/** ****************************************************************************** * @addtogroup AHRS AHRS * @brief The AHRS Modules perform * * @{ * @addtogroup AHRS_ADC AHRS ADC * @brief Specialized ADC code for double buffered DMA for AHRS * @{ * * * @file ahrs.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief INSGPS Test Program * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "ahrs_adc.h" // Remap the ADC DMA handler to this one void DMA1_Channel1_IRQHandler() __attribute__ ((alias("AHRS_ADC_DMA_Handler"))); //! Where the raw data is stored volatile int16_t raw_data_buffer[MAX_SAMPLES]; // Double buffer that DMA just used //! Various configuration settings struct { volatile int16_t *valid_data_buffer; volatile uint8_t adc_oversample; int16_t fir_coeffs[MAX_OVERSAMPLING]; } adc_config; //! Filter coefficients used in decimation. Limited order so filter can't run between samples float downsampled_buffer[PIOS_ADC_NUM_PINS]; static ADCCallback callback_function = (ADCCallback) NULL; /* Local Variables */ static GPIO_TypeDef *ADC_GPIO_PORT[PIOS_ADC_NUM_PINS] = PIOS_ADC_PORTS; static const uint32_t ADC_GPIO_PIN[PIOS_ADC_NUM_PINS] = PIOS_ADC_PINS; static const uint32_t ADC_CHANNEL[PIOS_ADC_NUM_PINS] = PIOS_ADC_CHANNELS; static ADC_TypeDef *ADC_MAPPING[PIOS_ADC_NUM_PINS] = PIOS_ADC_MAPPING; static const uint32_t ADC_CHANNEL_MAPPING[PIOS_ADC_NUM_PINS] = PIOS_ADC_CHANNEL_MAPPING; /** * @brief Initialise the ADC Peripheral * @param[in] adc_oversample * @return * @arg 1 for success * @arg 0 for failure * Currently ignores rates and uses hardcoded values. Need a little logic to * map from sampling rates and such to ADC constants. */ uint8_t AHRS_ADC_Config(int32_t adc_oversample) { int32_t i; adc_config.adc_oversample = adc_oversample; ADC_DeInit(ADC1); ADC_DeInit(ADC2); /* Setup analog pins */ GPIO_InitTypeDef GPIO_InitStructure; GPIO_StructInit(&GPIO_InitStructure); GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; /* Enable each ADC pin in the array */ for (i = 0; i < PIOS_ADC_NUM_PINS; i++) { GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN[i]; GPIO_Init(ADC_GPIO_PORT[i], &GPIO_InitStructure); } /* Enable ADC clocks */ PIOS_ADC_CLOCK_FUNCTION; /* Map channels to conversion slots depending on the channel selection mask */ for (i = 0; i < PIOS_ADC_NUM_PINS; i++) { ADC_RegularChannelConfig(ADC_MAPPING[i], ADC_CHANNEL[i], ADC_CHANNEL_MAPPING[i], PIOS_ADC_SAMPLE_TIME); } #if (PIOS_ADC_USE_TEMP_SENSOR) ADC_TempSensorVrefintCmd(ENABLE); ADC_RegularChannelConfig(PIOS_ADC_TEMP_SENSOR_ADC, ADC_Channel_14, PIOS_ADC_TEMP_SENSOR_ADC_CHANNEL, PIOS_ADC_SAMPLE_TIME); #endif // TODO: update ADC to continuous sampling, configure the sampling rate /* Configure ADCs */ ADC_InitTypeDef ADC_InitStructure; ADC_StructInit(&ADC_InitStructure); ADC_InitStructure.ADC_Mode = ADC_Mode_RegSimult; ADC_InitStructure.ADC_ScanConvMode = ENABLE; ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = ((PIOS_ADC_NUM_CHANNELS + 1) >> 1); ADC_Init(ADC1, &ADC_InitStructure); #if (PIOS_ADC_USE_ADC2) ADC_Init(ADC2, &ADC_InitStructure); /* Enable ADC2 external trigger conversion (to synch with ADC1) */ ADC_ExternalTrigConvCmd(ADC2, ENABLE); #endif RCC_ADCCLKConfig(PIOS_ADC_ADCCLK); RCC_PCLK2Config(RCC_HCLK_Div16); /* Enable ADC1->DMA request */ ADC_DMACmd(ADC1, ENABLE); /* ADC1 calibration */ ADC_Cmd(ADC1, ENABLE); ADC_ResetCalibration(ADC1); while (ADC_GetResetCalibrationStatus(ADC1)) ; ADC_StartCalibration(ADC1); while (ADC_GetCalibrationStatus(ADC1)) ; #if (PIOS_ADC_USE_ADC2) /* ADC2 calibration */ ADC_Cmd(ADC2, ENABLE); ADC_ResetCalibration(ADC2); while (ADC_GetResetCalibrationStatus(ADC2)) ; ADC_StartCalibration(ADC2); while (ADC_GetCalibrationStatus(ADC2)) ; #endif /* Enable DMA1 clock */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); /* Configure DMA1 channel 1 to fetch data from