/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup Attitude Copter Control Attitude Estimation * @brief Acquires sensor data and computes attitude estimate * Specifically updates the the @ref AttitudeActual "AttitudeActual" and @ref AttitudeRaw "AttitudeRaw" settings objects * @{ * * @file attitude.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Module to handle all comms to the AHRS on a periodic basis. * * @see The GNU Public License (GPL) Version 3 * ******************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /** * Input objects: None, takes sensor data via pios * Output objects: @ref AttitudeRaw @ref AttitudeActual * * This module computes an attitude estimate from the sensor data * * The module executes in its own thread. * * UAVObjects are automatically generated by the UAVObjectGenerator from * the object definition XML file. * * Modules have no API, all communication to other modules is done through UAVObjects. * However modules may use the API exposed by shared libraries. * See the OpenPilot wiki for more details. * http://www.openpilot.org/OpenPilot_Application_Architecture * */ #include "pios.h" #include "attitude.h" #include "attituderaw.h" #include "attitudeactual.h" #include "attitudesettings.h" #include "baroaltitude.h" #include "flightstatus.h" #include "CoordinateConversions.h" // Private constants #define STACK_SIZE_BYTES 1540 #define TASK_PRIORITY (tskIDLE_PRIORITY+3) #define F_PI 3.14159265358979323846f #define PI_MOD(x) (fmod(x + F_PI, F_PI * 2) - F_PI) // Private types // Private variables static xTaskHandle taskHandle; // Private functions static void AttitudeTask(void *parameters); static float gyro_correct_int[3] = {0,0,0}; static int8_t updateSensors(AttitudeRawData *); static void updateAttitude(AttitudeRawData *); static void settingsUpdatedCb(UAVObjEvent * objEv); static float accelKi = 0; static float accelKp = 0; static float yawBiasRate = 0; static float gyroGain = 0.42; static int16_t accelbias[3]; static float R[3][3]; static int8_t rotate = 0; static bool zero_during_arming = false; static bool bias_correct_gyro = true; /** * Initialise the module, called on startup * \returns 0 on success or -1 if initialisation failed */ int32_t AttitudeStart(void) { // Start main task xTaskCreate(AttitudeTask, (signed char *)"Attitude", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &taskHandle); TaskMonitorAdd(TASKINFO_RUNNING_ATTITUDE, taskHandle); PIOS_WDG_RegisterFlag(PIOS_WDG_ATTITUDE); return 0; } /** * Initialise the module, called on startup * \returns 0 on success or -1 if initialisation failed */ int32_t AttitudeInitialize(void) { AttitudeActualInitialize(); AttitudeRawInitialize(); AttitudeSettingsInitialize(); BaroAltitudeInitialize(); // Initialize quaternion AttitudeActualData attitude; AttitudeActualGet(&attitude); attitude.q1 = 1; attitude.q2 = 0; attitude.q3 = 0; attitude.q4 = 0; AttitudeActualSet(&attitude); // Cannot trust the values to init right above if BL runs gyro_correct_int[0] = 0; gyro_correct_int[1] = 0; gyro_correct_int[2] = 0; for(uint8_t i = 0; i < 3; i++) for(uint8_t j = 0; j < 3; j++) R[i][j] = 0; AttitudeSettingsConnectCallback(&settingsUpdatedCb); return 0; } MODULE_INITCALL(AttitudeInitialize, AttitudeStart) int32_t accel_test; int32_t gyro_test; int32_t mag_test; //int32_t pressure_test; /** * Module thread, should not return. */ static void AttitudeTask(void *parameters) { uint8_t init = 0; AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE); // Force settings update to make sure rotation loaded settingsUpdatedCb(AttitudeSettingsHandle()); accel_test = PIOS_BMA180_Test(); gyro_test = PIOS_MPU6000_Test(); mag_test = PIOS_HMC5883_Test(); // pressure_test = PIOS_BMP085_Test(); // Kick of pressure conversions // PIOS_BMP085_StartADC(TemperatureConv); // Main task loop while (1) { FlightStatusData flightStatus; FlightStatusGet(&flightStatus); if((xTaskGetTickCount() < 7000) && (xTaskGetTickCount() > 1000)) { // For first 7 seconds use accels to get gyro bias accelKp = 1; accelKi = 0.9; yawBiasRate = 0.23; init = 0; } else if (zero_during_arming && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) { accelKp = 1; accelKi = 0.9; yawBiasRate = 0.23; init = 0; } else if (init == 0) { // Reload settings (all the