rfm22b_dev->packet_start_time == 0) { rfm22b_dev->packet_start_time = 1; } // We detected the preamble, now wait for sync. rfm22b_dev->rfm22b_state = RFM22B_STATE_RX_WAIT_SYNC; } else if (rfm22b_dev->status_regs.int_status_2.sync_word_detected) { // Claim the SPI bus. rfm22_claimBus(rfm22b_dev); // read the 10-bit signed afc correction value // bits 9 to 2 int16_t afc_correction = (uint16_t)rfm22_read(rfm22b_dev, RFM22_afc_correction_read) << 8; // bits 1 & 0 afc_correction |= (int16_t)rfm22_read(rfm22b_dev, RFM22_ook_counter_value1) & 0x00c0; afc_correction >>= 6; // convert the afc value to Hz int32_t afc_corr = (int32_t)(rfm22b_dev->frequency_step_size * afc_correction + 0.5f); rfm22b_dev->afc_correction_Hz = afc_corr; // read rx signal strength .. 45 = -100dBm, 205 = -20dBm uint8_t rssi = rfm22_read(rfm22b_dev, RFM22_rssi); // convert to dBm rfm22b_dev->rssi_dBm = (int8_t)(rssi >> 1) - 122; // Release the SPI bus. rfm22_releaseBus(rfm22b_dev); // Indicate that we're in RX mode. rfm22b_dev->rfm22b_state = RFM22B_STATE_RX_MODE; } else if ((rfm22b_dev->rfm22b_state == RFM22B_STATE_RX_WAIT_SYNC) && !rfm22b_dev->status_regs.int_status_2.valid_preamble_detected) { // Waiting for the preamble timed out. rfm22_rxFailure(rfm22b_dev); return PIOS_RFM22B_INT_FAILURE; } return ret; } /** * Set the PPM packet received callback. * * @param[in] rfm22b_dev The RFM22B device ID. * @param[in] cb The callback function pointer. */ void PIOS_RFM22B_SetPPMCallback(uint32_t rfm22b_id, PPMReceivedCallback cb, uint32_t cb_context) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_Validate(rfm22b_dev)) { return; } /* * Order is important in these assignments since rfm22_task uses ppm_callback * field to determine if it's ok to dereference ppm_callback and ppm_context */ rfm22b_dev->ppm_context = cb_context; rfm22b_dev->ppm_callback = cb; } /** * Set the PPM values to be transmitted. * * @param[in] rfm22b_dev The RFM22B device ID. * @param[in] channels The PPM channel values. * @param[out] nchan The number of channels to set. */ extern void PIOS_RFM22B_PPMSet(uint32_t rfm22b_id, int16_t *channels, uint8_t nchan) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_Validate(rfm22b_dev)) { return; } for (uint8_t i = 0; i < RFM22B_PPM_NUM_CHANNELS; ++i) { rfm22b_dev->ppm[i] = (i < nchan) ? channels[i] : PIOS_RCVR_INVALID; } } /** * Fetch the PPM values that have been received. * * @param[in] rfm22b_dev The RFM22B device structure pointer. * @param[out] channels The PPM channel values. * @param[out] nchan The number of channels to get. */ extern void PIOS_RFM22B_PPMGet(uint32_t rfm22b_id, int16_t *channels, uint8_t nchan) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)rfm22b_id; if (!PIOS_RFM22B_Validate(rfm22b_dev)) { return; } if (!rfm22_isCoordinator(rfm22b_dev) && !rfm22_isConnected(rfm22b_dev)) { // Set the PPM channels values to INVALID for (uint8_t i = 0; i < RFM22B_PPM_NUM_CHANNELS; ++i) { channels[i] = PIOS_RCVR_INVALID; } return; } for (uint8_t i = 0; i < nchan; ++i) { channels[i] = (i < RFM22B_PPM_NUM_CHANNELS) ? rfm22b_dev->ppm[i] : PIOS_RCVR_INVALID; } } /** * Validate that the device structure is valid. * * @param[in] rfm22b_dev The RFM22B device structure pointer. */ inline bool PIOS_RFM22B_Validate(struct pios_rfm22b_dev *rfm22b_dev) { return rfm22b_dev != NULL && rfm22b_dev->magic == PIOS_RFM22B_DEV_MAGIC; } /***************************************************************************** * The Device Control Thread *****************************************************************************/ /** * The task that controls the radio state machine. * * @param[in] paramters The task parameters. */ static void pios_rfm22_task(void *parameters) { struct pios_rfm22b_dev *rfm22b_dev = (struct pios_rfm22b_dev *)parameters; if (!PIOS_RFM22B_Validate(rfm22b_dev)) { return; } uint32_t lastEventTime = pios_rfm22_time_ms(); while (1) { #if defined(PIOS_INCLUDE_WDG) && defined(PIOS_WDG_RFM22B) // Update the watchdog timer PIOS_WDG_UpdateFlag(PIOS_WDG_RFM22B); #endif /* PIOS_WDG_RFM22B */ // Wait for a signal indicating an external interrupt or a pending send/receive request. if (xSemaphoreTake(rfm22b_dev->isrPending, ISR_TIMEOUT / portTICK_RATE_MS) == pdTRUE) { lastEventTime = pios_rfm22_time_ms(); // Process events through the state machine. enum pios_radio_event event; while (xQueueReceive(rfm22b_dev->eventQueue, &event, 0) == pdTRUE) { if ((event == RADIO_EVENT_INT_RECEIVED) && ((rfm22b_dev->state == RADIO_STATE_UNINITIALIZED) || (rfm22b_dev->state == RADIO_STATE_INITIALIZING))) { continue; } rfm22_process_event(rfm22b_dev, event); } } else { // Has it been too long since the last event? uint32_t curTime = pios_rfm22_time_ms(); if (pios_rfm22_time_difference_ms(lastEventTime, curTime) > PIOS_RFM22B_SUPERVISOR_TIMEOUT) { // Clear the event queue. enum pios_radio_event event; while (xQueueReceive(rfm22b_dev->eventQueue, &event, 0) == pdTRUE) { // Do nothing; } lastEventTime = pios_rfm22_time_ms(); // Transsition through an error event. rfm22_process_event(rfm22b_dev, RADIO_EVENT_ERROR); } } // Change channels if necessary. if (rfm22_changeChannel(rfm22b_dev)) { rfm22_process_event(rfm22b_dev, RADIO_EVENT_RX_MODE); } // Have we been sending / receiving this packet too long? uint32_t curTime = pios_rfm22_time_ms(); if ((rfm22b_dev->packet_start_time > 0) && (pios_rfm22_time_difference_ms(rfm22b_dev->packet_start_time, curTime) > (rfm22b_dev->packet_time * 3))) { rfm22_process_event(rfm22b_dev, RADIO_EVENT_TIMEOUT); } // Start transmitting a packet if it's time. bool time_to_send = rfm22_timeToSend(rfm22b_dev); #ifdef PIOS_RFM22B_DEBUG_ON_TELEM if (time_to_send) { D4_LED_ON; } else { D4_LED_OFF; } #endif if (time_to_send && PIOS_RFM22B_InRxWait((uint32_t)rfm22b_dev)) { rfm22_process_event(rfm22b_dev, RADIO_EVENT_TX_START); } } } /***************************************************************************** * The State Machine Functions *****************************************************************************/ /** * Inject an event into the RFM22B state machine. * * @param[in] rfm22b_dev The device structure * @param[in] event The event to inject * @param[in] inISR