/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_MPU6000 MPU6000 Functions * @brief Deals with the hardware interface to the 3-axis gyro * @{ * * @file pios_mpu000.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief MPU6000 6-axis gyro and accel chip * @see The GNU Public License (GPL) Version 3 * ****************************************************************************** */ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "pios.h" #ifdef PIOS_INCLUDE_MPU6000 #include "fifo_buffer.h" /* Global Variables */ enum pios_mpu6000_dev_magic { PIOS_MPU6000_DEV_MAGIC = 0x9da9b3ed, }; #define PIOS_MPU6000_MAX_DOWNSAMPLE 2 struct mpu6000_dev { uint32_t spi_id; uint32_t slave_num; xQueueHandle queue; const struct pios_mpu6000_cfg * cfg; enum pios_mpu6000_range gyro_range; enum pios_mpu6000_accel_range accel_range; enum pios_mpu6000_filter filter; enum pios_mpu6000_dev_magic magic; }; //! Global structure for this device device static struct mpu6000_dev * dev; volatile bool mpu6000_configured = false; //! Private functions static struct mpu6000_dev * PIOS_MPU6000_alloc(void); static int32_t PIOS_MPU6000_Validate(struct mpu6000_dev * dev); static void PIOS_MPU6000_Config(struct pios_mpu6000_cfg const * cfg); static int32_t PIOS_MPU6000_SetReg(uint8_t address, uint8_t buffer); static int32_t PIOS_MPU6000_GetReg(uint8_t address); #define DEG_TO_RAD (M_PI / 180.0) #define GRAV 9.81f /** * @brief Allocate a new device */ static struct mpu6000_dev * PIOS_MPU6000_alloc(void) { struct mpu6000_dev * mpu6000_dev; mpu6000_dev = (struct mpu6000_dev *)pvPortMalloc(sizeof(*mpu6000_dev)); if (!mpu6000_dev) return (NULL); mpu6000_dev->magic = PIOS_MPU6000_DEV_MAGIC; mpu6000_dev->queue = xQueueCreate(PIOS_MPU6000_MAX_DOWNSAMPLE, sizeof(struct pios_mpu6000_data)); if(mpu6000_dev->queue == NULL) { vPortFree(mpu6000_dev); return NULL; } return(mpu6000_dev); } /** * @brief Validate the handle to the spi device * @returns 0 for valid device or -1 otherwise */ static int32_t PIOS_MPU6000_Validate(struct mpu6000_dev * dev) { if (dev == NULL) return -1; if (dev->magic != PIOS_MPU6000_DEV_MAGIC) return -2; if (dev->spi_id == 0) return -3; return 0; } /** * @brief Initialize the MPU6000 3-axis gyro sensor. * @return 0 for success, -1 for failure */ int32_t PIOS_MPU6000_Init(uint32_t spi_id, uint32_t slave_num, const struct pios_mpu6000_cfg * cfg) { dev = PIOS_MPU6000_alloc(); if(dev == NULL) return -1; dev->spi_id = spi_id; dev->slave_num = slave_num; dev->cfg = cfg; /* Configure the MPU6000 Sensor */ PIOS_SPI_SetClockSpeed(dev->spi_id, PIOS_SPI_PRESCALER_256); PIOS_MPU6000_Config(cfg); PIOS_SPI_SetClockSpeed(dev->spi_id, PIOS_SPI_PRESCALER_16); /* Set up EXTI line */ PIOS_EXTI_Init(cfg->exti_cfg); return 0; } /** * @brief Initialize the MPU6000 3-axis gyro sensor * \return none * \param[in] PIOS_MPU6000_ConfigTypeDef struct to be used to configure sensor. * */ static void PIOS_MPU6000_Config(struct pios_mpu6000_cfg const * cfg) { PIOS_MPU6000_Test(); // Reset chip while (PIOS_MPU6000_SetReg(PIOS_MPU6000_PWR_MGMT_REG, PIOS_MPU6000_PWRMGMT_IMU_RST) != 0); PIOS_DELAY_WaitmS(50); // Reset chip and fifo while (PIOS_MPU6000_SetReg(PIOS_MPU6000_USER_CTRL_REG, PIOS_MPU6000_USERCTL_GYRO_RST | PIOS_MPU6000_USERCTL_SIG_COND | PIOS_MPU6000_USERCTL_FIFO_RST) != 0); // Wait for reset to finish while (PIOS_MPU6000_GetReg(PIOS_MPU6000_USER_CTRL_REG) & (PIOS_MPU6000_USERCTL_GYRO_RST | PIOS_MPU6000_USERCTL_SIG_COND | PIOS_MPU6000_USERCTL_FIFO_RST)); PIOS_DELAY_WaitmS(10); //Power management configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_PWR_MGMT_REG, cfg->Pwr_mgmt_clk) != 0); // Interrupt configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_INT_CFG_REG, cfg->interrupt_cfg) != 0); // Interrupt configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_INT_EN_REG, cfg->interrupt_en) != 0); // FIFO storage #if defined(PIOS_MPU6000_ACCEL) while (PIOS_MPU6000_SetReg(PIOS_MPU6000_FIFO_EN_REG, cfg->Fifo_store | PIOS_MPU6000_ACCEL_OUT) != 0); #else while (PIOS_MPU6000_SetReg(PIOS_MPU6000_FIFO_EN_REG, cfg->Fifo_store) != 0); #endif PIOS_MPU6000_ConfigureRanges(cfg->gyro_range, cfg->accel_range, cfg->filter); // Interrupt configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_USER_CTRL_REG, cfg->User_ctl) != 0) ; // Interrupt configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_PWR_MGMT_REG, cfg->Pwr_mgmt_clk) != 0) ; // Interrupt configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_INT_CFG_REG, cfg->interrupt_cfg) != 0) ; // Interrupt configuration while (PIOS_MPU6000_SetReg(PIOS_MPU6000_INT_EN_REG, cfg->interrupt_en) != 0) ; if((PIOS_MPU6000_GetReg(PIOS_MPU6000_INT_EN_REG)) != cfg->interrupt_en) return; mpu6000_configured = true; } /** * @brief Configures Gyro, accel and Filter ranges/setings * @return 0 if successful, -1 if device has not been initialized */ int32_t PIOS_MPU6000_ConfigureRanges( enum pios_mpu6000_range gyroRange, enum pios_mpu6000_accel_range accelRange, enum pios_mpu6000_filter filterSetting ) { if(dev == NULL) return -1; PIOS_SPI_SetClockSpeed(dev->spi_id, PIOS_SPI_PRESCALER_256); // update filter settings while (PIOS_MPU6000_SetReg(PIOS_MPU6000_DLPF_CFG_REG, filterSetting) != 0); // Sample rate divider, chosen upon digital filtering settings while (PIOS_MPU6000_SetReg(PIOS_MPU6000_SMPLRT_DIV_REG, filterSetting == PIOS_MPU6000_LOWPASS_256_HZ ? dev->cfg->Smpl_rate_div_no_dlp : dev->cfg->Smpl_rate_div_dlp) != 0); dev->filter = filterSetting; // Gyro range while (PIOS_MPU6000_SetReg(PIOS_MPU6000_GYRO_CFG_REG, gyroRange) != 0); dev->gyro_range = gyroRange; #if defined(PIOS_MPU6000_ACCEL) // Set the accel range while (PIOS_MPU6000_SetReg(PIOS_MPU6000_ACCEL_CFG_REG, accelRange) != 0); dev->accel_range = accelRange; #endif PIOS_SPI_SetClockSpeed(dev->spi_id, PIOS_SPI_PRESCALER_16); return 0; } /** * @brief Claim the SPI bus for the accel communications and select this chip * @return 0 if successful, -1 for invalid device, -2 if unable to claim bus */ static int32_t PIOS_MPU6000_ClaimBus(bool fromIsr) { if(PIOS_MPU6000_Validate(dev) != 0) return -1; if(fromIsr){ if(PIOS_SPI_ClaimBusISR(dev->spi_id) != 0) return -2; } else { if(PIOS_SPI_ClaimBus(dev->spi_id) != 0) return -2; } PIOS_SPI_RC_PinSet(dev->spi_id,dev->slave_num,0); return 0; } /** * @brief Release the SPI bus for the accel communications and end the transaction * @return 0 if successful */ int32_t