/** ****************************************************************************** * * @file ppm.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Sends or Receives the ppm values to/from the remote unit * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include // memmove #include "main.h" #include "rfm22b.h" #include "saved_settings.h" #include "ppm.h" #if defined(PIOS_COM_DEBUG) #define PPM_DEBUG #endif // ************************************************************* #define PPM_OUT_FRAME_PERIOD_US 20000 // microseconds #define PPM_OUT_HIGH_PULSE_US 480 // microseconds #define PPM_OUT_MIN_CHANNEL_PULSE_US 850 // microseconds #define PPM_OUT_MAX_CHANNEL_PULSE_US 2200 // microseconds #define PPM_IN_MIN_SYNC_PULSE_US 7000 // microseconds .. Pip's 6-chan TX goes down to 8.8ms #define PPM_IN_MAX_SYNC_PULSE_US 16000 // microseconds .. Pip's 6-chan TX goes up to 14.4ms #define PPM_IN_MIN_CHANNEL_PULSE_US 750 // microseconds #define PPM_IN_MAX_CHANNEL_PULSE_US 2400 // microseconds // ************************************************************* uint8_t ppm_mode; volatile bool ppm_initialising = true; volatile uint32_t ppm_In_PrevFrames = 0; volatile uint32_t ppm_In_LastValidFrameTimer = 0; volatile uint32_t ppm_In_Frames = 0; volatile uint32_t ppm_In_SyncPulseWidth = 0; volatile uint32_t ppm_In_LastFrameTime = 0; volatile uint8_t ppm_In_NoisyChannelCounter = 0; volatile int8_t ppm_In_ChannelsDetected = 0; volatile int8_t ppm_In_ChannelPulseIndex = -1; volatile uint32_t ppm_In_PreviousValue = 0; volatile uint32_t ppm_In_CurrentValue = 0; volatile uint32_t ppm_In_ChannelPulseWidthNew[PIOS_PPM_MAX_CHANNELS]; volatile uint32_t ppm_In_ChannelPulseWidth[PIOS_PPM_MAX_CHANNELS]; volatile uint16_t ppm_Out_ChannelPulseWidth[PIOS_PPM_MAX_CHANNELS]; volatile uint16_t ppm_Out_SyncPulseWidth = PPM_OUT_FRAME_PERIOD_US; volatile int8_t ppm_Out_ChannelPulseIndex = -1; volatile uint8_t ppm_Out_ChannelsUsed = 0; // ************************************************************* // Initialise the PPM INPUT void ppm_In_Init(void) { TIM_ICInitTypeDef TIM_ICInitStructure; // disable the timer TIM_Cmd(PIOS_PPM_TIM, DISABLE); ppm_In_PrevFrames = 0; ppm_In_NoisyChannelCounter = 0; ppm_In_LastValidFrameTimer = 0; ppm_In_Frames = 0; ppm_In_SyncPulseWidth = 0; ppm_In_LastFrameTime = 0; ppm_In_ChannelsDetected = 0; ppm_In_ChannelPulseIndex = -1; ppm_In_PreviousValue = 0; ppm_In_CurrentValue = 0; for (int i = 0; i < PIOS_PPM_MAX_CHANNELS; i++) { ppm_In_ChannelPulseWidthNew[i] = 0; ppm_In_ChannelPulseWidth[i] = 0; } // Setup RCC PIOS_PPM_TIMER_EN_RCC_FUNC; // Enable timer interrupts NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = PIOS_IRQ_PRIO_MID; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_InitStructure.NVIC_IRQChannel = PIOS_PPM_TIM_IRQ; NVIC_Init(&NVIC_InitStructure); // Init PPM IN pin GPIO_InitTypeDef GPIO_InitStructure; GPIO_StructInit(&GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = PPM_IN_PIN; GPIO_InitStructure.GPIO_Mode = PPM_IN_MODE; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_Init(PPM_IN_PORT, &GPIO_InitStructure); // remap the pin to switch it to timer mode // GPIO_PinRemapConfig(GPIO_PartialRemap1_TIM2, ENABLE); GPIO_PinRemapConfig(GPIO_PartialRemap2_TIM2, ENABLE); // GPIO_PinRemapConfig(GPIO_FullRemap_TIM2, ENABLE); // Configure