Is this being called from an interrrup service routine? */ static void pios_rfm22_inject_event(struct pios_rfm22b_dev *rfm22b_dev, enum pios_radio_event event, bool inISR) { if (inISR) { // Store the event. portBASE_TYPE pxHigherPriorityTaskWoken1; if (xQueueSendFromISR(rfm22b_dev->eventQueue, &event, &pxHigherPriorityTaskWoken1) != pdTRUE) { return; } // Signal the semaphore to wake up the handler thread. portBASE_TYPE pxHigherPriorityTaskWoken2; if (xSemaphoreGiveFromISR(rfm22b_dev->isrPending, &pxHigherPriorityTaskWoken2) != pdTRUE) { // Something went fairly seriously wrong rfm22b_dev->errors++; } portEND_SWITCHING_ISR((pxHigherPriorityTaskWoken1 == pdTRUE) || (pxHigherPriorityTaskWoken2 == pdTRUE)); } else { // Store the event. if (xQueueSend(rfm22b_dev->eventQueue, &event, portMAX_DELAY) != pdTRUE) { return; } // Signal the semaphore to wake up the handler thread. if (xSemaphoreGive(rfm22b_dev->isrPending) != pdTRUE) { // Something went fairly seriously wrong rfm22b_dev->errors++; } } } /** * Process the next state transition from the given event. * * @param[in] rfm22b_dev The device structure * @param[in] event The event to process * @return enum pios_radio_event The next event to inject */ static enum pios_radio_event rfm22_process_state_transition(struct pios_rfm22b_dev *rfm22b_dev, enum pios_radio_event event) { // No event if (event >= RADIO_EVENT_NUM_EVENTS) { return RADIO_EVENT_NUM_EVENTS; } // Don't transition if there is no transition defined enum pios_radio_state next_state = rfm22b_transitions[rfm22b_dev->state].next_state[event]; if (!next_state) { return RADIO_EVENT_NUM_EVENTS; } /* * Move to the next state * * This is done prior to calling the new state's entry function to * guarantee that the entry function never depends on the previous * state. This way, it cannot ever know what the previous state was. */ rfm22b_dev->state = next_state; /* Call the entry function (if any) for the next state. */ if (rfm22b_transitions[rfm22b_dev->state].entry_fn) { return rfm22b_transitions[rfm22b_dev->state].entry_fn(rfm22b_dev); } return RADIO_EVENT_NUM_EVENTS; } /** * Process the given event through the state transition table. * This could cause a series of events and transitions to take place. * * @param[in] rfm22b_dev The device structure * @param[in] event The event to process */ static void rfm22_process_event(struct pios_rfm22b_dev *rfm22b_dev, enum pios_radio_event event) { // Process all state transitions. while (event != RADIO_EVENT_NUM_EVENTS) { event = rfm22_process_state_transition(rfm22b_dev, event); } } /***************************************************************************** * The Device Initialization / Configuration Functions *****************************************************************************/ /** * Initialize (or re-initialize) the RFM22B radio device. * * @param[in] rfm22b_dev The device structure * @return enum pios_radio_event The next event to inject */ static enum pios_radio_event rfm22_init(struct pios_rfm22b_dev *rfm22b_dev) { // Initialize the register values. rfm22b_dev->status_regs.int_status_1.raw = 0; rfm22b_dev->status_regs.int_status_2.raw = 0; rfm22b_dev->status_regs.device_status.raw = 0; rfm22b_dev->status_regs.ezmac_status.raw = 0; // Clean the LEDs rfm22_clearLEDs(); // Initlize the link stats. for (uint8_t i = 0; i < RFM22B_RX_PACKET_STATS_LEN; ++i) { rfm22b_dev->rx_packet_stats[i] = 0; } // Initialize the state rfm22b_dev->stats.link_state = OPLINKSTATUS_LINKSTATE_ENABLED; // Initialize the packets. rfm22b_dev->rx_packet_len = 0; rfm22b_dev->rx_destination_id = 0; rfm22b_dev->tx_packet_handle = NULL; // Initialize the devide state rfm22b_dev->rx_buffer_wr = 0; rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0; rfm22b_dev->channel = 0; rfm22b_dev->channel_index = 0; rfm22b_dev->afc_correction_Hz = 0; rfm22b_dev->packet_start_time = 0; rfm22b_dev->rfm22b_state = RFM22B_STATE_INITIALIZING; rfm22b_dev->last_contact = 0; // software reset the RF chip .. following procedure according to Si4x3x Errata (rev. B) rfm22_write_claim(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_swres); for (uint8_t i = 0; i < 50; ++i) { // read the status registers pios_rfm22_readStatus(rfm22b_dev); // Is the chip ready? if (rfm22b_dev->status_regs.int_status_2.chip_ready) { break; } // Wait 1ms if not. vTaskDelay(1 + (1 / (portTICK_RATE_MS + 1))); } // **************** // read status - clears interrupt pios_rfm22_readStatus(rfm22b_dev); // Claim the SPI bus. rfm22_claimBus(rfm22b_dev); // disable all interrupts rfm22_write(rfm22b_dev, RFM22_interrupt_enable1, 0x00); rfm22_write(rfm22b_dev, RFM22_interrupt_enable2, 0x00); // read the RF chip ID bytes // read the device type uint8_t device_type = rfm22_read(rfm22b_dev, RFM22_DEVICE_TYPE) & RFM22_DT_MASK; // read the device version uint8_t device_version = rfm22_read(rfm22b_dev, RFM22_DEVICE_VERSION) & RFM22_DV_MASK; #if defined(RFM22_DEBUG) DEBUG_PRINTF(2, "rf device type: %d\n\r", device_type); DEBUG_PRINTF(2, "rf device version: %d\n\r", device_version); #endif if (device_type != 0x08) { #if defined(RFM22_DEBUG) DEBUG_PRINTF(2, "rf device type: INCORRECT - should be 0x08\n\r"); #endif // incorrect RF module type return RADIO_EVENT_FATAL_ERROR; } if (device_version != RFM22_DEVICE_VERSION_B1) { #if defined(RFM22_DEBUG) DEBUG_PRINTF(2, "rf device version: INCORRECT\n\r"); #endif // incorrect RF module version return RADIO_EVENT_FATAL_ERROR; } // calibrate our RF module to be exactly on frequency .. different for every module rfm22_write(rfm22b_dev, RFM22_xtal_osc_load_cap, OSC_LOAD_CAP); // disable Low Duty Cycle Mode rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl2, 0x00); // 1MHz clock output rfm22_write(rfm22b_dev, RFM22_cpu_output_clk, RFM22_coc_1MHz); // READY mode rfm22_write(rfm22b_dev, RFM22_op_and_func_ctrl1, RFM22_opfc1_xton); // choose the 3 GPIO pin functions // GPIO port use default value rfm22_write(rfm22b_dev, RFM22_io_port_config, RFM22_io_port_default); if (rfm22b_dev->cfg.gpio_direction == GPIO0_TX_GPIO1_RX) { // GPIO0 = TX State (to control RF Switch) rfm22_write(rfm22b_dev, RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_txstate); // GPIO1 = RX State (to control RF Switch) rfm22_write(rfm22b_dev, RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_rxstate); } else { // GPIO0 = TX State (to control RF Switch) rfm22_write(rfm22b_dev, RFM22_gpio0_config, RFM22_gpio0_config_drv3 | RFM22_gpio0_config_rxstate); // GPIO1 = RX State (to control RF Switch) rfm22_write(rfm22b_dev, RFM22_gpio1_config, RFM22_gpio1_config_drv3 | RFM22_gpio1_config_txstate); } // GPIO2 = Clear Channel Assessment rfm22_write(rfm22b_dev, RFM22_gpio2_config, RFM22_gpio2_config_drv3 | RFM22_gpio2_config_cca); // FIFO mode, GFSK modulation uint8_t fd_bit = rfm22_read(rfm22b_dev, RFM22_modulation_mode_control2) & RFM22_mmc2_fd; rfm22_write(rfm22b_dev, RFM22_modulation_mode_control2, RFM22_mmc2_trclk_clk_none | RFM22_mmc2_dtmod_fifo | fd_bit | RFM22_mmc2_modtyp_gfsk); // setup to read the internal temperature sensor // ADC used to sample the temperature sensor uint8_t adc_config = RFM22_ac_adcsel_temp_sensor | RFM22_ac_adcref_bg; rfm22_write(rfm22b_dev, RFM22_adc_config, adc_config); // adc offset rfm22_write(rfm22b_dev, RFM22_adc_sensor_amp_offset, 0); // temp sensor calibration .. �40C to +64C 0.5C resolution rfm22_write(rfm22b_dev, RFM22_temp_sensor_calib, RFM22_tsc_tsrange0 | RFM22_tsc_entsoffs); // temp sensor offset rfm22_write(rfm22b_dev, RFM22_temp_value_offset, 0); // start an ADC conversion rfm22_write(rfm22b_dev, RFM22_adc_config, adc_config | RFM22_ac_adcstartbusy); // set the RSSI threshold interrupt to about -90dBm rfm22_write(rfm22b_dev, RFM22_rssi_threshold_clear_chan_indicator, (-90 + 122) * 2); // enable the internal Tx & Rx packet handlers (without CRC) rfm22_write(rfm22b_dev, RFM22_data_access_control, RFM22_dac_enpacrx | RFM22_dac_enpactx); // x-nibbles tx preamble rfm22_write(rfm22b_dev, RFM22_preamble_length, TX_PREAMBLE_NIBBLES); // x-nibbles rx preamble detection rfm22_write(rfm22b_dev, RFM22_preamble_detection_ctrl1, RX_PREAMBLE_NIBBLES << 3); // Release the bus rfm22_releaseBus(rfm22b_dev); // Yield the CPU. vTaskDelay(1 + (1 / (portTICK_RATE_MS + 1))); // Claim the SPI bus. rfm22_claimBus(rfm22b_dev); // header control - using a 4 by header with broadcast of 0xffffffff rfm22_write(rfm22b_dev, RFM22_header_control1, RFM22_header_cntl1_bcen_0 | RFM22_header_cntl1_bcen_1 | RFM22_header_cntl1_bcen_2 | RFM22_header_cntl1_bcen_3 | RFM22_header_cntl1_hdch_0 | RFM22_header_cntl1_hdch_1 | RFM22_header_cntl1_hdch_2 | RFM22_header_cntl1_hdch_3); // Check all bit of all bytes of the header, unless we're an unbound modem. uint8_t header_mask = (rfm22_destinationID(rfm22b_dev) == 0xffffffff) ? 0 : 0xff; rfm22_write(rfm22b_dev, RFM22_header_enable0, header_mask); rfm22_write(rfm22b_dev, RFM22_header_enable1, header_mask); rfm22_write(rfm22b_dev, RFM22_header_enable2, header_mask); rfm22_write(rfm22b_dev, RFM22_header_enable3, header_mask); // The destination ID and receive ID should be the same. uint32_t id = rfm22_destinationID(rfm22b_dev); rfm22_write(rfm22b_dev, RFM22_check_header0, id & 0xff); rfm22_write(rfm22b_dev, RFM22_check_header1, (id >> 8) & 0xff); rfm22_write(rfm22b_dev, RFM22_check_header2, (id >> 16) & 0xff); rfm22_write(rfm22b_dev, RFM22_check_header3, (id >> 24) & 0xff); // 4 header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header. rfm22_write(rfm22b_dev, RFM22_header_control2, RFM22_header_cntl2_hdlen_3210 | RFM22_header_cntl2_synclen_3210 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01)); // sync word rfm22_write(rfm22b_dev, RFM22_sync_word3, SYNC_BYTE_1); rfm22_write(rfm22b_dev, RFM22_sync_word2, SYNC_BYTE_2); rfm22_write(rfm22b_dev, RFM22_sync_word1, SYNC_BYTE_3); rfm22_write(rfm22b_dev, RFM22_sync_word0, SYNC_BYTE_4); // TX FIFO Almost Full Threshold (0 - 63) rfm22_write(rfm22b_dev, RFM22_tx_fifo_control1, TX_FIFO_HI_WATERMARK); // TX FIFO Almost Empty Threshold (0 - 63) rfm22_write(rfm22b_dev, RFM22_tx_fifo_control2, TX_FIFO_LO_WATERMARK); // RX FIFO Almost Full Threshold (0 - 63) rfm22_write(rfm22b_dev, RFM22_rx_fifo_control, RX_FIFO_HI_WATERMARK); // Set the xtal capacitor for frequency calibration // Cint = 1.8 pF + 0.085 pF x xlc[6:0] + 3.7 pF x xlc[7] (xtalshift) // cfg.RFXtalCap 0 to 171 range give Cint = 1.8pF to 16.295pF range // Default is 127, equal to 12.595pF rfm22_write(rfm22b_dev, RFM22_xtal_osc_load_cap, (rfm22b_dev->cfg.RFXtalCap < 128) ? rfm22b_dev->cfg.RFXtalCap : (rfm22b_dev->cfg.RFXtalCap + 84)); // Release the bus rfm22_releaseBus(rfm22b_dev); // Yield the CPU. vTaskDelay(1 + (1 / (portTICK_RATE_MS + 1))); // Initialize the frequency and datarate to te default. rfm22_setNominalCarrierFrequency(rfm22b_dev, 0, rfm22b_dev->base_freq); pios_rfm22_setDatarate(rfm22b_dev); return RADIO_EVENT_INITIALIZED; } /** * Set the air datarate for the RFM22B device. * * Carson's rule: * The signal bandwidth is about 2(Delta-f + fm) .. * * Delta-f = frequency deviation * fm = maximum frequency of the signal * * @param[in] rfm33b_dev The device structure pointer. * @param[in] datarate The air datarate. * @param[in] data_whitening Is data whitening desired? */ static void pios_rfm22_setDatarate(struct pios_rfm22b_dev *rfm22b_dev) { enum rfm22b_datarate datarate = rfm22b_dev->datarate; bool data_whitening = true; // Claim the SPI bus. rfm22_claimBus(rfm22b_dev); // rfm22_if_filter_bandwidth rfm22_write(rfm22b_dev, 0x1C, reg_1C[datarate]); // rfm22_afc_loop_gearshift_override rfm22_write(rfm22b_dev, 0x1D, reg_1D[datarate]); // RFM22_afc_timing_control rfm22_write(rfm22b_dev, 0x1E, reg_1E[datarate]); // RFM22_clk_recovery_gearshift_override rfm22_write(rfm22b_dev, 0x1F, reg_1F[datarate]); // rfm22_clk_recovery_oversampling_ratio rfm22_write(rfm22b_dev, 0x20, reg_20[datarate]); // rfm22_clk_recovery_offset2 rfm22_write(rfm22b_dev, 0x21, reg_21[datarate]); // rfm22_clk_recovery_offset1 rfm22_write(rfm22b_dev, 0x22, reg_22[datarate]); // rfm22_clk_recovery_offset0 rfm22_write(rfm22b_dev, 0x23, reg_23[datarate]); // rfm22_clk_recovery_timing_loop_gain1 rfm22_write(rfm22b_dev, 0x24, reg_24[datarate]); // rfm22_clk_recovery_timing_loop_gain0 rfm22_write(rfm22b_dev, 0x25, reg_25[datarate]); // rfm22_agc_override1 