PIOS_MPU6000_ReleaseBus() { if(PIOS_MPU6000_Validate(dev) != 0) return -1; PIOS_SPI_RC_PinSet(dev->spi_id,dev->slave_num,1); return PIOS_SPI_ReleaseBus(dev->spi_id); } /** * @brief Read a register from MPU6000 * @returns The register value or -1 if failure to get bus * @param reg[in] Register address to be read */ static int32_t PIOS_MPU6000_GetReg(uint8_t reg) { uint8_t data; if(PIOS_MPU6000_ClaimBus(false) != 0) return -1; PIOS_SPI_TransferByte(dev->spi_id,(0x80 | reg) ); // request byte data = PIOS_SPI_TransferByte(dev->spi_id,0 ); // receive response PIOS_MPU6000_ReleaseBus(); return data; } /** * @brief Writes one byte to the MPU6000 * \param[in] reg Register address * \param[in] data Byte to write * \return 0 if operation was successful * \return -1 if unable to claim SPI bus * \return -2 if unable to claim i2c device */ static int32_t PIOS_MPU6000_SetReg(uint8_t reg, uint8_t data) { if(PIOS_MPU6000_ClaimBus(false) != 0) return -1; if(PIOS_SPI_TransferByte(dev->spi_id, 0x7f & reg) != 0) { PIOS_MPU6000_ReleaseBus(); return -2; } if(PIOS_SPI_TransferByte(dev->spi_id, data) != 0) { PIOS_MPU6000_ReleaseBus(); return -3; } PIOS_MPU6000_ReleaseBus(); return 0; } /** * @brief Read current X, Z, Y values (in that order) * \param[out] int16_t array of size 3 to store X, Z, and Y magnetometer readings * \returns 0 if succesful */ int32_t PIOS_MPU6000_ReadGyros(struct pios_mpu6000_data * data) { // THIS FUNCTION IS DEPRECATED AND DOES NOT PERFORM A ROTATION uint8_t buf[7] = {PIOS_MPU6000_GYRO_X_OUT_MSB | 0x80, 0, 0, 0, 0, 0, 0}; uint8_t rec[7]; if(PIOS_MPU6000_ClaimBus(false) != 0) return -1; if(PIOS_SPI_TransferBlock(dev->spi_id, &buf[0], &rec[0], sizeof(buf), NULL) < 0) return -2; PIOS_MPU6000_ReleaseBus(); data->gyro_x = rec[1] << 8 | rec[2]; data->gyro_y = rec[3] << 8 | rec[4]; data->gyro_z = rec[5] << 8 | rec[6]; return 0; } /* * @brief Read the identification bytes from the MPU6000 sensor * \return ID read from MPU6000 or -1 if failure */ int32_t PIOS_MPU6000_ReadID() { int32_t mpu6000_id = PIOS_MPU6000_GetReg(PIOS_MPU6000_WHOAMI); if(mpu6000_id < 0) return -1; return mpu6000_id; } /** * \brief Reads the queue handle * \return Handle to the queue or null if invalid device */ xQueueHandle PIOS_MPU6000_GetQueue() { if(PIOS_MPU6000_Validate(dev) != 0) return (xQueueHandle) NULL; return dev->queue; } float PIOS_MPU6000_GetScale() { switch (dev->gyro_range) { case PIOS_MPU6000_SCALE_250_DEG: return 1.0f / 131.0f; case PIOS_MPU6000_SCALE_500_DEG: return 1.0f / 65.5f; case PIOS_MPU6000_SCALE_1000_DEG: return 1.0f / 32.8f; case PIOS_MPU6000_SCALE_2000_DEG: return 1.0f / 16.4f; } return 0; } float PIOS_MPU6000_GetAccelScale() { switch (dev->accel_range) { case PIOS_MPU6000_ACCEL_2G: return GRAV / 16384.0f; case PIOS_MPU6000_ACCEL_4G: return GRAV / 8192.0f; case PIOS_MPU6000_ACCEL_8G: return GRAV / 4096.0f; case PIOS_MPU6000_ACCEL_16G: return GRAV / 2048.0f; } return 0; } /** * @brief Run self-test operation. * \return 0 if test succeeded * \return non-zero value if test succeeded */ int32_t PIOS_MPU6000_Test(void) { /* Verify that ID matches (MPU6000 ID is 0x69) */ int32_t mpu6000_id = PIOS_MPU6000_ReadID(); if(mpu6000_id < 0) return -1; if(mpu6000_id != 0x68) return -2; return 