timer for input capture TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStructure.TIM_ICFilter = 0x0; TIM_ICInitStructure.TIM_Channel = PIOS_PPM_IN_TIM_CHANNEL; TIM_ICInit(PIOS_PPM_TIM_PORT, &TIM_ICInitStructure); // Configure timer clocks TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_TimeBaseStructInit(&TIM_TimeBaseStructure); TIM_TimeBaseStructure.TIM_Period = 0xFFFF; TIM_TimeBaseStructure.TIM_Prescaler = (PIOS_MASTER_CLOCK / 1000000) - 1; TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_InternalClockConfig(PIOS_PPM_TIM_PORT); TIM_TimeBaseInit(PIOS_PPM_TIM_PORT, &TIM_TimeBaseStructure); // Enable the Capture Compare Interrupt Request TIM_ITConfig(PIOS_PPM_TIM_PORT, PIOS_PPM_IN_TIM_CCR, ENABLE); // Clear TIMER Capture compare interrupt pending bit TIM_ClearITPendingBit(PIOS_PPM_TIM_PORT, PIOS_PPM_IN_TIM_CCR); // Enable timer TIM_Cmd(PIOS_PPM_TIM, ENABLE); // Setup local variable which stays in this scope // Doing this here and using a local variable saves doing it in the ISR TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStructure.TIM_ICFilter = 0x0; #ifdef PPM_DEBUG DEBUG_PRINTF("ppm_in: initialised\r\n"); #endif } // TIMER capture/compare interrupt void PIOS_PPM_IN_CC_IRQ(void) { uint32_t pulse_width_us; // new pulse width in microseconds if (booting || ppm_initialising) { // just clear the interrupt if (TIM_GetITStatus(PIOS_PPM_TIM_PORT, PIOS_PPM_IN_TIM_CCR) == SET) { TIM_ClearITPendingBit(PIOS_PPM_TIM_PORT, PIOS_PPM_IN_TIM_CCR); PIOS_PPM_IN_TIM_GETCAP_FUNC(PIOS_PPM_TIM_PORT); } TIM_ClearITPendingBit(PIOS_PPM_TIM_PORT, PIOS_PPM_IN_TIM_CCR); return; } // Do this as it's more efficient if (TIM_GetITStatus(PIOS_PPM_TIM_PORT, PIOS_PPM_IN_TIM_CCR) == SET) { ppm_In_PreviousValue = ppm_In_CurrentValue; ppm_In_CurrentValue = PIOS_PPM_IN_TIM_GETCAP_FUNC(PIOS_PPM_TIM_PORT); } // Clear TIMER Capture compare interrupt pending bit TIM_ClearITPendingBit(PIOS_PPM_TIM_PORT, PIOS_PPM_IN_TIM_CCR); // Capture computation if (ppm_In_CurrentValue > ppm_In_PreviousValue) pulse_width_us = (ppm_In_CurrentValue - ppm_In_PreviousValue); else pulse_width_us = ((0xFFFF - ppm_In_PreviousValue) + ppm_In_CurrentValue); // ******** #ifdef PPM_DEBUG // DEBUG_PRINTF("ppm_in: %uus\r\n", pulse_width_us); #endif if (pulse_width_us >= PPM_IN_MIN_SYNC_PULSE_US) { // SYNC pulse if (pulse_width_us <= PPM_IN_MAX_SYNC_PULSE_US) { // SYNC pulse width is within accepted tolerance if (ppm_In_ChannelPulseIndex > 0) { // we found some channel PWM's in the PPM stream if (ppm_In_ChannelsDetected > 0 && ppm_In_ChannelPulseIndex == ppm_In_ChannelsDetected) { // detected same number of channels as in previous PPM frame .. save the new channel PWM values // if (ppm_In_NoisyChannelCounter <= 2) // only update channels if the channels are fairly noise free for (int i = 0; i < PIOS_PPM_MAX_CHANNELS; i++) ppm_In_ChannelPulseWidth[i] = ppm_In_ChannelPulseWidthNew[i]; } ppm_In_ChannelsDetected = ppm_In_ChannelPulseIndex; // the number of channels we found in this frame ppm_In_LastValidFrameTimer = 0; // reset timer ppm_In_Frames++; // update frame counter } ppm_In_NoisyChannelCounter = 0; // reset noisy channel detector ppm_In_ChannelPulseIndex = 0; // start of PPM frame