/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup StabilizationModule Stabilization Module * @brief Stabilization PID loops in an airframe type independent manner * @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the * PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeState "Attitude State" * @{ * * @file stabilization.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Attitude stabilization module. * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include "stabilization.h" #include "stabilizationsettings.h" #include "actuatordesired.h" #include "ratedesired.h" #include "relaytuning.h" #include "relaytuningsettings.h" #include "stabilizationdesired.h" #include "attitudestate.h" #include "airspeedstate.h" #include "gyrostate.h" #include "flightstatus.h" #include "manualcontrol.h" // Just to get a macro #include "taskinfo.h" // Math libraries #include "CoordinateConversions.h" #include "pid.h" #include "sin_lookup.h" // Includes for various stabilization algorithms #include "relay_tuning.h" #include "virtualflybar.h" // Includes for various stabilization algorithms #include "relay_tuning.h" // Private constants #define MAX_QUEUE_SIZE 1 #if defined(PIOS_STABILIZATION_STACK_SIZE) #define STACK_SIZE_BYTES PIOS_STABILIZATION_STACK_SIZE #else #define STACK_SIZE_BYTES 724 #endif #define TASK_PRIORITY (tskIDLE_PRIORITY + 4) #define FAILSAFE_TIMEOUT_MS 30 enum { PID_RATE_ROLL, PID_RATE_PITCH, PID_RATE_YAW, PID_ROLL, PID_PITCH, PID_YAW, PID_MAX }; // Private variables static xTaskHandle taskHandle; static StabilizationSettingsData settings; static xQueueHandle queue; float gyro_alpha = 0; float axis_lock_accum[3] = { 0, 0, 0 }; uint8_t max_axis_lock = 0; uint8_t max_axislock_rate = 0; float weak_leveling_kp = 0; uint8_t weak_leveling_max = 0; bool lowThrottleZeroIntegral; bool lowThrottleZeroAxis[MAX_AXES]; float vbar_decay = 0.991f; struct pid pids[PID_MAX]; // Private functions static void stabilizationTask(void *parameters); static float bound(float val, float range); static void ZeroPids(void); static void SettingsUpdatedCb(UAVObjEvent *ev); /** * Module initialization */ int32_t StabilizationStart() { // Initialize variables // Create object queue queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent)); // Listen for updates. // AttitudeStateConnectQueue(queue); GyroStateConnectQueue(queue); StabilizationSettingsConnectCallback(SettingsUpdatedCb); SettingsUpdatedCb(StabilizationSettingsHandle()); // Start main task xTaskCreate(stabilizationTask, (signed char *)"Stabilization", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &taskHandle); PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_STABILIZATION, taskHandle); #ifdef PIOS_INCLUDE_WDG PIOS_WDG_RegisterFlag(PIOS_WDG_STABILIZATION); #endif return 0; } /** * Module initialization */ int32_t StabilizationInitialize() { // Initialize variables StabilizationSettingsInitialize(); ActuatorDesiredInitialize(); #ifdef DIAG_RATEDESIRED RateDesiredInitialize(); #endif #ifdef REVOLUTION AirspeedStateInitialize(); #endif // Code required for relay tuning sin_lookup_initalize(); RelayTuningSettingsInitialize(); RelayTuningInitialize(); return 0; } MODULE_INITCALL(StabilizationInitialize, StabilizationStart); /** * Module task */ static void stabilizationTask(__attribute__((unused)) void *parameters) { UAVObjEvent ev; uint32_t timeval = PIOS_DELAY_GetRaw(); ActuatorDesiredData actuatorDesired; StabilizationDesiredData stabDesired; RateDesiredData rateDesired; AttitudeStateData attitudeState; GyroStateData gyroStateData; FlightStatusData flightStatus; #ifdef REVOLUTION AirspeedStateData airspeedState; #endif SettingsUpdatedCb((UAVObjEvent *)NULL); // Main task loop ZeroPids(); while (1) { float dT; #ifdef PIOS_INCLUDE_WDG PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION); #endif // Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe if (xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE) { AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_WARNING); continue; } dT = PIOS_DELAY_DiffuS(timeval) * 1.0e-6f; timeval = PIOS_DELAY_GetRaw(); FlightStatusGet(&flightStatus); StabilizationDesiredGet(&stabDesired); AttitudeStateGet(&attitudeState); GyroStateGet(&gyroStateData); #ifdef DIAG_RATEDESIRED