/** ****************************************************************************** * @addtogroup RevolutionBL Revolution BootLoader * @brief These files contain the code to the Revolution Bootloader. * * @{ * @file main.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief This is the file with the main function of the Revolution BootLoader * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include /* PIOS_USBHOOK_* */ #include /* Prototype of PIOS_Board_Init() function */ extern void PIOS_Board_Init(void); extern void FLASH_Download(); #define BSL_HOLD_STATE ((PIOS_USB_DETECT_GPIO_PORT->IDR & PIOS_USB_DETECT_GPIO_PIN) ? 0 : 1) /* Private typedef -----------------------------------------------------------*/ typedef void (*pFunction)(void); /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ pFunction Jump_To_Application; uint32_t JumpAddress; /// LEDs PWM uint32_t period1 = 5000; // 5 mS uint32_t sweep_steps1 = 100; // * 5 mS -> 500 mS uint32_t period2 = 5000; // 5 mS uint32_t sweep_steps2 = 100; // * 5 mS -> 500 mS //////////////////////////////////////// uint8_t tempcount = 0; /* Extern variables ----------------------------------------------------------*/ DFUStates DeviceState; int16_t status = 0; bool JumpToApp = false; bool GO_dfu = false; bool USB_connected = false; bool User_DFU_request = false; static uint8_t mReceive_Buffer[63]; /* Private function prototypes -----------------------------------------------*/ uint32_t LedPWM(uint32_t pwm_period, uint32_t pwm_sweep_steps, uint32_t count); uint8_t processRX(); void jump_to_app(); int main() { PIOS_SYS_Init(); PIOS_Board_Init(); PIOS_IAP_Init(); USB_connected = PIOS_USB_CheckAvailable(0); if (PIOS_IAP_CheckRequest() == true) { PIOS_DELAY_WaitmS(1000); User_DFU_request = true; PIOS_IAP_ClearRequest(); } GO_dfu = (USB_connected == true) || (User_DFU_request == true); if (GO_dfu == true) { PIOS_Board_Init(); if (User_DFU_request == true) DeviceState = DFUidle; else DeviceState = BLidle; } else JumpToApp = true; uint32_t stopwatch = 0; uint32_t prev_ticks = PIOS_DELAY_GetuS(); while (true) { /* Update the stopwatch */ uint32_t elapsed_ticks = PIOS_DELAY_GetuSSince(prev_ticks); prev_ticks += elapsed_ticks; stopwatch += elapsed_ticks; if (JumpToApp == true) jump_to_app(); switch (DeviceState) { case Last_operation_Success: case uploadingStarting: case DFUidle: period1 = 5000; sweep_steps1 = 100; PIOS_LED_Off(PIOS_LED_HEARTBEAT); period2 = 0; break; case uploading: period1 = 5000; sweep_steps1 = 100; period2 = 2500; sweep_steps2 = 50; break; case downloading: period1 = 2500; sweep_steps1 = 50; PIOS_LED_Off(PIOS_LED_HEARTBEAT); period2 = 0; break; case BLidle: period1 = 0; PIOS_LED_On(PIOS_LED_HEARTBEAT); period2 = 0; break; default://error period1 = 5000; sweep_steps1 = 100; period2 = 5000; sweep_steps2 = 100; } if (period1 != 0) { if (LedPWM(period1, sweep_steps1, stopwatch)) PIOS_LED_On(PIOS_LED_HEARTBEAT); else PIOS_LED_Off(PIOS_LED_HEARTBEAT); } else PIOS_LED_On(PIOS_LED_HEARTBEAT); if (period2 != 0) { if (LedPWM(period2, sweep_steps2, stopwatch)) PIOS_LED_On(PIOS_LED_HEARTBEAT); else PIOS_LED_Off(PIOS_LED_HEARTBEAT); } else PIOS_LED_Off(PIOS_LED_HEARTBEAT); if (stopwatch > 50 * 1000 * 1000) stopwatch = 0; if ((stopwatch > 6 * 1000 * 1000) && (DeviceState == BLidle)) JumpToApp = true; processRX(); DataDownload(start); } } void jump_to_app() { const struct pios_board_info * bdinfo = &pios_board_info_blob; PIOS_LED_On(PIOS_LED_HEARTBEAT); // Look at cm3_vectors struct in startup. In a fw image the first uint32_t contains the address of the top of irqstack uint32_t fwIrqStackBase = (*(__IO uint32_t*) bdinfo->fw_base) & 0xFFFE0000; // Check for the two possible irqstack locations (sram or core coupled sram) if ( fwIrqStackBase == 0x20000000 || fwIrqStackBase == 0x10000000) { /* Jump to user application */ FLASH_Lock(); RCC_APB2PeriphResetCmd(0xffffffff, ENABLE); RCC_APB1PeriphResetCmd(0xffffffff, ENABLE); RCC_APB2PeriphResetCmd(0xffffffff, DISABLE); RCC_APB1PeriphResetCmd(0xffffffff, DISABLE); PIOS_USBHOOK_Deactivate(); JumpAddress = *(__IO uint32_t*) (bdinfo->fw_base + 4); Jump_To_Application = (pFunction) JumpAddress; /* Initialize user application's Stack Pointer */ __set_MSP(*(__IO uint32_t*) bdinfo->fw_base); Jump_To_Application(); } else { DeviceState = failed_jump; return; } } uint32_t LedPWM(uint32_t pwm_period, uint32_t pwm_sweep_steps, uint32_t count) { uint32_t curr_step = (count / pwm_period) % pwm_sweep_steps; /* 0 - pwm_sweep_steps */ uint32_t pwm_duty = pwm_period * curr_step / pwm_sweep_steps; /* fraction of pwm_period */ uint32_t curr_sweep = (count / (pwm_period * pwm_sweep_steps)); /* ticks once per full sweep */ if (curr_sweep & 1) { pwm_duty = pwm_period - pwm_duty; /* reverse direction in odd sweeps */ } return ((count % pwm_period) > pwm_duty) ? 1 : 0; } uint8_t processRX() { if (PIOS_COM_MSG_Receive(PIOS_COM_TELEM_USB, mReceive_Buffer, sizeof(mReceive_Buffer))) { processComand(mReceive_Buffer); } return true; }