rfm22_write(rfm22b_dev, RFM22_agc_override1, reg_69[datarate]); // rfm22_afc_limiter rfm22_write(rfm22b_dev, 0x2A, reg_2A[datarate]); // rfm22_tx_data_rate1 rfm22_write(rfm22b_dev, 0x6E, reg_6E[datarate]); // rfm22_tx_data_rate0 rfm22_write(rfm22b_dev, 0x6F, reg_6F[datarate]); if (!data_whitening) { // rfm22_modulation_mode_control1 rfm22_write(rfm22b_dev, 0x70, reg_70[datarate] & ~RFM22_mmc1_enwhite); } else { // rfm22_modulation_mode_control1 rfm22_write(rfm22b_dev, 0x70, reg_70[datarate] | RFM22_mmc1_enwhite); } // rfm22_modulation_mode_control2 rfm22_write(rfm22b_dev, 0x71, reg_71[datarate]); // rfm22_frequency_deviation rfm22_write(rfm22b_dev, 0x72, reg_72[datarate]); // rfm22_cpcuu rfm22_write(rfm22b_dev, 0x58, reg_58[datarate]); rfm22_write(rfm22b_dev, RFM22_ook_counter_value1, 0x00); rfm22_write(rfm22b_dev, RFM22_ook_counter_value2, 0x00); // Release the bus rfm22_releaseBus(rfm22b_dev); } /** * Set the nominal carrier frequency, channel step size, and initial channel * * @param[in] rfm33b_dev The device structure pointer. * @param[in] init_chan The initial channel to tune to. */ static void rfm22_setNominalCarrierFrequency(struct pios_rfm22b_dev *rfm22b_dev, uint8_t init_chan, uint32_t frequency_hz) { // The step size is 10MHz / 250 = 40khz, and the step size is specified in 10khz increments. uint8_t freq_hop_step_size = 4; // holds the hbsel (1 or 2) uint8_t hbsel; if (frequency_hz < 480000000) { hbsel = 0; } else { hbsel = 1; } float freq_mhz = (float)(frequency_hz) / 1000000.0f; float xtal_freq_khz = 30000.0f; float sfreq = freq_mhz / (10.0f * (xtal_freq_khz / 30000.0f) * (1 + hbsel)); uint32_t fb = (uint32_t)sfreq - 24 + (64 + 32 * hbsel); uint32_t fc = (uint32_t)((sfreq - (uint32_t)sfreq) * 64000.0f); uint8_t fch = (fc >> 8) & 0xff; uint8_t fcl = fc & 0xff; // Claim the SPI bus. rfm22_claimBus(rfm22b_dev); // Set the frequency hopping step size. rfm22_write(rfm22b_dev, RFM22_frequency_hopping_step_size, freq_hop_step_size); // frequency step rfm22b_dev->frequency_step_size = 156.25f * (hbsel + 1); // frequency hopping channel (0-255) rfm22b_dev->channel = init_chan; rfm22_write(rfm22b_dev, RFM22_frequency_hopping_channel_select, init_chan); // no frequency offset rfm22_write(rfm22b_dev, RFM22_frequency_offset1, 0); rfm22_write(rfm22b_dev, RFM22_frequency_offset2, 0); // set the carrier frequency rfm22_write(rfm22b_dev, RFM22_frequency_band_select, fb & 0xff); rfm22_write(rfm22b_dev, RFM22_nominal_carrier_frequency1, fch); rfm22_write(rfm22b_dev, RFM22_nominal_carrier_frequency0, fcl); // Release the bus rfm22_releaseBus(rfm22b_dev); } /** * Set the frequency hopping channel. * * @param[in] rfm33b_dev The device structure pointer. */ static bool rfm22_setFreqHopChannel(struct pios_rfm22b_dev *rfm22b_dev, uint8_t channel) { // set the frequency hopping channel if (rfm22b_dev->channel == channel) { return false; } #ifdef PIOS_RFM22B_DEBUG_ON_TELEM D3_LED_TOGGLE; #endif // PIOS_RFM22B_DEBUG_ON_TELEM rfm22b_dev->channel = channel; rfm22_write_claim(rfm22b_dev, RFM22_frequency_hopping_channel_select, channel); return true; } /** * Generate the unique device ID for the RFM22B device. * * @param[in] rfm22b_id The RFM22B device index. * */ void rfm22_generateDeviceID(struct pios_rfm22b_dev *rfm22b_dev) { // Create our (hopefully) unique 32 bit id from the processor serial number. uint8_t crcs[] = { 0, 0, 0, 0 }; { char serial_no_str[33]; PIOS_SYS_SerialNumberGet(serial_no_str); // Create a 32 bit value using 4 8 bit CRC values. for (uint8_t i = 0; serial_no_str[i] != 0; ++i) { crcs[i % 4] = PIOS_CRC_updateByte(crcs[i % 4], serial_no_str[i]); } } rfm22b_dev->deviceID = crcs[0] | crcs[1] << 8 | crcs[2] << 16 | crcs[3] << 24; DEBUG_PRINTF(2, "Generated RF device ID: %x\n\r", rfm22b_dev->deviceID); } /** * Read the RFM22B interrupt and device status registers * * @param[in] rfm22b_dev The device structure */ static bool pios_rfm22_readStatus(struct pios_rfm22b_dev *rfm22b_dev) { // 1. Read the interrupt statuses with burst read rfm22_claimBus(rfm22b_dev); // Set RC and the semaphore uint8_t write_buf[3] = { RFM22_interrupt_status1 &0x7f, 0xFF, 0xFF }; uint8_t read_buf[3]; rfm22_assertCs(rfm22b_dev); PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, write_buf, read_buf, sizeof(write_buf), NULL); rfm22_deassertCs(rfm22b_dev); rfm22b_dev->status_regs.int_status_1.raw = read_buf[1]; rfm22b_dev->status_regs.int_status_2.raw = read_buf[2]; // Device status rfm22b_dev->status_regs.device_status.raw = rfm22_read(rfm22b_dev, RFM22_device_status); // EzMAC status rfm22b_dev->status_regs.ezmac_status.raw = rfm22_read(rfm22b_dev, RFM22_ezmac_status); // Release the bus rfm22_releaseBus(rfm22b_dev); // the RF module has gone and done a reset - we need to re-initialize the rf module if (rfm22b_dev->status_regs.int_status_2.poweron_reset) { return false; } return true; } /** * Recover from a failure in receiving a packet. * * @param[in] rfm22b_dev The device structure * @return enum pios_radio_event The next event to inject */ static void rfm22_rxFailure(struct pios_rfm22b_dev *rfm22b_dev) { rfm22b_add_rx_status(rfm22b_dev, RADIO_FAILURE_RX_PACKET); rfm22b_dev->rx_buffer_wr = 0; rfm22b_dev->packet_start_time = 0; rfm22b_dev->rfm22b_state = RFM22B_STATE_TRANSITION; } /***************************************************************************** * Radio Transmit and Receive functions. *****************************************************************************/ /** * Start a transmit if possible * * @param[in] radio_dev The device structure * @return enum pios_radio_event The next event to inject */ static enum pios_radio_event radio_txStart(struct pios_rfm22b_dev *radio_dev) { uint8_t *p = radio_dev->tx_packet; uint8_t len = 0; uint8_t max_data_len = radio_dev->max_packet_len - (radio_dev->ppm_only_mode ? 0 : RS_ECC_NPARITY); // Don't send if it's not our turn, or if we're receiving a packet. if (!rfm22_timeToSend(radio_dev) || !PIOS_RFM22B_InRxWait((uint32_t)radio_dev)) { return RADIO_EVENT_RX_MODE; } // Don't send anything if we're bound to a coordinator and not yet connected. if (!rfm22_isCoordinator(radio_dev) && !rfm22_isConnected(radio_dev)) { return RADIO_EVENT_RX_MODE; } // Should we append PPM data to the packet? bool ppm_valid = false; if (radio_dev->ppm_send_mode) { len = RFM22B_PPM_NUM_CHANNELS + (radio_dev->ppm_only_mode ? 