rates) AttitudeSettingsAccelKiGet(&accelKi); AttitudeSettingsAccelKpGet(&accelKp); AttitudeSettingsYawBiasRateGet(&yawBiasRate); init = 1; } PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE); AttitudeRawData attitudeRaw; AttitudeRawGet(&attitudeRaw); if(updateSensors(&attitudeRaw) != 0) AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR); else { // Only update attitude when sensor data is good updateAttitude(&attitudeRaw); AttitudeRawSet(&attitudeRaw); AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE); } vTaskDelay(1); } } uint32_t accel_samples; uint32_t gyro_samples; struct pios_bma180_data accel; struct pios_mpu6000_data gyro; AttitudeRawData raw; int32_t accel_accum[3] = {0, 0, 0}; int32_t gyro_accum[3] = {0,0,0}; float scaling; /** * Get an update from the sensors * @param[in] attitudeRaw Populate the UAVO instead of saving right here * @return 0 if successfull, -1 if not */ static int8_t updateSensors(AttitudeRawData * attitudeRaw) { int32_t read_good; int32_t count; for (int i = 0; i < 3; i++) { accel_accum[i] = 0; gyro_accum[i] = 0; } accel_samples = 0; gyro_samples = 0; // Make sure we get one sample count = 0; while((read_good = PIOS_BMA180_ReadFifo(&accel)) != 0); while(read_good == 0) { count++; accel_accum[0] += accel.x; accel_accum[1] += accel.y; accel_accum[2] += accel.z; read_good = PIOS_BMA180_ReadFifo(&accel); } accel_samples = count; float accels[3] = {(float) accel_accum[1] / accel_samples, (float) accel_accum[0] / accel_samples, -(float) accel_accum[2] / accel_samples}; // Not the swaping of channel orders scaling = PIOS_BMA180_GetScale(); attitudeRaw->accels[ATTITUDERAW_ACCELS_X] = (accels[0] - accelbias[0]) * scaling; attitudeRaw->accels[ATTITUDERAW_ACCELS_Y] = (accels[1] - accelbias[1]) * scaling; attitudeRaw->accels[ATTITUDERAW_ACCELS_Z] = (accels[2] - accelbias[2]) * scaling; // Make sure we get one sample count = 0; while((read_good = PIOS_MPU6000_ReadFifo(&gyro)) != 0); while(read_good == 0) { count++; gyro_accum[0] += gyro.gyro_x; gyro_accum[1] += gyro.gyro_y; gyro_accum[2] += gyro.gyro_z; read_good = PIOS_MPU6000_ReadFifo(&gyro); } gyro_samples = count; float gyros[3] = {(float) gyro_accum[1] / gyro_samples, (float) gyro_accum[0] / gyro_samples, -(float) gyro_accum[2] / gyro_samples}; scaling = PIOS_MPU6000_GetScale(); attitudeRaw->gyros[ATTITUDERAW_GYROS_X] = gyros[0] * scaling; attitudeRaw->gyros[ATTITUDERAW_GYROS_Y] = gyros[1] * scaling; attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] = gyros[2] * scaling; // From data sheet 35 deg C corresponds to -13200, and 280 LSB per C attitudeRaw->temperature[ATTITUDERAW_TEMPERATURE_GYRO] = 35.0f + ((float) gyro.temperature + 512.0f) / 340.0f; // From the data sheet 25 deg C corresponds to 2 and 2 LSB per C attitudeRaw->temperature[ATTITUDERAW_TEMPERATURE_ACCEL] = 25.0f + ((float) accel.temperature - 2.0f) / 2.0f; if(bias_correct_gyro) { // Applying integral component here so it can be seen on the gyros and correct bias attitudeRaw->gyros[ATTITUDERAW_GYROS_X] += gyro_correct_int[0]; attitudeRaw->gyros[ATTITUDERAW_GYROS_Y] += gyro_correct_int[1]; attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] += gyro_correct_int[2]; } // Because most crafts wont get enough information from gravity to zero yaw gyro, we try // and make it average zero (weakly) gyro_correct_int[2] += - attitudeRaw->gyros[ATTITUDERAW_GYROS_Z] * yawBiasRate; if (PIOS_HMC5883_NewDataAvailable()) { int16_t values[3]; PIOS_HMC5883_ReadMag(values); attitudeRaw->magnetometers[ATTITUDERAW_MAGNETOMETERS_X] = -values[0]; attitudeRaw->magnetometers[ATTITUDERAW_MAGNETOMETERS_Y] = -values[1]; attitudeRaw->magnetometers[ATTITUDERAW_MAGNETOMETERS_Z] = -values[2]; } AttitudeRawSet(&raw); /* int32_t retval = PIOS_BMP085_ReadADC(); if (retval == 0) { // Conversion completed static uint32_t baro_conversions; if((baro_conversions++) % 2) PIOS_BMP085_StartADC(PressureConv); else { PIOS_BMP085_StartADC(TemperatureConv); float pressure; pressure = PIOS_BMP085_GetPressure(); BaroAltitudeData data; BaroAltitudeGet(&data); data.Altitude = (1.0f - powf(pressure / BMP085_P0, (1.0f / 5.255f))) * 44330.0f; data.Pressure = pressure / 1000.0f; data.Temperature = PIOS_BMP085_GetTemperature() / 10.0f; // Convert to deg C BaroAltitudeSet(&data); } }*/ return 0; } float accel_mag; float qmag; static void updateAttitude(AttitudeRawData * attitudeRaw) { float dT; portTickType thisSysTime = xTaskGetTickCount(); static portTickType lastSysTime = 0; float q[4]; AttitudeActualData attitudeActual; AttitudeActualGet(&attitudeActual); dT = (thisSysTime == lastSysTime) ? 