/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup StabilizationModule Stabilization Module * @brief Stabilization PID loops in an airframe type independent manner * @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the * PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeActual "Attitude Actual" * @{ * * @file stabilization.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Attitude stabilization module. * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "openpilot.h" #include "stabilization.h" #include "stabilizationsettings.h" #include "actuatordesired.h" #include "ratedesired.h" #include "attitudedesired.h" #include "attitudeactual.h" #include "attituderaw.h" #include "manualcontrolcommand.h" #include "systemsettings.h" #include "ahrssettings.h" // Private constants #define MAX_QUEUE_SIZE 2 #define STACK_SIZE configMINIMAL_STACK_SIZE #define TASK_PRIORITY (tskIDLE_PRIORITY+4) #define FAILSAFE_TIMEOUT_MS 30 enum {PID_RATE_ROLL, PID_RATE_PITCH, PID_RATE_YAW, PID_ROLL, PID_PITCH, PID_YAW, PID_MAX}; enum {ROLL,PITCH,YAW,MAX_AXES}; // Private types typedef struct { float p; float i; float d; float iLim; float iAccumulator; float lastErr; } pid_type; // Private variables static xTaskHandle taskHandle; static StabilizationSettingsData settings; static xQueueHandle queue; float dT = 1; pid_type pids[PID_MAX]; // Private functions static void stabilizationTask(void* parameters); static float ApplyPid(pid_type * pid, const float desired, const float actual, const uint8_t angular); static float bound(float val); static void ZeroPids(void); static void SettingsUpdatedCb(UAVObjEvent * ev); // Global updated variable volatile uint8_t stabilization_updated; /** * Module initialization */ int32_t StabilizationInitialize() { // Initialize variables // Create object queue queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent)); // Listen for updates. // AttitudeActualConnectQueue(queue); AttitudeRawConnectQueue(queue); StabilizationSettingsConnectCallback(SettingsUpdatedCb); SettingsUpdatedCb(StabilizationSettingsHandle()); // Start main task xTaskCreate(stabilizationTask, (signed char*)"Stabilization", STACK_SIZE, NULL, TASK_PRIORITY, &taskHandle); return 0; } /** * Module task */ static void stabilizationTask(void* parameters) { portTickType lastSysTime; portTickType thisSysTime; UAVObjEvent ev; ActuatorDesiredData actuatorDesired; AttitudeDesiredData attitudeDesired; RateDesiredData rateDesired; AttitudeActualData attitudeActual; AttitudeRawData attitudeRaw; SystemSettingsData systemSettings; ManualControlCommandData manualControl; SettingsUpdatedCb((UAVObjEvent *) NULL); // Main task loop lastSysTime = xTaskGetTickCount(); ZeroPids(); while(1) { stabilization_updated = 1; // Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe if ( xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE ) { AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION,SYSTEMALARMS_ALARM_WARNING); continue; } // Check how long since last update thisSysTime = xTaskGetTickCount(); if(thisSysTime > lastSysTime) // reuse dt in case of wraparound dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f; lastSysTime = thisSysTime; ManualControlCommandGet(&manualControl); AttitudeDesiredGet(&attitudeDesired); AttitudeActualGet(&attitudeActual); AttitudeRawGet(&attitudeRaw); RateDesiredGet(&rateDesired); SystemSettingsGet(&systemSettings); float *manualAxis = &manualControl.Roll; float *attitudeDesiredAxis = &attitudeDesired.Roll; float *attitudeActualAxis = &attitudeActual.Roll; float *actuatorDesiredAxis = &actuatorDesired.Roll; float *rateDesiredAxis = &rateDesired.Roll; //Calculate desired rate for(int8_t ct=0; ct< MAX_AXES; ct++) { switch(manualControl.StabilizationSettings[ct]) { case MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_RATE: rateDesiredAxis[ct] = manualAxis[ct] * settings.ManualRate[ct]; break; case MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_ATTITUDE: rateDesiredAxis[ct] = ApplyPid(&pids[PID_ROLL + ct], attitudeDesiredAxis[ct], attitudeActualAxis[ct], 1); break; } } uint8_t shouldUpdate = 0; RateDesiredSet(&rateDesired); ActuatorDesiredGet(&actuatorDesired); //Calculate desired command for(int8_t ct=0; ct< MAX_AXES; ct++) { if(fabs(rateDesiredAxis[ct]) > settings.MaximumRate[ct]) { if(rateDesiredAxis[ct] > 0) { rateDesiredAxis[ct] = settings.MaximumRate[ct]; }else { rateDesiredAxis[ct] = -settings.MaximumRate[ct]; } } switch(manualControl.StabilizationSettings[ct]) { case MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_RATE: case MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_ATTITUDE: { float command = ApplyPid(&pids[PID_RATE_ROLL + ct], rateDesiredAxis[ct], attitudeRaw.gyros_filtered[ct], 0); actuatorDesiredAxis[ct] = bound(command); shouldUpdate = 1; break; } case MANUALCONTROLCOMMAND_STABILIZATIONSETTINGS_NONE: //actuatorDesiredAxis[ct] = bound(manualAxis[ct]); //shouldUpdate = 1; switch (ct) { case ROLL: actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]/settings.RollMax); shouldUpdate = 1; break; case PITCH: actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]/settings.PitchMax); shouldUpdate = 1; break; case YAW: actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]/180); shouldUpdate = 1; break; } break; } } // Save dT actuatorDesired.UpdateTime = dT * 1000; if(manualControl.FlightMode == MANUALCONTROLCOMMAND_FLIGHTMODE_MANUAL) { shouldUpdate = 0; } if(shouldUpdate) { actuatorDesired.Throttle = attitudeDesired.Throttle; if(dT > 15) actuatorDesired.NumLongUpdates++; ActuatorDesiredSet(&actuatorDesired); } if(manualControl.Armed == MANUALCONTROLCOMMAND_ARMED_FALSE || !shouldUpdate || (attitudeDesired.Throttle < 0)) { ZeroPids(); } // Clear alarms AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION); } } float ApplyPid(pid_type * pid, const float desired, const float actual, const uint8_t angular) { float err = desired - actual; if(angular) //take shortest route to desired position { if(err > 180) { err -= 360; } if(err < -180) { err += 360; } } float diff = (err - pid->lastErr); pid->lastErr = err; pid->iAccumulator += err * pid->i * dT; if(fabs(pid->iAccumulator) > pid->iLim) { if(pid->iAccumulator >0) { pid->iAccumulator = pid->iLim; } else { pid->iAccumulator = -pid->iLim; } } return ((err * pid->p) + pid->iAccumulator + (diff * pid->d / dT)); } static void ZeroPids(void) { for(int8_t ct = 0; ct < PID_MAX; ct++) { pids[ct].iAccumulator = 0; pids[ct].lastErr = 0; } } /** * Bound input value between limits */ static float bound(float val) { if(val < -1) { val = -1; } else if(val > 1) { val = 1; } return val; } static void SettingsUpdatedCb(UAVObjEvent * ev) { memset(pids,0,sizeof (pid_type) * PID_MAX); StabilizationSettingsGet(&settings); float * data = settings.RollRatePI; for(int8_t pid=0; pid < PID_MAX; pid++) { pids[pid].p = *data++; pids[pid].i = *data++; pids[pid].iLim = *data++; } } /** * @} * @} */