ppm_In_LastFrameTime = 0; // reset timer } ppm_In_SyncPulseWidth = pulse_width_us; // remember the length of this SYNC pulse } else if (ppm_In_SyncPulseWidth > 0 && ppm_In_ChannelPulseIndex >= 0) { // CHANNEL pulse if (pulse_width_us >= PPM_IN_MIN_CHANNEL_PULSE_US && pulse_width_us <= PPM_IN_MAX_CHANNEL_PULSE_US) { // this new channel pulse is within the accepted tolerance range if (ppm_In_ChannelPulseIndex < PIOS_PPM_MAX_CHANNELS) { int32_t difference = (int32_t)pulse_width_us - ppm_In_ChannelPulseWidthNew[ppm_In_ChannelPulseIndex]; if (abs(difference) >= 300) ppm_In_NoisyChannelCounter++; // possibly a noisy channel - or an RC switch was moved ppm_In_ChannelPulseWidthNew[ppm_In_ChannelPulseIndex] = pulse_width_us; // save it } if (ppm_In_ChannelPulseIndex < 127) ppm_In_ChannelPulseIndex++; // next channel ppm_In_LastFrameTime = 0; // reset timer } else { // bad/noisy channel pulse .. reset state to wait for next SYNC pulse ppm_In_Frames = 0; ppm_In_ChannelPulseIndex = -1; } } // ******** } void ppm_In_Supervisor(void) { // this gets called once every millisecond by an interrupt if (booting || ppm_initialising) return; if (ppm_In_LastValidFrameTimer < 0xffffffff) ppm_In_LastValidFrameTimer++; if (ppm_In_LastFrameTime < 0xffffffff) ppm_In_LastFrameTime++; if (ppm_In_LastFrameTime > ((PPM_IN_MAX_SYNC_PULSE_US * 2) / 1000) && ppm_In_SyncPulseWidth > 0) { // no PPM frames detected for a while .. reset PPM state ppm_In_SyncPulseWidth = 0; ppm_In_ChannelsDetected = 0; ppm_In_ChannelPulseIndex = -1; ppm_In_NoisyChannelCounter = 0; ppm_In_Frames = 0; } } uint32_t ppm_In_NewFrame(void) { if (booting || ppm_initialising) return 0; if (ppm_In_Frames >= 4 && ppm_In_Frames != ppm_In_PrevFrames) { // we have a new PPM frame ppm_In_PrevFrames = ppm_In_Frames; return ppm_In_PrevFrames; } return 0; } int32_t ppm_In_GetChannelPulseWidth(uint8_t channel) { if (booting || ppm_initialising) return -1; // Return error if channel not available if (channel >= PIOS_PPM_MAX_CHANNELS || channel >= ppm_In_ChannelsDetected) return -2; if (ppm_In_LastValidFrameTimer > (PPM_IN_MAX_SYNC_PULSE_US * 4) / 1000) return 0; // to long since last valid PPM frame return ppm_In_ChannelPulseWidth[channel]; // return channel pulse width } // ************************************************************* // Initialise the PPM INPUT void ppm_Out_Init(void) { // disable the timer TIM_Cmd(PIOS_PPM_TIM, DISABLE); ppm_Out_SyncPulseWidth = PPM_OUT_FRAME_PERIOD_US; ppm_Out_ChannelPulseIndex = -1; ppm_Out_ChannelsUsed = 0; for (int i = 0; i < PIOS_PPM_MAX_CHANNELS; i++) ppm_Out_ChannelPulseWidth[i] = 1000; // ppm_Out_ChannelPulseWidth[i] = 1000 + i * 100; // TEST ONLY // ppm_Out_ChannelsUsed = 5; // TEST ONLY PIOS_PPM_TIMER_EN_RCC_FUNC; // Init PPM OUT pin GPIO_InitTypeDef GPIO_InitStructure; GPIO_StructInit(&GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = PPM_OUT_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz; GPIO_Init(PPM_OUT_PORT, &GPIO_InitStructure); // remap the pin to switch it to timer mode // GPIO_PinRemapConfig(GPIO_PartialRemap1_TIM2, ENABLE); // GPIO_PinRemapConfig(GPIO_PartialRemap2_TIM2, ENABLE); GPIO_PinRemapConfig(GPIO_FullRemap_TIM2, ENABLE); // Enable timer interrupt NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = PIOS_IRQ_PRIO_MID; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_InitStructure.NVIC_IRQChannel = PIOS_PPM_TIM_IRQ; NVIC_Init(&NVIC_InitStructure); // Time base configuration TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_TimeBaseStructInit(&TIM_TimeBaseStructure); TIM_TimeBaseStructure.TIM_Period = ppm_Out_SyncPulseWidth - 1; TIM_TimeBaseStructure.TIM_Prescaler = (PIOS_MASTER_CLOCK / 1000000) - 1; TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_InternalClockConfig(PIOS_PPM_TIM_PORT); TIM_TimeBaseInit(PIOS_PPM_TIM_PORT, &TIM_TimeBaseStructure); // Set up for output compare function TIM_OCInitTypeDef TIM_OCInitStructure; TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable; TIM_OCInitStructure.TIM_Pulse = PPM_OUT_HIGH_PULSE_US; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset; TIM_OC3Init(PIOS_PPM_TIM, &TIM_OCInitStructure); TIM_OC3PreloadConfig(PIOS_PPM_TIM, TIM_OCPreload_Enable); TIM_ARRPreloadConfig(PIOS_PPM_TIM, ENABLE); // TIMER Main Output Enable TIM_CtrlPWMOutputs(PIOS_PPM_TIM, ENABLE); // TIM IT enable TIM_ITConfig(PIOS_PPM_TIM, PIOS_PPM_OUT_TIM_CCR, ENABLE); // Clear TIMER Capture compare interrupt pending bit TIM_ClearITPendingBit(PIOS_PPM_TIM_PORT, PIOS_PPM_IN_TIM_CCR); // Enable clock to timer module TIM_Cmd(PIOS_PPM_TIM, ENABLE); #ifdef PPM_DEBUG DEBUG_PRINTF("ppm_out: initialised\r\n"); #endif } // TIMER capture/compare interrupt void PIOS_PPM_OUT_CC_IRQ(void) { // clear the interrupt if (TIM_GetITStatus(PIOS_PPM_TIM_PORT, PIOS_PPM_OUT_TIM_CCR) == SET) { TIM_ClearITPendingBit(PIOS_PPM_TIM_PORT, PIOS_PPM_OUT_TIM_CCR); PIOS_PPM_IN_TIM_GETCAP_FUNC(PIOS_PPM_TIM_PORT); } TIM_ClearITPendingBit(PIOS_PPM_TIM_PORT, PIOS_PPM_OUT_TIM_CCR); if (booting || ppm_initialising) return; // ************************* // update the TIMER period (channel pulse width) if (ppm_Out_ChannelPulseIndex < 0) { // SYNC PULSE TIM_SetAutoreload(PIOS_PPM_TIM, ppm_Out_SyncPulseWidth - 1); // sync pulse length ppm_Out_SyncPulseWidth = PPM_OUT_FRAME_PERIOD_US; // reset sync period if (ppm_Out_ChannelsUsed > 0) ppm_Out_ChannelPulseIndex = 0; // onto channel-1 } else { // CHANNEL PULSE uint16_t pulse_width = ppm_Out_ChannelPulseWidth[ppm_Out_ChannelPulseIndex]; if (pulse_width < PPM_OUT_MIN_CHANNEL_PULSE_US) pulse_width = PPM_OUT_MIN_CHANNEL_PULSE_US; else if (pulse_width > PPM_OUT_MAX_CHANNEL_PULSE_US) pulse_width = PPM_OUT_MAX_CHANNEL_PULSE_US; TIM_SetAutoreload(PIOS_PPM_TIM, pulse_width - 1); // channel pulse width ppm_Out_SyncPulseWidth -= pulse_width; // maintain constant PPM frame period // TEST ONLY // pulse_width += 4; // if (pulse_width > 2000) pulse_width = 1000; // ppm_Out_ChannelPulseWidth[ppm_Out_ChannelPulseIndex] = pulse_width; ppm_Out_ChannelPulseIndex++; if (ppm_Out_ChannelPulseIndex >= ppm_Out_ChannelsUsed || ppm_Out_ChannelPulseIndex >= PIOS_PPM_MAX_CHANNELS) ppm_Out_ChannelPulseIndex = -1; // back to SYNC pulse } // ************************* } void ppm_Out_Supervisor(void) { // this gets called once every millisecond by an interrupt if (booting || ppm_initialising) return; } // ************************************************************* // TIMER capture/compare interrupt void PIOS_PPM_CC_IRQ_FUNC(void) { if (ppm_mode == MODE_PPM_TX) PIOS_PPM_IN_CC_IRQ(); else