RateDesiredGet(&rateDesired); #endif #ifdef REVOLUTION float speedScaleFactor; // Scale PID coefficients based on current airspeed estimation - needed for fixed wing planes AirspeedStateGet(&airspeedState); if (settings.ScaleToAirspeed < 0.1f || airspeedState.CalibratedAirspeed < 0.1f) { // feature has been turned off speedScaleFactor = 1.0f; } else { // scale the factor to be 1.0 at the specified airspeed (for example 10m/s) but scaled by 1/speed^2 speedScaleFactor = (settings.ScaleToAirspeed * settings.ScaleToAirspeed) / (airspeedState.CalibratedAirspeed * airspeedState.CalibratedAirspeed); if (speedScaleFactor < settings.ScaleToAirspeedLimits[STABILIZATIONSETTINGS_SCALETOAIRSPEEDLIMITS_MIN]) { speedScaleFactor = settings.ScaleToAirspeedLimits[STABILIZATIONSETTINGS_SCALETOAIRSPEEDLIMITS_MIN]; } if (speedScaleFactor > settings.ScaleToAirspeedLimits[STABILIZATIONSETTINGS_SCALETOAIRSPEEDLIMITS_MAX]) { speedScaleFactor = settings.ScaleToAirspeedLimits[STABILIZATIONSETTINGS_SCALETOAIRSPEEDLIMITS_MAX]; } } #else const float speedScaleFactor = 1.0f; #endif #if defined(PIOS_QUATERNION_STABILIZATION) // Quaternion calculation of error in each axis. Uses more memory. float rpy_desired[3]; float q_desired[4]; float q_error[4]; float local_error[3]; // Essentially zero errors for anything in rate or none if (stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) { rpy_desired[0] = stabDesired.Roll; } else { rpy_desired[0] = attitudeState.Roll; } if (stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) { rpy_desired[1] = stabDesired.Pitch; } else { rpy_desired[1] = attitudeState.Pitch; } if (stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) { rpy_desired[2] = stabDesired.Yaw; } else { rpy_desired[2] = attitudeState.Yaw; } RPY2Quaternion(rpy_desired, q_desired); quat_inverse(q_desired); quat_mult(q_desired, &attitudeState.q1, q_error); quat_inverse(q_error); Quaternion2RPY(q_error, local_error); #else /* if defined(PIOS_QUATERNION_STABILIZATION) */ // Simpler algorithm for CC, less memory float local_error[3] = { stabDesired.Roll - attitudeState.Roll, stabDesired.Pitch - attitudeState.Pitch, stabDesired.Yaw - attitudeState.Yaw }; // find shortest way float modulo = fmodf(local_error[2] + 180.0f, 360.0f); if (modulo < 0) { local_error[2] = modulo + 180.0f; } else { local_error[2] = modulo - 180.0f; } #endif /* if defined(PIOS_QUATERNION_STABILIZATION) */ float gyro_filtered[3]; gyro_filtered[0] = gyro_filtered[0] * gyro_alpha + gyroStateData.x * (1 - gyro_alpha); gyro_filtered[1] = gyro_filtered[1] * gyro_alpha + gyroStateData.y * (1 - gyro_alpha); gyro_filtered[2] = gyro_filtered[2] * gyro_alpha + gyroStateData.z * (1 - gyro_alpha); float *attitudeDesiredAxis = &stabDesired.Roll; float *actuatorDesiredAxis = &actuatorDesired.Roll; float *rateDesiredAxis = &rateDesired.Roll; ActuatorDesiredGet(&actuatorDesired); // A flag to track which stabilization mode each axis is in static uint8_t previous_mode[MAX_AXES] = { 255, 255, 255 }; bool error = false; // Run the selected stabilization algorithm on each axis: for (uint8_t i = 0; i < MAX_AXES; i++) { // Check whether this axis mode needs to be reinitialized bool reinit = (stabDesired.StabilizationMode[i] != previous_mode[i]); previous_mode[i] = stabDesired.StabilizationMode[i]; // Apply the selected control law switch (stabDesired.StabilizationMode[i]) { case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE: if (reinit) { pids[PID_RATE_ROLL + i].iAccumulator = 0; } // Store to rate desired variable for storing to UAVO rateDesiredAxis[i] = bound(attitudeDesiredAxis[i], settings.ManualRate[i]); // Compute the inner loop actuatorDesiredAxis[i] = pid_apply_setpoint_scaled(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT); actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f); break; case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE: if (reinit) { pids[PID_ROLL + i].iAccumulator = 0; pids[PID_RATE_ROLL + i].iAccumulator = 0; } // Compute the outer loop rateDesiredAxis[i] = pid_apply(&pids[PID_ROLL + i], local_error[i], dT); rateDesiredAxis[i] = bound(rateDesiredAxis[i], settings.MaximumRate[i]); // Compute the inner loop