/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_PPM PPM Input Functions * @brief Code to measure PPM input and seperate into channels * @{ * * @file pios_ppm.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief PPM Input functions (STM32 dependent) * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Project Includes */ #include "pios.h" #include "pios_ppm_priv.h" #if defined(PIOS_INCLUDE_PPM) /* Provide a RCVR driver */ static int32_t PIOS_PPM_Get(uint32_t rcvr_id, uint8_t channel); const struct pios_rcvr_driver pios_ppm_rcvr_driver = { .read = PIOS_PPM_Get, }; #define PIOS_PPM_IN_MIN_SYNC_PULSE_US 7000 // microseconds #define PIOS_PPM_IN_MIN_CHANNEL_PULSE_US 750 // microseconds #define PIOS_PPM_IN_MAX_CHANNEL_PULSE_US 2400 // microseconds #define PIOS_PPM_INPUT_INVALID 0 /* Local Variables */ static TIM_ICInitTypeDef TIM_ICInitStructure; static uint8_t PulseIndex; static uint32_t PreviousTime; static uint32_t CurrentTime; static uint32_t DeltaTime; static uint32_t CaptureValue[PIOS_PPM_NUM_INPUTS]; static uint32_t LargeCounter; static uint8_t supv_timer = 0; static bool Tracking; static bool Fresh; static void PIOS_PPM_Supervisor(uint32_t ppm_id); void PIOS_PPM_Init(void) { /* Flush counter variables */ int32_t i; PulseIndex = 0; PreviousTime = 0; CurrentTime = 0; DeltaTime = 0; LargeCounter = 0; Tracking = FALSE; Fresh = FALSE; for (i = 0; i < PIOS_PPM_NUM_INPUTS; i++) { CaptureValue[i] = 0; } NVIC_InitTypeDef NVIC_InitStructure = pios_ppm_cfg.irq.init; /* Enable appropriate clock to timer module */ switch((int32_t) pios_ppm_cfg.timer) { case (int32_t)TIM1: NVIC_InitStructure.NVIC_IRQChannel = TIM1_CC_IRQn; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); break; case (int32_t)TIM2: NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); break; case (int32_t)TIM3: NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); break; case (int32_t)TIM4: NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE); break; #ifdef STM32F10X_HD case (int32_t)TIM5: NVIC_InitStructure.NVIC_IRQChannel = TIM5_IRQn; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5, ENABLE); break; case (int32_t)TIM6: NVIC_InitStructure.NVIC_IRQChannel = TIM6_IRQn; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE); break; case (int32_t)TIM7: NVIC_InitStructure.NVIC_IRQChannel = TIM7_IRQn; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM7, ENABLE); break; case (int32_t)TIM8: NVIC_InitStructure.NVIC_IRQChannel = TIM8_CC_IRQn; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM8, ENABLE); break; #endif } /* Enable timer interrupts */ NVIC_Init(&NVIC_InitStructure); /* Configure input pins */ GPIO_InitTypeDef GPIO_InitStructure = pios_ppm_cfg.gpio_init; GPIO_Init(pios_ppm_cfg.port, &GPIO_InitStructure); /* Configure timer for input capture */ TIM_ICInitStructure = pios_ppm_cfg.tim_ic_init; TIM_ICInit(pios_ppm_cfg.timer, &TIM_ICInitStructure); /* Configure timer clocks */ TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure = pios_ppm_cfg.tim_base_init; TIM_InternalClockConfig(pios_ppm_cfg.timer); TIM_TimeBaseInit(pios_ppm_cfg.timer, &TIM_TimeBaseStructure); /* Enable the Capture Compare Interrupt Request */ TIM_ITConfig(pios_ppm_cfg.timer, pios_ppm_cfg.ccr | TIM_IT_Update, ENABLE); /* Enable timers */ TIM_Cmd(pios_ppm_cfg.timer, ENABLE); /* Setup local variable which stays in this scope */ /* Doing this here and using a local variable saves doing it in the ISR */ TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStructure.TIM_ICFilter = 0x0; if (!PIOS_RTC_RegisterTickCallback(PIOS_PPM_Supervisor, 0)) { PIOS_DEBUG_Assert(0); } } /** * Get the value of an input channel * \param[in] Channel Number of the channel desired * \output -1 Channel not available * \output >0 Channel value */ static int32_t PIOS_PPM_Get(uint32_t rcvr_id, uint8_t channel) { /* Return error if channel not available */ if (channel >= PIOS_PPM_NUM_INPUTS) { return -1; } return CaptureValue[channel]; } /** * Handle TIMx global interrupt request * Some work and testing still needed, need to detect start of frame and decode pulses * */ void PIOS_PPM_irq_handler(void) { /* Timer Overflow Interrupt * The time between timer overflows must be greater than the PPM * frame period. If a full frame has not decoded in the between timer * overflows then capture values should be cleared. */ if (TIM_GetITStatus(pios_ppm_cfg.timer, TIM_IT_Update) == SET) { /* Clear TIMx overflow interrupt pending bit */ TIM_ClearITPendingBit(pios_ppm_cfg.timer, TIM_IT_Update); /* If sharing a timer with a servo output the ARR register will be set according to the PWM period. When timer reaches the ARR value a timer overflow interrupt will fire. We use the interrupt accumulate a 32-bit timer. */ LargeCounter = LargeCounter + pios_ppm_cfg.timer->ARR; } /* Signal edge interrupt */ if (TIM_GetITStatus(pios_ppm_cfg.timer, pios_ppm_cfg.ccr) == SET) { PreviousTime = CurrentTime; switch((int32_t) pios_ppm_cfg.ccr) { case (int32_t)TIM_IT_CC1: CurrentTime = TIM_GetCapture1(pios_ppm_cfg.timer); break; case (int32_t)TIM_IT_CC2: CurrentTime = TIM_GetCapture2(pios_ppm_cfg.timer); break; case (int32_t)TIM_IT_CC3: CurrentTime = TIM_GetCapture3(pios_ppm_cfg.timer); break; case (int32_t)TIM_IT_CC4: CurrentTime = TIM_GetCapture4(pios_ppm_cfg.timer); break; } /* Clear TIMx Capture compare interrupt pending bit */ TIM_ClearITPendingBit(pios_ppm_cfg.timer, pios_ppm_cfg.ccr); /* Convert to 32-bit timer result */ CurrentTime = CurrentTime + LargeCounter; /* Capture computation */ DeltaTime = CurrentTime - PreviousTime; PreviousTime = CurrentTime; /* Sync pulse detection */ if (DeltaTime > PIOS_PPM_IN_MIN_SYNC_PULSE_US) { Fresh = TRUE; Tracking = TRUE; PulseIndex = 0; } else if (Tracking) { /* Valid pulse duration 0.75 to 2.5 ms*/ if (DeltaTime > PIOS_PPM_IN_MIN_CHANNEL_PULSE_US && DeltaTime < PIOS_PPM_IN_MAX_CHANNEL_PULSE_US && PulseIndex < PIOS_PPM_NUM_INPUTS) { CaptureValue[PulseIndex] = DeltaTime; PulseIndex++; if (PulseIndex == PIOS_PPM_NUM_INPUTS) { PulseIndex = 0; } } else { /* Not a valid pulse duration */ Tracking = FALSE; for (uint32_t i = 0; i < PIOS_PPM_NUM_INPUTS ; i++) { CaptureValue[PulseIndex] = PIOS_PPM_INPUT_INVALID; } } } } } static void PIOS_PPM_Supervisor(uint32_t ppm_id) { /* * RTC runs at 625Hz so divide down the base rate so * that this loop runs at 25Hz. */ if(++supv_timer < 25) { return; } supv_timer = 0; if (!Fresh) { Tracking = FALSE; for (int32_t i = 0; i < PIOS_PPM_NUM_INPUTS ; i++) { CaptureValue[PulseIndex] = PIOS_PPM_INPUT_INVALID; } } Fresh = FALSE; } #endif /** * @} * @} */