/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_ADC ADC Functions * @brief STM32F30x ADC PIOS interface * @{ * * @file pios_adc.c * @author The LibrePilot Project, http://www.librepilot.org Copyright (C) 2017. * @brief Analog to Digital conversion routines * @see The GNU Public License (GPL) Version 3 *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "pios.h" #ifdef PIOS_INCLUDE_ADC #include #include #if !defined(PIOS_ADC_MAX_SAMPLES) #define PIOS_ADC_MAX_SAMPLES 0 #endif #if !defined(PIOS_ADC_MAX_OVERSAMPLING) #define PIOS_ADC_MAX_OVERSAMPLING 0 #endif #if !defined(PIOS_ADC_USE_ADC2) #define PIOS_ADC_USE_ADC2 0 #endif #if !defined(PIOS_ADC_NUM_CHANNELS) #define PIOS_ADC_NUM_CHANNELS 0 #endif struct pios_adc_pin_config { GPIO_TypeDef *port; uint32_t pin; uint32_t channel; bool initialize; }; static const struct pios_adc_pin_config config[] = PIOS_DMA_PIN_CONFIG; #define PIOS_ADC_NUM_PINS (sizeof(config) / sizeof(config[0])) #define PIOS_ADC_DMA_BUFFER_SIZE (PIOS_ADC_MAX_SAMPLES * PIOS_ADC_NUM_PINS) // Private types enum pios_adc_dev_magic { PIOS_ADC_DEV_MAGIC = 0x58375124, }; struct adc_accumulator { uint32_t accumulator; uint32_t count; }; struct pios_adc_dev { const struct pios_adc_cfg *cfg; ADCCallback callback_function; #if defined(PIOS_INCLUDE_FREERTOS) xQueueHandle data_queue; #endif enum pios_adc_dev_magic magic; volatile uint16_t raw_data_buffer[PIOS_ADC_DMA_BUFFER_SIZE] __attribute__((aligned(4))); // Double buffer that DMA just used struct adc_accumulator accumulator[PIOS_ADC_NUM_PINS]; }; struct pios_adc_dev *pios_adc_dev; // Private functions void PIOS_ADC_downsample_data(); static struct pios_adc_dev *PIOS_ADC_Allocate(); static bool PIOS_ADC_validate(struct pios_adc_dev *); static void init_pins(struct pios_adc_dev *adc_dev); static void init_dma(struct pios_adc_dev *adc_dev); static void init_adc(struct pios_adc_dev *adc_dev); static void init_pins(__attribute__((unused)) struct pios_adc_dev *adc_dev) { for (uint32_t i = 0; i < PIOS_ADC_NUM_PINS; ++i) { if (!config[i].initialize) { continue; } PIOS_ADC_PinSetup(i); } } static void init_dma(struct pios_adc_dev *adc_dev) { /* Disable interrupts */ DMA_ITConfig(pios_adc_dev->cfg->dma.rx.channel, pios_adc_dev->cfg->dma.irq.flags, DISABLE); /* Configure DMA channel */ DMA_DeInit(adc_dev->cfg->dma.rx.channel); DMA_InitTypeDef DMAInit = adc_dev->cfg->dma.rx.init; DMAInit.DMA_PeripheralBaseAddr = (uint32_t)&adc_dev->cfg->adc_dev->DR; DMAInit.DMA_MemoryBaseAddr = (uint32_t)&pios_adc_dev->raw_data_buffer[0]; DMAInit.DMA_BufferSize = PIOS_ADC_DMA_BUFFER_SIZE; DMAInit.DMA_DIR = DMA_DIR_PeripheralSRC; DMAInit.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMAInit.DMA_MemoryInc = DMA_MemoryInc_Enable; DMAInit.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMAInit.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMAInit.DMA_Mode = DMA_Mode_Circular; DMAInit.DMA_M2M = DMA_M2M_Disable; DMA_Init(adc_dev->cfg->dma.rx.channel, &DMAInit); /* channel is actually stream ... */ /* enable DMA */ DMA_Cmd(adc_dev->cfg->dma.rx.channel, ENABLE); /* Trigger interrupt when for half conversions too to indicate double buffer */ DMA_ITConfig(adc_dev->cfg->dma.rx.channel, DMA_IT_TC, ENABLE); DMA_ITConfig(adc_dev->cfg->dma.rx.channel, DMA_IT_HT, ENABLE); /* Configure DMA interrupt */ NVIC_InitTypeDef NVICInit = adc_dev->cfg->dma.irq.init; NVIC_Init(&NVICInit); } static void init_adc(struct pios_adc_dev *adc_dev) { ADC_DeInit(adc_dev->cfg->adc_dev); if (adc_dev->cfg->adc_dev == ADC1 || adc_dev->cfg->adc_dev == ADC2) { RCC_ADCCLKConfig(RCC_ADC12PLLCLK_Div32); } else { RCC_ADCCLKConfig(RCC_ADC34PLLCLK_Div32); } ADC_VoltageRegulatorCmd(adc_dev->cfg->adc_dev, ENABLE); PIOS_DELAY_WaituS(10); ADC_SelectCalibrationMode(adc_dev->cfg->adc_dev, ADC_CalibrationMode_Single); ADC_StartCalibration(adc_dev->cfg->adc_dev); while (ADC_GetCalibrationStatus(adc_dev->cfg->adc_dev) != RESET) { ; } /* Do common ADC init */ ADC_CommonInitTypeDef ADC_CommonInitStructure; ADC_CommonStructInit(&ADC_CommonInitStructure); ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; ADC_CommonInitStructure.ADC_Clock = ADC_Clock_AsynClkMode; ADC_CommonInitStructure.ADC_DMAMode = ADC_DMAMode_Circular; ADC_CommonInitStructure.ADC_TwoSamplingDelay = 0; ADC_DMAConfig(adc_dev->cfg->adc_dev, ADC_DMAMode_Circular); ADC_CommonInit(adc_dev->cfg->adc_dev, &ADC_CommonInitStructure); ADC_InitTypeDef ADC_InitStructure; ADC_StructInit(&ADC_InitStructure); ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; ADC_InitStructure.ADC_ContinuousConvMode = ADC_ContinuousConvMode_Enable; ADC_InitStructure.ADC_ExternalTrigConvEvent = ADC_ExternalTrigConvEvent_0; ADC_InitStructure.ADC_ExternalTrigEventEdge = ADC_ExternalTrigEventEdge_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfRegChannel = ((PIOS_ADC_NUM_PINS) /* >> 1*/); ADC_Init(adc_dev->cfg->adc_dev, &ADC_InitStructure); /* Enable DMA request */ ADC_DMACmd(adc_dev->cfg->adc_dev, ENABLE); /* Configure input scan */ for (uint32_t i = 0; i < PIOS_ADC_NUM_PINS; i++) { ADC_RegularChannelConfig(adc_dev->cfg->adc_dev, config[i].channel, i + 1, ADC_SampleTime_61Cycles5); /* XXX this is totally arbitrary... */ } ADC_Cmd(adc_dev->cfg->adc_dev, ENABLE); while (!ADC_GetFlagStatus(adc_dev->cfg->adc_dev, ADC_FLAG_RDY)) { ; } ADC_StartConversion(adc_dev->cfg->adc_dev); } static bool PIOS_ADC_validate(struct pios_adc_dev *dev) { if (dev == NULL) { return false; } return dev->magic == PIOS_ADC_DEV_MAGIC; } #if defined(PIOS_INCLUDE_FREERTOS) static struct pios_adc_dev *PIOS_ADC_Allocate() { struct pios_adc_dev *adc_dev; adc_dev = (struct pios_adc_dev *)pios_malloc(sizeof(*adc_dev)); if (!adc_dev) { return NULL; } memset(adc_dev, 0, sizeof(*adc_dev)); adc_dev->magic = PIOS_ADC_DEV_MAGIC; return adc_dev; } #else #error Not implemented static struct pios_adc_dev *PIOS_ADC_Allocate() { return (struct pios_adc_dev *)NULL; } #endif /** * @brief Init the ADC. */ int32_t PIOS_ADC_Init(const struct pios_adc_cfg *cfg) { PIOS_Assert(cfg); pios_adc_dev = PIOS_ADC_Allocate(); if (pios_adc_dev == NULL) { return -1; } pios_adc_dev->cfg = cfg; pios_adc_dev->callback_function = NULL; #if defined(PIOS_INCLUDE_FREERTOS) pios_adc_dev->data_queue = NULL; #endif init_pins(pios_adc_dev); init_dma(pios_adc_dev); init_adc(pios_adc_dev); return 0; } /** * @brief Configure the ADC to run at a fixed oversampling * @param[in] oversampling the amount of oversampling to run at */ void PIOS_ADC_Config(__attribute__((unused)) uint32_t oversampling) { /* we ignore this */ } /** * Returns value of an ADC Pin * @param[in] pin number * @return ADC pin value averaged over the set of samples since the last reading. * @return -1 if pin doesn't exist * @return -2 if no data acquired since last read */ int32_t last_conv_value; int32_t PIOS_ADC_PinGet(uint32_t pin) { int32_t result; /* Check if pin exists */ if (pin >= PIOS_ADC_NUM_PINS) { return -1; } if (pios_adc_dev->accumulator[pin].accumulator <= 0) { return -2; } /* return accumulated result and clear accumulator */ result = pios_adc_dev->accumulator[pin].accumulator / (pios_adc_dev->accumulator[pin].count ? : 1); pios_adc_dev->accumulator[pin].accumulator = result; pios_adc_dev->accumulator[pin].count = 1; return result; } float PIOS_ADC_PinGetVolt(uint32_t pin) { return ((float)PIOS_ADC_PinGet(pin)) * PIOS_ADC_VOLTAGE_SCALE; } /** * @brief Set a callback function that is executed whenever * the ADC double buffer swaps * @note Not currently supported. */ void PIOS_ADC_SetCallback(ADCCallback new_function) { pios_adc_dev->callback_function = new_function; } #if defined(PIOS_INCLUDE_FREERTOS) /** * @brief Register a queue to add data to when downsampled * @note Not currently supported. */ void PIOS_ADC_SetQueue(xQueueHandle data_queue) { pios_adc_dev->data_queue = data_queue; } #endif /** * @brief Return the address of the downsampled data buffer * @note Not currently supported. */ float *PIOS_ADC_GetBuffer(void) { return NULL; } /** * @brief Return the address of the raw data data buffer * @note Not currently supported. */ int16_t *PIOS_ADC_GetRawBuffer(void) { return NULL; } /** * @brief Return the amount of over sampling * @note Not currently supported (always returns 1) */ uint8_t PIOS_ADC_GetOverSampling(void) { return 1; } /** * @brief Set the fir coefficients. Takes as many samples as the * current filter order plus one (normalization) * * @param new_filter Array of adc_oversampling floats plus one for the * filter coefficients * @note Not currently supported. */ void PIOS_ADC_SetFIRCoefficients(__attribute__((unused)) float *new_filter) { // not implemented } /** * @brief accumulate the data for each of the channels. */ void accumulate(struct pios_adc_dev *dev, volatile uint16_t *buffer) { volatile uint16_t *sp = buffer; /* * Accumulate sampled values. */ int count = (PIOS_ADC_MAX_SAMPLES / 2); while (count--) { for (uint32_t i = 0; i < PIOS_ADC_NUM_PINS; ++i) { dev->accumulator[i].accumulator += *sp++; dev->accumulator[i].count++; /* * If the accumulator reaches half-full, rescale in order to * make more space. */ if (dev->accumulator[i].accumulator >= (((uint32_t)1) << 31)) { dev->accumulator[i].accumulator /= 2; dev->accumulator[i].count /= 2; } } } #if defined(PIOS_INCLUDE_FREERTOS) // XXX should do something with this if (pios_adc_dev->data_queue) { static portBASE_TYPE xHigherPriorityTaskWoken; // xQueueSendFromISR(pios_adc_dev->data_queue, pios_adc_dev->downsampled_buffer, &xHigherPriorityTaskWoken); portEND_SWITCHING_ISR(xHigherPriorityTaskWoken); } #endif // if(pios_adc_dev->callback_function) // pios_adc_dev->callback_function(pios_adc_dev->downsampled_buffer); } /** * @brief Interrupt on buffer flip. * * The hardware is done with the 'other' buffer, so we can pass it to the accumulator. */ void PIOS_ADC_DMA_Handler(void) { if (!PIOS_ADC_validate(pios_adc_dev)) { return; } if (DMA_GetFlagStatus(pios_adc_dev->cfg->full_flag)) { // whole double buffer filled DMA_ClearFlag(pios_adc_dev->cfg->full_flag); accumulate(pios_adc_dev, &pios_adc_dev->raw_data_buffer[PIOS_ADC_DMA_BUFFER_SIZE / 2]); } else if (DMA_GetFlagStatus(pios_adc_dev->cfg->half_flag)) { DMA_ClearFlag(pios_adc_dev->cfg->half_flag); accumulate(pios_adc_dev, &pios_adc_dev->raw_data_buffer[0]); } else { // This should not happen, probably due to transfer errors DMA_ClearFlag(pios_adc_dev->cfg->dma.irq.flags); } } void PIOS_ADC_PinSetup(uint32_t pin) { if (config[pin].port != NULL && pin < PIOS_ADC_NUM_PINS) { /* Setup analog pin */ GPIO_InitTypeDef GPIO_InitStructure; GPIO_StructInit(&GPIO_InitStructure); GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStructure.GPIO_Pin = config[pin].pin; GPIO_Init(config[pin].port, &GPIO_InitStructure); } } #endif /* PIOS_INCLUDE_ADC */ /** * @} * @} */