0.001 : (portMAX_DELAY & (thisSysTime - lastSysTime)) / portTICK_RATE_MS / 1000.0f; lastSysTime = thisSysTime; float gyro[3]; gyro[0] = attitudeRaw->gyros[0]; gyro[1] = attitudeRaw->gyros[1]; gyro[2] = attitudeRaw->gyros[2]; float accels[3]; accels[0] = attitudeRaw->accels[0]; accels[1] = attitudeRaw->accels[1]; accels[2] = attitudeRaw->accels[2]; float grot[3]; float accel_err[3]; // Get the current attitude estimate quat_copy(&attitudeActual.q1, q); // Rotate gravity to body frame and cross with accels grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2])); grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1])); grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]); CrossProduct((const float *) accels, (const float *) grot, accel_err); // Account for accel magnitude accel_mag = accels[0]*accels[0] + accels[1]*accels[1] + accels[2]*accels[2]; accel_mag = sqrtf(accel_mag); accel_err[0] /= accel_mag; accel_err[1] /= accel_mag; accel_err[2] /= accel_mag; // Accumulate integral of error. Scale here so that units are (deg/s) but Ki has units of s gyro_correct_int[0] += accel_err[0] * accelKi; gyro_correct_int[1] += accel_err[1] * accelKi; // Correct rates based on error, integral component dealt with in updateSensors gyro[0] += accel_err[0] * accelKp / dT; gyro[1] += accel_err[1] * accelKp / dT; gyro[2] += accel_err[2] * accelKp / dT; // Work out time derivative from INSAlgo writeup // Also accounts for the fact that gyros are in deg/s float qdot[4]; qdot[0] = (-q[1] * gyro[0] - q[2] * gyro[1] - q[3] * gyro[2]) * dT * F_PI / 180 / 2; qdot[1] = (q[0] * gyro[0] - q[3] * gyro[1] + q[2] * gyro[2]) * dT * F_PI / 180 / 2; qdot[2] = (q[3] * gyro[0] + q[0] * gyro[1] - q[1] * gyro[2]) * dT * F_PI / 180 / 2; qdot[3] = (-q[2] * gyro[0] + q[1] * gyro[1] + q[0] * gyro[2]) * dT * F_PI / 180 / 2; // Take a time step q[0] = q[0] + qdot[0]; q[1] = q[1] + qdot[1]; q[2] = q[2] + qdot[2]; q[3] = q[3] + qdot[3]; if(q[0] < 0) { q[0] = -q[0]; q[1] = -q[1]; q[2] = -q[2]; q[3] = -q[3]; } // Renomalize qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]); q[0] = q[0] / qmag; q[1] = q[1] / qmag; q[2] = q[2] / qmag; q[3] = q[3] / qmag; // If quaternion has become inappropriately short or is nan reinit. // THIS SHOULD NEVER ACTUALLY HAPPEN if((fabs(qmag) < 1.0e-3f) || (qmag != qmag)) { q[0] = 1; q[1] = 0; q[2] = 0; q[3] = 0; } quat_copy(q, &attitudeActual.q1); // Convert into eueler degrees (makes assumptions about RPY order) Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll); AttitudeActualSet(&attitudeActual); } static void settingsUpdatedCb(UAVObjEvent * objEv) { AttitudeSettingsData attitudeSettings; AttitudeSettingsGet(&attitudeSettings); accelKp = attitudeSettings.AccelKp; accelKi = attitudeSettings.AccelKi; yawBiasRate = attitudeSettings.YawBiasRate; gyroGain = attitudeSettings.GyroGain; zero_during_arming = attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE; bias_correct_gyro = attitudeSettings.BiasCorrectGyro == ATTITUDESETTINGS_BIASCORRECTGYRO_TRUE; accelbias[0] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_X]; accelbias[1] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Y]; accelbias[2] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Z]; gyro_correct_int[0] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_X] / 100.0f; gyro_correct_int[1] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Y] / 100.0f; gyro_correct_int[2] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Z] / 100.0f; // Indicates not to expend cycles on rotation if(attitudeSettings.BoardRotation[0] == 0 && attitudeSettings.BoardRotation[1] == 0 && attitudeSettings.BoardRotation[2] == 0) { rotate = 0; // Shouldn't be used but to be safe float rotationQuat[4] = {1,0,0,0}; Quaternion2R(rotationQuat, R); } else { float rotationQuat[4]; const float rpy[3] = {attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_ROLL], attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_PITCH], attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_YAW]}; RPY2Quaternion(rpy, rotationQuat); Quaternion2R(rotationQuat, R); rotate = 1; } } /** * @} * @} */