if (ppm_mode == MODE_PPM_RX) PIOS_PPM_OUT_CC_IRQ(); } // ************************************************************* // can be called from an interrupt if you wish // call this once every ms void ppm_1ms_tick(void) { if (booting || ppm_initialising) return; if (ppm_mode == MODE_PPM_TX) ppm_In_Supervisor(); else if (ppm_mode == MODE_PPM_RX) ppm_Out_Supervisor(); } // ************************************************************* // return a byte for the tx packet transmission. // // return value < 0 if no more bytes available, otherwise return byte to be sent int16_t ppm_TxDataByteCallback(void) { return -1; } // ************************************************************* // we are being given a block of received bytes // // return TRUE to continue current packet receive, otherwise return FALSE to halt current packet reception bool ppm_RxDataCallback(void *data, uint8_t len) { return true; } // ************************************************************* // call this from the main loop (not interrupt) as often as possible void ppm_process(void) { if (booting || ppm_initialising) return; if (ppm_mode == MODE_PPM_TX) { if (ppm_In_NewFrame() > 0) { // we have a new PPM frame to send #ifdef PPM_DEBUG DEBUG_PRINTF("\r\n"); DEBUG_PRINTF("ppm_in: sync %u\r\n", ppm_In_SyncPulseWidth); #endif for (int i = 0; i < PIOS_PPM_MAX_CHANNELS && i < ppm_In_ChannelsDetected; i++) { // int32_t pwm = ppm_In_GetChannelPulseWidth(i); #ifdef PPM_DEBUG DEBUG_PRINTF("ppm_in: %u %u %4u\r\n", ppm_In_Frames, i, ppm_In_GetChannelPulseWidth(i)); #endif // TODO: } } } else if (saved_settings.mode == MODE_PPM_RX) { // TODO: } } // ************************************************************* void ppm_deinit(void) { ppm_initialising = true; // disable the PPM timer TIM_Cmd(PIOS_PPM_TIM, DISABLE); PIOS_PPM_TIMER_DIS_RCC_FUNC; // TIM IT disable TIM_ITConfig(PIOS_PPM_TIM, PIOS_PPM_IN_TIM_CCR | PIOS_PPM_OUT_TIM_CCR, DISABLE); // TIMER Main Output Disable TIM_CtrlPWMOutputs(PIOS_PPM_TIM, DISABLE); // un-remap the PPM pins GPIO_PinRemapConfig(GPIO_FullRemap_TIM2, DISABLE); // Disable timer interrupt NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = PIOS_IRQ_PRIO_MID; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = DISABLE; NVIC_InitStructure.NVIC_IRQChannel = PIOS_PPM_TIM_IRQ; NVIC_Init(&NVIC_InitStructure); ppm_initialising = false; } void ppm_init(uint32_t our_sn) { ppm_initialising = true; #if defined(PPM_DEBUG) DEBUG_PRINTF("\r\nPPM init\r\n"); #endif ppm_mode = saved_settings.mode; if (ppm_mode == MODE_PPM_TX) { ppm_In_Init(); rfm22_init_tx_stream(saved_settings.min_frequency_Hz, saved_settings.max_frequency_Hz); } else if (ppm_mode == MODE_PPM_RX) { ppm_Out_Init(); rfm22_init_rx_stream(saved_settings.min_frequency_Hz, saved_settings.max_frequency_Hz); } rfm22_TxDataByte_SetCallback(ppm_TxDataByteCallback); rfm22_RxData_SetCallback(ppm_RxDataCallback); rfm22_setFreqCalibration(saved_settings.rf_xtal_cap); rfm22_setNominalCarrierFrequency(saved_settings.frequency_Hz); rfm22_setDatarate(saved_settings.max_rf_bandwidth, FALSE); rfm22_setTxPower(saved_settings.max_tx_power); if (ppm_mode == MODE_PPM_TX) rfm22_setTxStream(); ppm_initialising = false; } // *************************************************************