/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_MS5611 MS5611 Functions * @brief Hardware functions to deal with the altitude pressure sensor * @{ * * @file pios_ms5611.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief MS5611 Pressure Sensor Routines * @see The GNU Public License (GPL) Version 3 * ******************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "pios.h" #ifdef PIOS_INCLUDE_MS5611 #include #define POW2(x) (1 << x) // TODO: Clean this up. Getting around old constant. #define PIOS_MS5611_OVERSAMPLING oversampling // Option to change the interleave between Temp and Pressure conversions // Undef for normal operation // #define PIOS_MS5611_SLOW_TEMP_RATE 20 #ifndef PIOS_MS5611_SLOW_TEMP_RATE #define PIOS_MS5611_SLOW_TEMP_RATE 1 #endif /* Local Types */ typedef struct { uint16_t C[6]; } MS5611CalibDataTypeDef; typedef enum { MS5611_CONVERSION_TYPE_None = 0, MS5611_CONVERSION_TYPE_PressureConv, MS5611_CONVERSION_TYPE_TemperatureConv } ConversionTypeTypeDef; typedef enum { MS5611_FSM_INIT = 0, MS5611_FSM_TEMPERATURE, MS5611_FSM_PRESSURE, MS5611_FSM_CALCULATE, } MS5611_FSM_State; /* Glocal Variables */ ConversionTypeTypeDef CurrentRead = MS5611_CONVERSION_TYPE_None; /* Local Variables */ MS5611CalibDataTypeDef CalibData; /* Straight from the datasheet */ static uint32_t RawTemperature; static uint32_t RawPressure; static int64_t Pressure; static int64_t Temperature; static int32_t lastConversionStart; static uint32_t conversionDelayMs; static uint32_t conversionDelayUs; static int32_t PIOS_MS5611_Read(uint8_t address, uint8_t *buffer, uint8_t len); static int32_t PIOS_MS5611_WriteCommand(uint8_t command); static uint32_t PIOS_MS5611_GetDelay(); static uint32_t PIOS_MS5611_GetDelayUs(); // Second order temperature compensation. Temperature offset static int64_t compensation_t2; // Move into proper driver structure with cfg stored static uint32_t oversampling; static const struct pios_ms5611_cfg *dev_cfg; static int32_t i2c_id; static PIOS_SENSORS_1Axis_SensorsWithTemp results; // sensor driver interface bool PIOS_MS5611_driver_Test(uintptr_t context); void PIOS_MS5611_driver_Reset(uintptr_t context); void PIOS_MS5611_driver_get_scale(float *scales, uint8_t size, uintptr_t context); void PIOS_MS5611_driver_fetch(void *, uint8_t size, uintptr_t context); bool PIOS_MS5611_driver_poll(uintptr_t context); const PIOS_SENSORS_Driver PIOS_MS5611_Driver = { .test = PIOS_MS5611_driver_Test, .poll = PIOS_MS5611_driver_poll, .fetch = PIOS_MS5611_driver_fetch, .reset = PIOS_MS5611_driver_Reset, .get_queue = NULL, .get_scale = PIOS_MS5611_driver_get_scale, .is_polled = true, }; /** * Initialise the MS5611 sensor */ int32_t ms5611_read_flag; void PIOS_MS5611_Init(const struct pios_ms5611_cfg *cfg, int32_t i2c_device) { i2c_id = i2c_device; oversampling = cfg->oversampling; conversionDelayMs = PIOS_MS5611_GetDelay(); conversionDelayUs = PIOS_MS5611_GetDelayUs(); dev_cfg = cfg; // Store cfg before enabling interrupt PIOS_MS5611_WriteCommand(MS5611_RESET); PIOS_DELAY_WaitmS(20); uint8_t data[2]; // reset temperature compensation values compensation_t2 = 0; /* Calibration parameters */ for (int i = 0; i < 6; i++) { while (PIOS_MS5611_Read(MS5611_CALIB_ADDR + i * 2, data, 2)) {} ; CalibData.C[i] = (data[0] << 8) | data[1]; } } /** * Start the ADC conversion * \param[in] PresOrTemp BMP085_PRES_ADDR or BMP085_TEMP_ADDR * \return 0 for success, -1 for failure (conversion completed and not read) */ int32_t PIOS_MS5611_StartADC(ConversionTypeTypeDef Type) { /* Start the conversion */ if (Type == MS5611_CONVERSION_TYPE_TemperatureConv) { while (PIOS_MS5611_WriteCommand(MS5611_TEMP_ADDR + oversampling) != 0) { continue; } } else if (Type == MS5611_CONVERSION_TYPE_PressureConv) { while (PIOS_MS5611_WriteCommand(MS5611_PRES_ADDR + oversampling) != 0) { continue; } } lastConversionStart = PIOS_DELAY_GetRaw(); CurrentRead = Type; return 0; } /** * @brief Return the delay for the current osr */ static uint32_t PIOS_MS5611_GetDelay() { switch (oversampling) { case MS5611_OSR_256: return 1; case MS5611_OSR_512: return 2; case MS5611_OSR_1024: return 3; case MS5611_OSR_2048: return 5; case MS5611_OSR_4096: return 10; default: break; } return 10; } /** * @brief Return the delay for the current osr in uS */ static uint32_t PIOS_MS5611_GetDelayUs() { switch (oversampling) { case MS5611_OSR_256: return 600; case MS5611_OSR_512: return 1170; case MS5611_OSR_1024: return 2280; case MS5611_OSR_2048: return 4540; case MS5611_OSR_4096: return 9040; default: break; } return 10; } /** * Read the ADC conversion value (once ADC conversion has completed) * \return 0 if successfully read the ADC, -1 if conversion time has not elapsed, -2 if failure occurred */ int32_t PIOS_MS5611_ReadADC(void) { uint8_t Data[3]; Data[0] = 0; Data[1] = 0; Data[2] = 0; if (CurrentRead == MS5611_CONVERSION_TYPE_None) { return -2; } if (conversionDelayUs > PIOS_DELAY_DiffuS(lastConversionStart)) { return -1; } static int64_t deltaTemp; /* Read and store the 16bit result */ if (CurrentRead == MS5611_CONVERSION_TYPE_TemperatureConv) { /* Read the temperature conversion */ if (PIOS_MS5611_Read(MS5611_ADC_READ, Data, 3) != 0) { return -2; } RawTemperature = (Data[0] << 16) | (Data[1] << 8) | Data[2]; // Difference between actual and reference temperature // dT = D2 - TREF = D2 - C5 * 2^8 deltaTemp = ((int32_t)RawTemperature) - (CalibData.C[4] * POW2(8)); // Actual temperature (-40…85°C with 0.01°C resolution) // TEMP = 20°C + dT * TEMPSENS = 2000 + dT * C6 / 2^23 Temperature = 2000l + ((deltaTemp * CalibData.C[5]) / POW2(23)); } else { int64_t Offset; int64_t Sens; // used for second order temperature compensation int64_t Offset2 = 0; int64_t Sens2 = 0; /* Read the pressure conversion */ if (PIOS_MS5611_Read(MS5611_ADC_READ, Data, 3) != 0) { return -2; } // check if temperature is less than 20°C if (Temperature < 2000) { // Apply compensation // T2 = dT^2 / 2^31 // OFF2 = 5 ⋅ (TEMP – 2000)^2/2 // SENS2 = 5 ⋅ (TEMP – 2000)^2/2^2 int64_t tcorr = (Temperature - 2000) * (Temperature - 2000); Offset2 = (5 * tcorr) / 2; Sens2 = (5 * tcorr) / 4; compensation_t2 = (deltaTemp * deltaTemp) >> 31; // Apply the "Very low temperature compensation" when temp is less than -15°C if (Temperature < -1500) { // OFF2 = OFF2 + 7 ⋅ (TEMP + 1500)^2 // SENS2 = SENS2 + 11 ⋅ (TEMP + 1500)^2 / 2 int64_t tcorr2 = (Temperature + 1500) * (Temperature + 1500); Offset2 += 7 * tcorr2; Sens2 += (11 * tcorr2) / 2; } } else { compensation_t2 = 0; Offset2 = 0; Sens2 = 0; } RawPressure = ((Data[0] << 16) | (Data[1] << 8) | Data[2]); // Offset at actual temperature // OFF = OFFT1 + TCO * dT = C2 * 2^16 + (C4 * dT) / 2^7 Offset = ((int64_t)CalibData.C[1]) * POW2(16) + (((int64_t)CalibData.C[3]) * deltaTemp) / POW2(7) - Offset2; // Sensitivity at actual temperature // SENS = SENST1 + TCS * dT = C1 * 2^15 + (C3 * dT) / 2^8 Sens = ((int64_t)CalibData.C[0]) * POW2(15) + (((int64_t)CalibData.C[2]) * deltaTemp) / POW2(8) - Sens2; // Temperature compensated pressure (10…1200mbar with 0.01mbar resolution) // P = D1 * SENS - OFF = (D1 * SENS / 2^21 - OFF) / 2^15 Pressure = (((((int64_t)RawPressure) * Sens) / POW2(21)) - Offset) / POW2(15); } return 0; } /** * Return the most recently computed temperature in kPa */ static float PIOS_MS5611_GetTemperature(void) { // Apply the second order low and very low temperature compensation offset return ((float)(Temperature - compensation_t2)) / 100.0f; } /** * Return the most recently computed pressure in kPa */ static float PIOS_MS5611_GetPressure(void) { return ((float)Pressure) / 1000.0f; } /** * Reads one or more bytes into a buffer * \param[in] the command indicating the address to read * \param[out] buffer destination buffer * \param[in] len number of bytes which should be read * \return 0 if operation was successful * \return -1 if error during I2C transfer */ static int32_t PIOS_MS5611_Read(uint8_t address, uint8_t *buffer, uint8_t len) { const struct pios_i2c_txn txn_list[] = { { .info = __func__, .addr = MS5611_I2C_ADDR, .rw = PIOS_I2C_TXN_WRITE, .len = 1, .buf = &address, } , { .info = __func__, .addr = MS5611_I2C_ADDR, .rw = PIOS_I2C_TXN_READ, .len = len, .buf = buffer, } }; return PIOS_I2C_Transfer(i2c_id, txn_list, NELEMENTS(txn_list)); } /** * Writes one or more bytes to the MS5611 * \param[in] address Register address * \param[in] buffer source buffer * \return 0 if operation was successful * \return -1 if error during I2C transfer */ static int32_t PIOS_MS5611_WriteCommand(uint8_t command) { const struct pios_i2c_txn txn_list[] = { { .info = __func__, .addr = MS5611_I2C_ADDR, .rw = PIOS_I2C_TXN_WRITE, .len = 1, .buf = &command, } , }; return PIOS_I2C_Transfer(i2c_id, txn_list, NELEMENTS(txn_list)); } /** * @brief Run self-test operation. * \return 0 if self-test succeed, -1 if failed */ int32_t PIOS_MS5611_Test() { // TODO: Is there a better way to test this than just checking that pressure/temperature has changed? int32_t cur_value = 0; cur_value = Temperature; PIOS_MS5611_StartADC(MS5611_CONVERSION_TYPE_TemperatureConv); PIOS_DELAY_WaitmS(10); PIOS_MS5611_ReadADC(); if (cur_value == Temperature) { return -1; } cur_value = Pressure; PIOS_MS5611_StartADC(MS5611_CONVERSION_TYPE_PressureConv); PIOS_DELAY_WaitmS(10); PIOS_MS5611_ReadADC(); if (cur_value == Pressure) { return -1; } return 0; } /* PIOS sensor driver implementation */ void PIOS_MS5611_Register() { PIOS_SENSORS_Register(&PIOS_MS5611_Driver, PIOS_SENSORS_TYPE_1AXIS_BARO, 0); } bool PIOS_MS5611_driver_Test(__attribute__((unused)) uintptr_t context) { return true; // !PIOS_MS5611_Test(); } void PIOS_MS5611_driver_Reset(__attribute__((unused)) uintptr_t context) {} void PIOS_MS5611_driver_get_scale(float *scales, uint8_t size, __attribute__((unused)) uintptr_t context) { PIOS_Assert(size > 0); scales[0] = 1; } void PIOS_MS5611_driver_fetch(void *data, __attribute__((unused)) uint8_t size, __attribute__((unused)) uintptr_t context) { PIOS_Assert(data); memcpy(data, (void *)&results, sizeof(PIOS_SENSORS_1Axis_SensorsWithTemp)); } bool PIOS_MS5611_driver_poll(__attribute__((unused)) uintptr_t context) { static uint8_t temp_press_interleave_count = 1; static MS5611_FSM_State next_state = MS5611_FSM_INIT; int32_t conversionResult = PIOS_MS5611_ReadADC(); if (__builtin_expect(conversionResult == -1, 1)) { return false; // wait for conversion to complete } else if (__builtin_expect(conversionResult == -2, 0)) { temp_press_interleave_count = 1; next_state = MS5611_FSM_INIT; } switch (next_state) { case MS5611_FSM_INIT: case MS5611_FSM_TEMPERATURE: PIOS_MS5611_StartADC(MS5611_CONVERSION_TYPE_TemperatureConv); next_state = MS5611_FSM_PRESSURE; return false; case MS5611_FSM_PRESSURE: PIOS_MS5611_StartADC(MS5611_CONVERSION_TYPE_PressureConv); next_state = MS5611_FSM_CALCULATE; return false; case MS5611_FSM_CALCULATE: temp_press_interleave_count--; if (temp_press_interleave_count == 0) { PIOS_MS5611_StartADC(MS5611_CONVERSION_TYPE_TemperatureConv); next_state = MS5611_FSM_PRESSURE; } else { PIOS_MS5611_StartADC(MS5611_CONVERSION_TYPE_PressureConv); next_state = MS5611_FSM_CALCULATE; } results.temperature = PIOS_MS5611_GetTemperature(); results.sample = PIOS_MS5611_GetPressure(); return true; default: // it should not be there PIOS_Assert(0); } return false; } #endif /* PIOS_INCLUDE_MS5611 */ /** * @} * @} */