ADC result register */ DMA_InitTypeDef DMA_InitStructure; DMA_StructInit(&DMA_InitStructure); DMA_DeInit(DMA1_Channel1); DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) & ADC1->DR; DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t) & raw_data_buffer[0]; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; /* We are double buffering half words from the ADC. Make buffer appropriately sized */ DMA_InitStructure.DMA_BufferSize = (PIOS_ADC_NUM_CHANNELS * adc_oversample * 2) >> 1; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; /* Note: We read ADC1 and ADC2 in parallel making a word read, also hence the half buffer size */ DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_Init(DMA1_Channel1, &DMA_InitStructure); DMA_Cmd(DMA1_Channel1, ENABLE); /* Trigger interrupt when for half conversions too to indicate double buffer */ DMA_ITConfig(DMA1_Channel1, DMA_IT_TC, ENABLE); DMA_ITConfig(DMA1_Channel1, DMA_IT_HT, ENABLE); /* Configure and enable DMA interrupt */ NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = PIOS_ADC_IRQ_PRIO; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); /* Finally start initial conversion */ ADC_SoftwareStartConvCmd(ADC1, ENABLE); /* Use simple averaging filter for now */ for (int i = 0; i < adc_oversample; i++) adc_config.fir_coeffs[i] = 1; adc_config.fir_coeffs[adc_oversample] = adc_oversample; return 1; } /** * @brief Set a callback function that is executed whenever * the ADC double buffer swaps */ void AHRS_ADC_SetCallback(ADCCallback new_function) { callback_function = new_function; } /** * @brief Return the address of the downsampled data buffer */ float * AHRS_ADC_GetBuffer() { return downsampled_buffer; } /** * @brief Return the address of the raw data data buffer */ int16_t * AHRS_ADC_GetRawBuffer() { return (int16_t *) adc_config.valid_data_buffer; } /** * @brief Set the fir coefficients. Takes as many samples as the * current filter order plus one (normalization) * * @param new_filter Array of adc_oversampling floats plus one for the * filter coefficients */ void AHRS_ADC_SetFIRCoefficients(float * new_filter) { // Less than or equal to get normalization constant for(int i = 0; i <= adc_config.adc_oversample; i++) adc_config.fir_coeffs[i] = new_filter[i]; } /** * @brief Downsample the data for each of the channels then call * callback function if installed */ void AHRS_ADC_downsample_data() { uint16_t chan; uint16_t sample; for (chan = 0; chan < PIOS_ADC_NUM_CHANNELS; chan++) { downsampled_buffer[chan] = 0; for (sample = 0; sample < adc_config.adc_oversample; sample++) { downsampled_buffer[chan] += adc_config.valid_data_buffer[chan + sample * PIOS_ADC_NUM_CHANNELS] * adc_config.fir_coeffs[sample]; } downsampled_buffer[chan] /= (float) adc_config.fir_coeffs[adc_config.adc_oversample]; } if(callback_function != NULL) callback_function(downsampled_buffer); } /** * @brief Interrupt for half and full buffer transfer * * This interrupt handler swaps between the two halfs of the double buffer to make * sure the ahrs uses the most recent data. Only swaps data when AHRS is idle, but * really this is a pretense of a sanity check since the DMA engine is consantly * running in the background. Keep an eye on the ekf_too_slow variable to make sure * it's keeping up. */ void AHRS_ADC_DMA_Handler(void) { if (DMA_GetFlagStatus(DMA1_IT_TC1)) { // whole double buffer filled adc_config.valid_data_buffer = &raw_data_buffer[1 * PIOS_ADC_NUM_CHANNELS * adc_config.adc_oversample]; DMA_ClearFlag(DMA1_IT_TC1); AHRS_ADC_downsample_data(); } else if (DMA_GetFlagStatus(DMA1_IT_HT1)) { adc_config.valid_data_buffer = &raw_data_buffer[0 * PIOS_ADC_NUM_CHANNELS * adc_config.adc_oversample]; DMA_ClearFlag(DMA1_IT_HT1); AHRS_ADC_downsample_data(); } else { // This should not happen, probably due to transfer errors DMA_ClearFlag(DMA1_FLAG_GL1); } }