/** ****************************************************************************** * @addtogroup OpenPilotBL OpenPilot BootLoader * @brief These files contain the code to the OpenPilot MB Bootloader. * * @{ * @file main.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief This is the file with the main function of the OpenPilot BootLoader * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include extern void FLASH_Download(); #define BSL_HOLD_STATE ((PIOS_USB_DETECT_GPIO_PORT->IDR & PIOS_USB_DETECT_GPIO_PIN) ? 0 : 1) /* Private typedef -----------------------------------------------------------*/ typedef void (*pFunction)(void); /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ pFunction Jump_To_Application; uint32_t JumpAddress; /// LEDs PWM uint32_t period1 = 5000; // 5 mS uint32_t sweep_steps1 = 100; // * 5 mS -> 500 mS uint32_t period2 = 5000; // 5 mS uint32_t sweep_steps2 = 100; // * 5 mS -> 500 mS //////////////////////////////////////// uint8_t tempcount = 0; /* Extern variables ----------------------------------------------------------*/ DFUStates DeviceState; int16_t status = 0; uint8_t JumpToApp = FALSE; uint8_t GO_dfu = FALSE; uint8_t USB_connected = FALSE; uint8_t User_DFU_request = FALSE; static uint8_t mReceive_Buffer[63]; /* Private function prototypes -----------------------------------------------*/ uint32_t LedPWM(uint32_t pwm_period, uint32_t pwm_sweep_steps, uint32_t count); uint8_t processRX(); void jump_to_app(); int main() { PIOS_SYS_Init(); PIOS_Board_Init(); PIOS_IAP_Init(); USB_connected = PIOS_USB_CableConnected(0); if (PIOS_IAP_CheckRequest() == TRUE) { PIOS_DELAY_WaitmS(1000); User_DFU_request = TRUE; PIOS_IAP_ClearRequest(); } GO_dfu = (USB_connected == TRUE) || (User_DFU_request == TRUE); if (GO_dfu == TRUE) { PIOS_Board_Init(); if (User_DFU_request == TRUE) { DeviceState = DFUidle; } else { DeviceState = BLidle; } } else { JumpToApp = TRUE; } uint32_t stopwatch = 0; uint32_t prev_ticks = PIOS_DELAY_GetuS(); while (TRUE) { /* Update the stopwatch */ uint32_t elapsed_ticks = PIOS_DELAY_GetuSSince(prev_ticks); prev_ticks += elapsed_ticks; stopwatch += elapsed_ticks; if (JumpToApp == TRUE) { jump_to_app(); } switch (DeviceState) { case Last_operation_Success: case uploadingStarting: case DFUidle: period1 = 5000; sweep_steps1 = 100; PIOS_LED_Off(PIOS_LED_ALARM); period2 = 0; break; case uploading: period1 = 5000; sweep_steps1 = 100; period2 = 2500; sweep_steps2 = 50; break; case downloading: period1 = 2500; sweep_steps1 = 50; PIOS_LED_Off(PIOS_LED_ALARM); period2 = 0; break; case BLidle: period1 = 0; PIOS_LED_On(PIOS_LED_HEARTBEAT); period2 = 0; break; default: // error period1 = 5000; sweep_steps1 = 100; period2 = 5000; sweep_steps2 = 100; } if (period1 != 0) { if (LedPWM(period1, sweep_steps1, stopwatch)) { PIOS_LED_On(PIOS_LED_HEARTBEAT); } else { PIOS_LED_Off(PIOS_LED_HEARTBEAT); } } else { PIOS_LED_On(PIOS_LED_HEARTBEAT); } if (period2 != 0) { if (LedPWM(period2, sweep_steps2, stopwatch)) { PIOS_LED_On(PIOS_LED_ALARM); } else { PIOS_LED_Off(PIOS_LED_ALARM); } } else { PIOS_LED_Off(PIOS_LED_ALARM); } if (stopwatch > 50 * 1000 * 1000) { stopwatch = 0; } if ((stopwatch > 6 * 1000 * 1000) && (DeviceState == BLidle)) { JumpToApp = TRUE; } processRX(); DataDownload(start); } } void jump_to_app() { const struct pios_board_info *bdinfo = &pios_board_info_blob; if (((*(__IO uint32_t *)bdinfo->fw_base) & 0x2FFE0000) == 0x20000000) { /* Jump to user application */ FLASH_Lock(); RCC_APB2PeriphResetCmd(0xffffffff, ENABLE); RCC_APB1PeriphResetCmd(0xffffffff, ENABLE); RCC_APB2PeriphResetCmd(0xffffffff, DISABLE); RCC_APB1PeriphResetCmd(0xffffffff, DISABLE); _SetCNTR(0); // clear interrupt mask _SetISTR(0); // clear all requests JumpAddress = *(__IO uint32_t *)(bdinfo->fw_base + 4); Jump_To_Application = (pFunction)JumpAddress; /* Initialize user application's Stack Pointer */ __set_MSP(*(__IO uint32_t *)bdinfo->fw_base); Jump_To_Application(); } else { DeviceState = failed_jump; return; } } uint32_t LedPWM(uint32_t pwm_period, uint32_t pwm_sweep_steps, uint32_t count) { uint32_t curr_step = (count / pwm_period) % pwm_sweep_steps; /* 0 - pwm_sweep_steps */ uint32_t pwm_duty = pwm_period * curr_step / pwm_sweep_steps; /* fraction of pwm_period */ uint32_t curr_sweep = (count / (pwm_period * pwm_sweep_steps)); /* ticks once per full sweep */ if (curr_sweep & 1) { pwm_duty = pwm_period - pwm_duty; /* reverse direction in odd sweeps */ } return ((count % pwm_period) > pwm_duty) ? 1 : 0; } uint8_t processRX() { if (PIOS_COM_MSG_Receive(PIOS_COM_TELEM_USB, mReceive_Buffer, sizeof(mReceive_Buffer))) { processComand(mReceive_Buffer); } return TRUE; } int32_t platform_senddata(const uint8_t *msg, uint16_t msg_len) { return PIOS_COM_MSG_Send(PIOS_COM_TELEM_USB, msg, msg_len); }