actuatorDesiredAxis[i] = pid_apply_setpoint_scaled(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT); actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f); break; case STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR: // Store for debugging output rateDesiredAxis[i] = attitudeDesiredAxis[i]; // Run a virtual flybar stabilization algorithm on this axis stabilization_virtual_flybar(gyro_filtered[i], rateDesiredAxis[i], &actuatorDesiredAxis[i], dT, reinit, i, &settings); break; case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING: { if (reinit) { pids[PID_RATE_ROLL + i].iAccumulator = 0; } float weak_leveling = local_error[i] * weak_leveling_kp; weak_leveling = bound(weak_leveling, weak_leveling_max); // Compute desired rate as input biased towards leveling rateDesiredAxis[i] = attitudeDesiredAxis[i] + weak_leveling; actuatorDesiredAxis[i] = pid_apply_setpoint_scaled(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT); actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f); break; } case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK: if (reinit) { pids[PID_RATE_ROLL + i].iAccumulator = 0; } if (fabsf(attitudeDesiredAxis[i]) > max_axislock_rate) { // While getting strong commands act like rate mode rateDesiredAxis[i] = attitudeDesiredAxis[i]; axis_lock_accum[i] = 0; } else { // For weaker commands or no command simply attitude lock (almost) on no gyro change axis_lock_accum[i] += (attitudeDesiredAxis[i] - gyro_filtered[i]) * dT; axis_lock_accum[i] = bound(axis_lock_accum[i], max_axis_lock); rateDesiredAxis[i] = pid_apply(&pids[PID_ROLL + i], axis_lock_accum[i], dT); } rateDesiredAxis[i] = bound(rateDesiredAxis[i], settings.ManualRate[i]); actuatorDesiredAxis[i] = pid_apply_setpoint_scaled(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT); actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f); break; case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE: // Store to rate desired variable for storing to UAVO rateDesiredAxis[i] = bound(attitudeDesiredAxis[i], settings.ManualRate[i]); // Run the relay controller which also estimates the oscillation parameters stabilization_relay_rate(rateDesiredAxis[i] - gyro_filtered[i], &actuatorDesiredAxis[i], i, reinit); actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f); break; case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE: if (reinit) { pids[PID_ROLL + i].iAccumulator = 0; } // Compute the outer loop like attitude mode rateDesiredAxis[i] = pid_apply(&pids[PID_ROLL + i], local_error[i], dT); rateDesiredAxis[i] = bound(rateDesiredAxis[i], settings.MaximumRate[i]); // Run the relay controller which also estimates the oscillation parameters stabilization_relay_rate(rateDesiredAxis[i] - gyro_filtered[i], &actuatorDesiredAxis[i], i, reinit); actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f); break; case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE: actuatorDesiredAxis[i] = bound(attitudeDesiredAxis[i], 1.0f); break; default: error = true; break; } } if (settings.VbarPiroComp == STABILIZATIONSETTINGS_VBARPIROCOMP_TRUE) { stabilization_virtual_flybar_pirocomp(gyro_filtered[2], dT); } #ifdef DIAG_RATEDESIRED RateDesiredSet(&rateDesired); #endif // Save dT actuatorDesired.UpdateTime = dT * 1000; actuatorDesired.Throttle = stabDesired.Throttle; // Suppress desired output while disarmed or throttle low, for configured axis if (flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED || stabDesired.Throttle < 0) { if (lowThrottleZeroAxis[ROLL]) { actuatorDesired.Roll = 0.0f; } if (lowThrottleZeroAxis[PITCH]) { actuatorDesired.Pitch = 0.0f; } if (lowThrottleZeroAxis[YAW]) { actuatorDesired.Yaw = 0.0f; } } if (PARSE_FLIGHT_MODE(flightStatus.FlightMode) != FLIGHTMODE_MANUAL) { ActuatorDesiredSet(&actuatorDesired); } else { // Force all axes to reinitialize when engaged for (uint8_t i = 0; i < MAX_AXES; i++) { previous_mode[i] = 255; } } if (flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED || (lowThrottleZeroIntegral && stabDesired.Throttle < 0)) { // Force all axes to reinitialize when engaged for (uint8_t i = 0; i < MAX_AXES; i++) { previous_mode[i] = 255; } } // Clear or set alarms. Done like this to prevent toggline each cycle // and hammering system alarms if (error) { AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_ERROR); } else { AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION); } } } /** * Clear the accumulators and derivatives for all the axes */ static void ZeroPids(void) { for (uint32_t i = 0; i < PID_MAX; i++) { pid_zero(&pids[i]); } for (uint8_t i = 0; i < 3; i++) { axis_lock_accum[i] = 0.0f; } } /** * Bound input value between limits */ static float bound(float val, float range) { if (val < -range) { val = -range; } else if (val > range) { val = range; } return val; } static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev) { StabilizationSettingsGet(&settings); // Set the roll rate PID constants pid_configure(&pids[PID_RATE_ROLL], settings.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KP], settings.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KI], pids[PID_RATE_ROLL].d = settings.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_KD], pids[PID_RATE_ROLL].iLim = settings.RollRatePID[STABILIZATIONSETTINGS_ROLLRATEPID_ILIMIT]); // Set the pitch rate PID constants pid_configure(&pids[PID_RATE_PITCH], settings.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KP], pids[PID_RATE_PITCH].i = settings.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KI], pids[PID_RATE_PITCH].d = settings.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_KD], pids[PID_RATE_PITCH].iLim = settings.PitchRatePID[STABILIZATIONSETTINGS_PITCHRATEPID_ILIMIT]); // Set the yaw rate PID constants pid_configure(&pids[PID_RATE_YAW], settings.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_KP], pids[PID_RATE_YAW].i = settings.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_KI], pids[PID_RATE_YAW].d = settings.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_KD], pids[PID_RATE_YAW].iLim = settings.YawRatePID[STABILIZATIONSETTINGS_YAWRATEPID_ILIMIT]); // Set the roll attitude PI constants pid_configure(&pids[PID_ROLL], settings.RollPI[STABILIZATIONSETTINGS_ROLLPI_KP], settings.RollPI[STABILIZATIONSETTINGS_ROLLPI_KI], 0, pids[PID_ROLL].iLim = settings.RollPI[STABILIZATIONSETTINGS_ROLLPI_ILIMIT]); // Set the pitch attitude PI constants pid_configure(&pids[PID_PITCH], settings.PitchPI[STABILIZATIONSETTINGS_PITCHPI_KP], pids[PID_PITCH].i = settings.PitchPI[STABILIZATIONSETTINGS_PITCHPI_KI], 0, settings.PitchPI[STABILIZATIONSETTINGS_PITCHPI_ILIMIT]); // Set the yaw attitude PI constants pid_configure(&pids[PID_YAW], settings.YawPI[STABILIZATIONSETTINGS_YAWPI_KP], settings.YawPI[STABILIZATIONSETTINGS_YAWPI_KI], 0, settings.YawPI[STABILIZATIONSETTINGS_YAWPI_ILIMIT]); // Set up the derivative term pid_configure_derivative(settings.DerivativeCutoff, settings.DerivativeGamma); // Maximum deviation to accumulate for axis lock max_axis_lock = settings.MaxAxisLock; max_axislock_rate = settings.MaxAxisLockRate; // Settings for weak leveling weak_leveling_kp = settings.WeakLevelingKp; weak_leveling_max = settings.MaxWeakLevelingRate; // Whether to zero the PID integrals while throttle is low lowThrottleZeroIntegral = settings.LowThrottleZeroIntegral == STABILIZATIONSETTINGS_LOWTHROTTLEZEROINTEGRAL_TRUE; // Whether to suppress (zero) the StabilizationDesired output for each axis while disarmed or throttle is low lowThrottleZeroAxis[ROLL] = settings.LowThrottleZeroAxis[STABILIZATIONSETTINGS_LOWTHROTTLEZEROAXIS_ROLL] == STABILIZATIONSETTINGS_LOWTHROTTLEZEROAXIS_TRUE; lowThrottleZeroAxis[PITCH] = settings.LowThrottleZeroAxis[STABILIZATIONSETTINGS_LOWTHROTTLEZEROAXIS_PITCH] == STABILIZATIONSETTINGS_LOWTHROTTLEZEROAXIS_TRUE; lowThrottleZeroAxis[YAW] = settings.LowThrottleZeroAxis[STABILIZATIONSETTINGS_LOWTHROTTLEZEROAXIS_YAW] == STABILIZATIONSETTINGS_LOWTHROTTLEZEROAXIS_TRUE; // The dT has some jitter iteration to iteration that we don't want to // make thie result unpredictable. Still, it's nicer to specify the constant // based on a time (in ms) rather than a fixed multiplier. The error between // update rates on OP (~300 Hz) and CC (~475 Hz) is negligible for this // calculation const float fakeDt = 0.0025f; if (settings.GyroTau < 0.0001f) { gyro_alpha = 0; // not trusting this to resolve to 0 } else { gyro_alpha = expf(-fakeDt / settings.GyroTau); } // Compute time constant for vbar decay term based on a tau vbar_decay = expf(-fakeDt / settings.VbarTau); } /** * @} * @} */