2 : 1); // Ensure we can fit the PPM data in the packet. if (max_data_len < len) { return RADIO_EVENT_RX_MODE; } // The first byte stores the LSB of each channel p[0] = 0; // Read the PPM input. for (uint8_t i = 0; i < RFM22B_PPM_NUM_CHANNELS; ++i) { int32_t val = radio_dev->ppm[i]; // Clamp and translate value, or transmit as reserved "invalid" constant if ((val == PIOS_RCVR_INVALID) || (val == PIOS_RCVR_TIMEOUT)) { val = RFM22B_PPM_INVALID; } else if (val > RFM22B_PPM_MAX_US) { ppm_valid = true; val = RFM22B_PPM_MAX; } else if (val < RFM22B_PPM_MIN_US) { ppm_valid = true; val = RFM22B_PPM_MIN; } else { ppm_valid = true; val = (val - RFM22B_PPM_MIN_US) / RFM22B_PPM_SCALE + RFM22B_PPM_MIN; } // Store LSB if (val & 1) { p[0] |= (1 << i); } // Store upper 8 bits in array p[i + 1] = val >> 1; } // The last byte is a CRC. if (radio_dev->ppm_only_mode) { uint8_t crc = 0; for (uint8_t i = 0; i < RFM22B_PPM_NUM_CHANNELS + 1; ++i) { crc = PIOS_CRC_updateByte(crc, p[i]); } p[RFM22B_PPM_NUM_CHANNELS + 1] = crc; } } // Append data from the com interface if applicable. bool packet_data = false; if (!radio_dev->ppm_only_mode) { uint8_t newlen = 0; bool need_yield = false; uint8_t i = 0; // Try to get some data to send while (newlen == 0 && i < 2) { radio_dev->last_stream_sent = (radio_dev->last_stream_sent + 1) % 2; if (!radio_dev->last_stream_sent) { if (radio_dev->tx_out_cb) { newlen = (radio_dev->tx_out_cb)(radio_dev->tx_out_context, p + len + 1, max_data_len - len - 1, NULL, &need_yield); } } else { if (radio_dev->aux_tx_out_cb) { newlen = (radio_dev->aux_tx_out_cb)(radio_dev->aux_tx_out_context, p + len + 1, max_data_len - len - 1, NULL, &need_yield); } } i++; } if (newlen) { packet_data = true; *(p + len) = radio_dev->last_stream_sent; len += newlen + 1; } } // Always send a packet if this modem is a coordinator. if ((len == 0) && !rfm22_isCoordinator(radio_dev)) { return RADIO_EVENT_RX_MODE; } // Increment the packet sequence number. radio_dev->stats.tx_seq++; // Add the error correcting code. if (!radio_dev->ppm_only_mode) { if (len != 0) { encode_data((unsigned char *)p, len, (unsigned char *)p); } len += RS_ECC_NPARITY; } // Only count the packet if it contains valid data. if (ppm_valid || packet_data) { TX_LED_ON; radio_dev->stats.tx_byte_count += len; } // Transmit the packet. PIOS_RFM22B_TransmitPacket((uint32_t)radio_dev, p, len); return RADIO_EVENT_NUM_EVENTS; } /** * Transmit packet data. * * @param[in] rfm22b_dev The device structure * @return enum pios_radio_event The next event to inject */ static enum pios_radio_event radio_txData(struct pios_rfm22b_dev *radio_dev) { enum pios_radio_event ret_event = RADIO_EVENT_NUM_EVENTS; pios_rfm22b_int_result res = PIOS_RFM22B_ProcessTx((uint32_t)radio_dev); // Is the transmition complete if (res == PIOS_RFM22B_TX_COMPLETE) { // Is this an ACK? ret_event = RADIO_EVENT_RX_MODE; radio_dev->tx_packet_handle = 0; radio_dev->tx_data_wr = radio_dev->tx_data_rd = 0; // Start a new transaction radio_dev->packet_start_time = 0; #ifdef PIOS_RFM22B_DEBUG_ON_TELEM D1_LED_OFF; #endif } return ret_event; } /** * Switch the radio into receive mode. * * @param[in] rfm22b_dev The device structure * @return enum pios_radio_event The next event to inject */ static enum pios_radio_event radio_setRxMode(struct pios_rfm22b_dev *rfm22b_dev) { if (!PIOS_RFM22B_ReceivePacket((uint32_t)rfm22b_dev, rfm22b_dev->rx_packet)) { return RADIO_EVENT_NUM_EVENTS; } rfm22b_dev->packet_start_time = 0; // No event generated return RADIO_EVENT_NUM_EVENTS; } /** * Complete the receipt of a packet. * * @param[in] radio_dev The device structure * @param[in] p The packet handle of the received packet. * @param[in] rc_len The number of bytes received. * @return enum pios_radio_event The next event to inject */ static enum pios_radio_event radio_receivePacket(struct pios_rfm22b_dev *radio_dev, uint8_t *p, uint16_t rx_len) { bool good_packet = true; bool corrected_packet = false; uint8_t stream_num = 0; uint8_t data_len = rx_len; // We don't rsencode ppm only packets. if (!radio_dev->ppm_only_mode) { data_len -= RS_ECC_NPARITY; // Attempt to correct any errors in the packet. if (data_len > 0) { decode_data((unsigned char *)p, rx_len); good_packet = check_syndrome() == 0; // We have an error. Try to correct it. if (!good_packet && (correct_errors_erasures((unsigned char *)p, rx_len, 0, 0) != 0)) { // We corrected it corrected_packet = true; } } } // Should we pull PPM data off of the head of the packet? if ((good_packet || corrected_packet) && radio_dev->ppm_recv_mode) { uint8_t ppm_len = RFM22B_PPM_NUM_CHANNELS + (radio_dev->ppm_only_mode ? 2 : 1); // Ensure the packet it long enough if (data_len < ppm_len) { good_packet = false; } // Verify the CRC if this is a PPM only packet. if ((good_packet || corrected_packet) && radio_dev->ppm_only_mode) { uint8_t crc = 0; for (uint8_t i = 0; i < RFM22B_PPM_NUM_CHANNELS + 1; ++i) { crc = PIOS_CRC_updateByte(crc, p[i]); } if (p[RFM22B_PPM_NUM_CHANNELS + 1] != crc) { good_packet = false; corrected_packet = false; } } if (good_packet || corrected_packet) { for (uint8_t i = 0; i < RFM22B_PPM_NUM_CHANNELS; ++i) { // Calculate 9-bit value taking the LSB from byte 0 uint32_t val = (p[i + 1] << 1) + ((p[0] >> i) & 1); // Is this a valid channel? if (val != RFM22B_PPM_INVALID) { radio_dev->ppm[i] = (uint16_t)(RFM22B_PPM_MIN_US + (val - RFM22B_PPM_MIN) * RFM22B_PPM_SCALE); } else { // Set failsafe value radio_dev->ppm[i] = PIOS_RCVR_TIMEOUT; } } p += RFM22B_PPM_NUM_CHANNELS + 1; data_len -= RFM22B_PPM_NUM_CHANNELS + 1; // Call the PPM received callback if it's available. if (radio_dev->ppm_callback) { radio_dev->ppm_callback(radio_dev->ppm_context, radio_dev->ppm); } } } // Set the packet status if (good_packet) { rfm22b_add_rx_status(radio_dev, RADIO_GOOD_RX_PACKET); } else if (corrected_packet) { // We corrected the error. rfm22b_add_rx_status(radio_dev, RADIO_CORRECTED_RX_PACKET); } else { // We couldn't correct the error, so drop the packet. rfm22b_add_rx_status(radio_dev, RADIO_ERROR_RX_PACKET); } // Increment the packet sequence number. radio_dev->stats.rx_seq++; enum pios_radio_event ret_event = RADIO_EVENT_RX_COMPLETE; if (good_packet || corrected_packet) { // Send the data to the com port bool rx_need_yield; if ((data_len > 0) && !radio_dev->ppm_only_mode) { stream_num = *p; p++; data_len--; if (!stream_num) { if (radio_dev->rx_in_cb) { (radio_dev->rx_in_cb)(radio_dev->rx_in_context, p, data_len, NULL, &rx_need_yield); } } else { if (radio_dev->aux_rx_in_cb) { (radio_dev->aux_rx_in_cb)(radio_dev->aux_rx_in_context, p, data_len, NULL, &rx_need_yield); } } } /* * If the packet is valid and destined for us we synchronize the clock. */ if (!rfm22_isCoordinator(radio_dev) && radio_dev->rx_destination_id == rfm22_destinationID(radio_dev)) { rfm22_synchronizeClock(radio_dev); } radio_dev->stats.link_state = OPLINKSTATUS_LINKSTATE_CONNECTED; radio_dev->last_contact = pios_rfm22_time_ms(); radio_dev->stats.rssi = radio_dev->rssi_dBm; radio_dev->stats.afc_correction = radio_dev->afc_correction_Hz; } else { ret_event = RADIO_EVENT_RX_COMPLETE; } return ret_event; } /** * Receive the packet data. * * @param[in] rfm22b_dev The device structure * @return enum pios_radio_event The next event to inject */ static enum pios_radio_event radio_rxData(struct pios_rfm22b_dev *radio_dev) { enum pios_radio_event ret_event = RADIO_EVENT_NUM_EVENTS; pios_rfm22b_int_result res = PIOS_RFM22B_ProcessRx((uint32_t)radio_dev); switch (res) { case PIOS_RFM22B_RX_COMPLETE: // Receive the packet. ret_event = radio_receivePacket(radio_dev, radio_dev->rx_packet_handle, radio_dev->rx_buffer_wr); radio_dev->rx_buffer_wr = 0; #ifdef PIOS_RFM22B_DEBUG_ON_TELEM D2_LED_OFF; #endif // Start a new transaction radio_dev->packet_start_time = 0; break; case PIOS_RFM22B_INT_FAILURE: ret_event = RADIO_EVENT_RX_MODE; break; default: // do nothing. break; } return ret_event; } /***************************************************************************** * Link Statistics Functions *****************************************************************************/ /** * Calculate stats from the packet receipt, transmission statistics. * * @param[in] rfm22b_dev The device structure */ static void rfm22_updateStats(struct pios_rfm22b_dev *rfm22b_dev) { // Add the RX packet statistics rfm22b_dev->stats.rx_good = 0; rfm22b_dev->stats.rx_corrected = 0; rfm22b_dev->stats.rx_error = 0; rfm22b_dev->stats.rx_failure = 0; if (!rfm22_isConnected(rfm22b_dev)) { // Set link_quality to 0 and Rssi to noise floor if disconnected rfm22b_dev->stats.link_quality = 0; rfm22b_dev->stats.rssi = -127; return; } // Check if connection is timed out if (rfm22_checkTimeOut(rfm22b_dev)) { // Set the link state to disconnected. rfm22b_dev->stats.link_state = OPLINKSTATUS_LINKSTATE_DISCONNECTED; } for (uint8_t i = 0; i < RFM22B_RX_PACKET_STATS_LEN; ++i) { uint32_t val = rfm22b_dev->rx_packet_stats[i]; for (uint8_t j = 0; j < 16; ++j) { switch ((val >> (j * 2)) & 0x3) { case RADIO_GOOD_RX_PACKET: rfm22b_dev->stats.rx_good++; break; case RADIO_CORRECTED_RX_PACKET: rfm22b_dev->stats.rx_corrected++; break; case RADIO_ERROR_RX_PACKET: rfm22b_dev->stats.rx_error++; break; case RADIO_FAILURE_RX_PACKET: rfm22b_dev->stats.rx_failure++; break; } } } // Calculate the link quality metric, which is related to the number of good packets in relation to the number of bad packets. // Note: This assumes that the number of packets sampled for the stats is 64. // Using this equation, error and resent packets are counted as -2, and corrected packets are counted as -1. // The range is 0 (all error or resent packets) to 128 (all good packets). rfm22b_dev->stats.link_quality = 64 + rfm22b_dev->stats.rx_good - rfm22b_dev->stats.rx_error - rfm22b_dev->stats.rx_failure; } /** * A timeout occured ? * * @param[in] rfm22b_dev The device structure */ static bool rfm22_checkTimeOut(struct pios_rfm22b_dev *rfm22b_dev) { return pios_rfm22_time_difference_ms(rfm22b_dev->last_contact, pios_rfm22_time_ms()) >= CONNECTED_TIMEOUT; } /** * Add a status value to the RX packet status array. * * @param[in] rfm22b_dev The device structure * @param[in] status The packet status value */ static void rfm22b_add_rx_status(struct pios_rfm22b_dev *rfm22b_dev, enum pios_rfm22b_rx_packet_status status) { // Shift the status registers for (uint8_t i = RFM22B_RX_PACKET_STATS_LEN - 1; i > 0; --i) { rfm22b_dev->rx_packet_stats[i] = (rfm22b_dev->rx_packet_stats[i] << 2) | (rfm22b_dev->rx_packet_stats[i - 1] >> 30); } rfm22b_dev->rx_packet_stats[0] = (rfm22b_dev->rx_packet_stats[0] << 2) | status; } /***************************************************************************** * Connection Handling Functions *****************************************************************************/ /** * Are we a coordinator modem? * * @param[in] rfm22b_dev The device structure */ static bool rfm22_isCoordinator(struct pios_rfm22b_dev *rfm22b_dev) { return rfm22b_dev->coordinator; } /** * Returns the destination ID to send packets to. * * @param[in] rfm22b_id The RFM22B device index. * @return The destination ID */ uint32_t rfm22_destinationID(struct pios_rfm22b_dev *rfm22b_dev) { if (rfm22_isCoordinator(rfm22b_dev)) { return rfm22b_dev->deviceID; } else if (rfm22b_dev->coordinatorID) { return rfm22b_dev->coordinatorID; } else { return 0xffffffff; } } /***************************************************************************** * Frequency Hopping Functions *****************************************************************************/ /** * Synchronize the clock after a packet receive from our coordinator on the syncronization channel. * This function should be called when a packet is received on the synchronization channel. * * @param[in] rfm22b_dev The device structure */ static void rfm22_synchronizeClock(struct pios_rfm22b_dev *rfm22b_dev) { uint32_t start_time = rfm22b_dev->packet_start_time; // This packet was transmitted on channel 0, calculate the time delta that will force us to transmit on channel 0 at the time this packet started. uint16_t frequency_hop_cycle_time = rfm22b_dev->packet_time * rfm22b_dev->num_channels; uint16_t time_delta = start_time % frequency_hop_cycle_time; // Calculate the adjustment for the preamble uint8_t offset = (uint8_t)ceil(35000.0F / data_rate[rfm22b_dev->datarate]); rfm22b_dev->time_delta = frequency_hop_cycle_time - time_delta + offset + rfm22b_dev->packet_time * rfm22b_dev->channel_index; } /** * Return the estimated current time on the coordinator modem. * This is the master clock used for all synchronization. * * @param[in] rfm22b_dev The device structure */ static uint32_t rfm22_coordinatorTime(struct pios_rfm22b_dev *rfm22b_dev) { uint32_t time = pios_rfm22_time_ms(); if (rfm22_isCoordinator(rfm22b_dev)) { return time; } return time + rfm22b_dev->time_delta; } /** * Return true if this modem is in the send interval, which allows the modem to initiate a transmit. * * @param[in] rfm22b_dev The device structure */ static bool rfm22_timeToSend(struct pios_rfm22b_dev *rfm22b_dev) { uint32_t time = rfm22_coordinatorTime(rfm22b_dev); bool is_coordinator = rfm22_isCoordinator(rfm22b_dev); // If this is a one-way link, only the coordinator can send. uint8_t packet_period = rfm22b_dev->packet_time; if (rfm22b_dev->one_way_link) { if (is_coordinator) { return ((time - 1) % (packet_period)) == 0; } else { return false; } } if (!is_coordinator) { time += packet_period - 1; } else { time -= 1; } return (time % (packet_period * 2)) == 0; } /** * Calculate the nth channel index. * * @param[in] rfm22b_dev The device structure * @param[in] index The channel index to calculate */ static uint8_t rfm22_calcChannel(struct pios_rfm22b_dev *rfm22b_dev, uint8_t index) { // Make sure we don't index outside of the range. uint8_t idx = index % rfm22b_dev->num_channels; // Are we switching to a new channel? if ((idx != rfm22b_dev->channel_index) && !rfm22_isCoordinator(rfm22b_dev) && rfm22_checkTimeOut(rfm22b_dev)) { // Set the link state to disconnected. rfm22b_dev->stats.link_state = OPLINKSTATUS_LINKSTATE_DISCONNECTED; // Update stats rfm22_updateStats(rfm22b_dev); // Stay on first channel. idx = 0; } rfm22b_dev->channel_index = idx; return rfm22b_dev->channels[idx]; } /** * Calculate what the current channel shold be. * * @param[in] rfm22b_dev The device structure */ static uint8_t rfm22_calcChannelFromClock(struct pios_rfm22b_dev *rfm22b_dev) { uint32_t time = rfm22_coordinatorTime(rfm22b_dev); // Divide time into 8ms blocks. Coordinator sends in first 2 ms, and remote send in 5th and 6th ms. // Channel changes occur in the last 2 ms. uint8_t n = (time / rfm22b_dev->packet_time) % rfm22b_dev->num_channels; return rfm22_calcChannel(rfm22b_dev, n); } /** * Change channels to the calculated current channel. * * @param[in] rfm22b_dev The device structure */ static bool rfm22_changeChannel(struct pios_rfm22b_dev *rfm22b_dev) { // A disconnected non-coordinator modem should sit on the sync channel until connected. if (!rfm22_isCoordinator(rfm22b_dev) && !rfm22_isConnected(rfm22b_dev)) { return rfm22_setFreqHopChannel(rfm22b_dev, rfm22_calcChannel(rfm22b_dev, 0)); } else { return rfm22_setFreqHopChannel(rfm22b_dev, rfm22_calcChannelFromClock(rfm22b_dev)); } } /***************************************************************************** * Error Handling Functions *****************************************************************************/ /** * Recover from a transmit failure. * * @param[in] rfm22b_dev The device structure * @return enum pios_radio_event The next event to inject */ static enum pios_radio_event rfm22_txFailure(struct pios_rfm22b_dev *rfm22b_dev) { rfm22b_dev->stats.tx_failure++; rfm22b_dev->packet_start_time = 0; rfm22b_dev->tx_data_wr = rfm22b_dev->tx_data_rd = 0; return RADIO_EVENT_TX_START; } /** * Recover from a timeout event. * * @param[in] rfm22b_dev The device structure * @return enum pios_radio_event The next event to inject */ static enum pios_radio_event rfm22_timeout(struct pios_rfm22b_dev *rfm22b_dev) { rfm22b_dev->stats.timeouts++; rfm22b_dev->packet_start_time = 0; // Release the Tx packet if it's set. if (rfm22b_dev->tx_packet_handle != 0) { rfm22b_dev->tx_data_rd = rfm22b_dev->tx_data_wr = 0; } rfm22b_dev->rfm22b_state = RFM22B_STATE_TRANSITION; rfm22b_dev->rx_buffer_wr = 0; TX_LED_OFF; RX_LED_OFF; #ifdef PIOS_RFM22B_DEBUG_ON_TELEM D1_LED_OFF; D2_LED_OFF; D3_LED_OFF; D4_LED_OFF; #endif return RADIO_EVENT_RX_MODE; } /** * Recover from a severe error. * * @param[in] rfm22b_dev The device structure * @return enum pios_radio_event The next event to inject */ static enum pios_radio_event rfm22_error(struct pios_rfm22b_dev *rfm22b_dev) { rfm22b_dev->stats.resets++; rfm22_clearLEDs(); return RADIO_EVENT_INITIALIZE; } /** * A fatal error has occured in the state machine. * this should not happen. * * @parem [in] rfm22b_dev The device structure * @return enum pios_radio_event The next event to inject */ static enum pios_radio_event rfm22_fatal_error(__attribute__((unused)) struct pios_rfm22b_dev *rfm22b_dev) { // RF module error .. flash the LED's rfm22_clearLEDs(); for (unsigned int j = 0; j < 16; j++) { USB_LED_ON; LINK_LED_ON; RX_LED_OFF; TX_LED_OFF; PIOS_DELAY_WaitmS(200); USB_LED_OFF; LINK_LED_OFF; RX_LED_ON; TX_LED_ON; PIOS_DELAY_WaitmS(200); } PIOS_DELAY_WaitmS(1000); PIOS_Assert(0); return RADIO_EVENT_FATAL_ERROR; } /***************************************************************************** * Utility Functions *****************************************************************************/ /** * Get the current time in ms from the ticks counter. */ static uint32_t pios_rfm22_time_ms() { return xTaskGetTickCount() * portTICK_RATE_MS; } /** * Calculate the time difference between the start time and end time. * Times are in ms. Also handles rollover. * * @param[in] start_time The start time in ms. * @param[in] end_time The end time in ms. */ static uint32_t pios_rfm22_time_difference_ms(uint32_t start_time, uint32_t end_time) { if (end_time >= start_time) { return end_time - start_time; } // Rollover return (UINT32_MAX - start_time) + end_time; } /** * Allocate the device structure */ #if defined(PIOS_INCLUDE_FREERTOS) static struct pios_rfm22b_dev *pios_rfm22_alloc(void) { struct pios_rfm22b_dev *rfm22b_dev; rfm22b_dev = (struct pios_rfm22b_dev *)pios_malloc(sizeof(*rfm22b_dev)); if (!rfm22b_dev) { return NULL; } memset(rfm22b_dev, 0, sizeof(*rfm22b_dev)); rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC; return rfm22b_dev; } #else static struct pios_rfm22b_dev pios_rfm22b_devs[PIOS_RFM22B_MAX_DEVS]; static uint8_t pios_rfm22b_num_devs; static struct pios_rfm22b_dev *pios_rfm22_alloc(void) { struct pios_rfm22b_dev *rfm22b_dev; if (pios_rfm22b_num_devs >= PIOS_RFM22B_MAX_DEVS) { return NULL; } rfm22b_dev = &pios_rfm22b_devs[pios_rfm22b_num_devs++]; memset(rfm22b_dev, 0, sizeof(*rfm22b_dev)); rfm22b_dev->magic = PIOS_RFM22B_DEV_MAGIC; return rfm22b_dev; } #endif /* if defined(PIOS_INCLUDE_FREERTOS) */ /** * Turn off all of the LEDs */ static void rfm22_clearLEDs(void) { LINK_LED_OFF; RX_LED_OFF; TX_LED_OFF; #ifdef PIOS_RFM22B_DEBUG_ON_TELEM D1_LED_OFF; D2_LED_OFF; D3_LED_OFF; D4_LED_OFF; #endif } /***************************************************************************** * SPI Read/Write Functions *****************************************************************************/ /** * Assert the chip select line. * * @param[in] rfm22b_dev The RFM22B device. */ static void rfm22_assertCs(struct pios_rfm22b_dev *rfm22b_dev) { PIOS_DELAY_WaituS(1); if (rfm22b_dev->spi_id != 0) { PIOS_SPI_RC_PinSet(rfm22b_dev->spi_id, rfm22b_dev->slave_num, 0); } } /** * Deassert the chip select line. * * @param[in] rfm22b_dev The RFM22B device structure pointer. */ static void rfm22_deassertCs(struct pios_rfm22b_dev *rfm22b_dev) { if (rfm22b_dev->spi_id != 0) { PIOS_SPI_RC_PinSet(rfm22b_dev->spi_id, rfm22b_dev->slave_num, 1); } } /** * Claim the SPI bus. * * @param[in] rfm22b_dev The RFM22B device structure pointer. */ static void rfm22_claimBus(struct pios_rfm22b_dev *rfm22b_dev) { if (rfm22b_dev->spi_id != 0) { PIOS_SPI_ClaimBus(rfm22b_dev->spi_id); } } /** * Release the SPI bus. * * @param[in] rfm22b_dev The RFM22B device structure pointer. */ static void rfm22_releaseBus(struct pios_rfm22b_dev *rfm22b_dev) { if (rfm22b_dev->spi_id != 0) { PIOS_SPI_ReleaseBus(rfm22b_dev->spi_id); } } /** * Claim the semaphore and write a byte to a register * * @param[in] rfm22b_dev The RFM22B device. * @param[in] addr The address to write to * @param[in] data The datat to write to that address */ static void rfm22_write_claim(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr, uint8_t data) { rfm22_claimBus(rfm22b_dev); rfm22_assertCs(rfm22b_dev); uint8_t buf[2] = { addr | 0x80, data }; PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, buf, NULL, sizeof(buf), NULL); rfm22_deassertCs(rfm22b_dev); rfm22_releaseBus(rfm22b_dev); } /** * Write a byte to a register without claiming the semaphore * * @param[in] rfm22b_dev The RFM22B device. * @param[in] addr The address to write to * @param[in] data The datat to write to that address */ static void rfm22_write(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr, uint8_t data) { rfm22_assertCs(rfm22b_dev); uint8_t buf[2] = { addr | 0x80, data }; PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, buf, NULL, sizeof(buf), NULL); rfm22_deassertCs(rfm22b_dev); } /** * Read a byte from an RFM22b register without claiming the bus * * @param[in] rfm22b_dev The RFM22B device structure pointer. * @param[in] addr The address to read from * @return Returns the result of the register read */ static uint8_t rfm22_read(struct pios_rfm22b_dev *rfm22b_dev, uint8_t addr) { uint8_t out[2] = { addr &0x7F, 0xFF }; uint8_t in[2]; rfm22_assertCs(rfm22b_dev); PIOS_SPI_TransferBlock(rfm22b_dev->spi_id, out, in, sizeof(out), NULL); rfm22_deassertCs(rfm22b_dev); return in[1]; } static void rfm22_hmac_sha1(const uint8_t *data, size_t len, uint8_t key[SHA1_DIGEST_LENGTH], uint8_t digest[SHA1_DIGEST_LENGTH]) { uint8_t ipad[64] = { 0 }; uint8_t opad[64] = { 0 }; static SHA1_CTX *ctx; ctx = pios_malloc(sizeof(SHA1_CTX)); memcpy(ipad, key, SHA1_DIGEST_LENGTH); memcpy(opad, key, SHA1_DIGEST_LENGTH); for (int i = 0; i < 64; i++) { ipad[i] ^= 0x36; opad[i] ^= 0x5c; } SHA1Init(ctx); SHA1Update(ctx, ipad, sizeof(ipad)); SHA1Update(ctx, data, len); SHA1Final(digest, ctx); SHA1Init(ctx); SHA1Update(ctx, opad, sizeof(opad)); SHA1Update(ctx, digest, SHA1_DIGEST_LENGTH); SHA1Final(digest, ctx); pios_free(ctx); } static bool rfm22_gen_channels(uint32_t coordid, enum rfm22b_datarate rate, uint8_t min, uint8_t max, uint8_t channels[MAX_CHANNELS], uint8_t *clen) { // Define first and last channel to be used within min/max values // according to the frequency deviation, without up/down overflow. uint8_t chan_min_limit = min + channel_limits[rate]; uint8_t chan_max_limit = max - channel_limits[rate]; // Define how many channels we can use according to the spacing. uint8_t chan_count = ((chan_max_limit - chan_min_limit) / channel_spacing[rate]) + 1; uint32_t data = 0; uint8_t cpos = 0; uint8_t key[SHA1_DIGEST_LENGTH] = { 0 }; uint8_t digest[SHA1_DIGEST_LENGTH]; uint8_t *all_channels; all_channels = pios_malloc(RFM22B_NUM_CHANNELS); memcpy(key, &coordid, sizeof(coordid)); // Fill all_channels[] with usable channels for (int i = 0; i < chan_count; i++) { all_channels[i] = chan_min_limit + (i * channel_spacing[rate]); } // DEBUG_PRINTF(3, "\r\nChannel Min: %d Max:%d - Spacing: %d Limits: %d\r\n", min, max, channel_spacing[rate], channel_limits[rate]); // DEBUG_PRINTF(3, "Result: Channel count: %d - Usable channels from ch%d to ch%d\r\n", chan_count, all_channels[0], all_channels[chan_count - 1]); int j = SHA1_DIGEST_LENGTH; for (int i = 0; i < chan_count && i < MAX_CHANNELS; i++) { uint8_t rnd; uint8_t r; uint8_t tmp; if (j == SHA1_DIGEST_LENGTH) { rfm22_hmac_sha1((uint8_t *)&data, sizeof(data), key, digest); j = 0; data++; } rnd = digest[j]; j++; r = rnd % (chan_count - i) + i; tmp = all_channels[i]; all_channels[i] = all_channels[r]; all_channels[r] = tmp; } // DEBUG_PRINTF(3, "Final channel list:"); for (int i = 0; i < chan_count && cpos < MAX_CHANNELS; i++, cpos++) { channels[cpos] = all_channels[i]; // DEBUG_PRINTF(3, " %d ", all_channels[i]); } *clen = cpos & 0xfe; pios_free(all_channels); return *clen > 0; } #endif /* PIOS_INCLUDE_RFM22B */ /** * @} * @} */