0; } /** * @brief Run self-test operation. * \return 0 if test succeeded * \return non-zero value if test succeeded */ static int32_t PIOS_MPU6000_FifoDepth(bool fromIsr) { uint8_t mpu6000_send_buf[3] = {PIOS_MPU6000_FIFO_CNT_MSB | 0x80, 0, 0}; uint8_t mpu6000_rec_buf[3]; if(PIOS_MPU6000_ClaimBus(fromIsr) != 0) return -1; if(PIOS_SPI_TransferBlock(dev->spi_id, &mpu6000_send_buf[0], &mpu6000_rec_buf[0], sizeof(mpu6000_send_buf), NULL) < 0) { PIOS_MPU6000_ReleaseBus(); return -1; } PIOS_MPU6000_ReleaseBus(); return (mpu6000_rec_buf[1] << 8) | mpu6000_rec_buf[2]; } /** * @brief IRQ Handler. Read all the data from onboard buffer */ uint32_t mpu6000_irq = 0; int32_t mpu6000_count; uint32_t mpu6000_fifo_backup = 0; uint8_t mpu6000_last_read_count = 0; uint32_t mpu6000_fails = 0; uint32_t mpu6000_interval_us; uint32_t mpu6000_time_us; uint32_t mpu6000_transfer_size; bool PIOS_MPU6000_IRQHandler(void) { static uint32_t timeval; mpu6000_interval_us = PIOS_DELAY_DiffuS(timeval); timeval = PIOS_DELAY_GetRaw(); if (!mpu6000_configured) return false; mpu6000_count = PIOS_MPU6000_FifoDepth(true); if (mpu6000_count < sizeof(struct pios_mpu6000_data)) return false; if (PIOS_MPU6000_ClaimBus(true) != 0) return false; uint8_t mpu6000_send_buf[1 + sizeof(struct pios_mpu6000_data) ] = {PIOS_MPU6000_FIFO_REG | 0x80, 0, 0, 0, 0, 0, 0, 0, 0}; uint8_t mpu6000_rec_buf[1 + sizeof(struct pios_mpu6000_data) ]; if (PIOS_SPI_TransferBlock(dev->spi_id, &mpu6000_send_buf[0], &mpu6000_rec_buf[0], sizeof(mpu6000_send_buf), NULL) < 0) { PIOS_MPU6000_ReleaseBus(); mpu6000_fails++; return false; } PIOS_MPU6000_ReleaseBus(); struct pios_mpu6000_data data; // In the case where extras samples backed up grabbed an extra if (mpu6000_count >= (sizeof(data) * 2)) { mpu6000_fifo_backup++; if (PIOS_MPU6000_ClaimBus(true) != 0) return false; if (PIOS_SPI_TransferBlock(dev->spi_id, &mpu6000_send_buf[0], &mpu6000_rec_buf[0], sizeof(mpu6000_send_buf), NULL) < 0) { PIOS_MPU6000_ReleaseBus(); mpu6000_fails++; return false; } PIOS_MPU6000_ReleaseBus(); } // Rotate the sensor to OP convention. The datasheet defines X as towards the right // and Y as forward. OP convention transposes this. Also the Z is defined negatively // to our convention #if defined(PIOS_MPU6000_ACCEL) // Currently we only support rotations on top so switch X/Y accordingly switch (dev->cfg->orientation) { case PIOS_MPU6000_TOP_0DEG: data.accel_y = mpu6000_rec_buf[1] << 8 | mpu6000_rec_buf[2]; // chip X data.accel_x = mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]; // chip Y data.gyro_y = mpu6000_rec_buf[9] << 8 | mpu6000_rec_buf[10]; // chip X data.gyro_x = mpu6000_rec_buf[11] << 8 | mpu6000_rec_buf[12]; // chip Y break; case PIOS_MPU6000_TOP_90DEG: // -1 to bring it back to -32768 +32767 range data.accel_y = -1 - (mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]); // chip Y data.accel_x = mpu6000_rec_buf[1] << 8 | mpu6000_rec_buf[2]; // chip X data.gyro_y = -1 - (mpu6000_rec_buf[11] << 8 | mpu6000_rec_buf[12]); // chip Y data.gyro_x = mpu6000_rec_buf[9] << 8 | mpu6000_rec_buf[10]; // chip X break; case PIOS_MPU6000_TOP_180DEG: data.accel_y = -1 - (mpu6000_rec_buf[1] << 8 | mpu6000_rec_buf[2]); // chip X data.accel_x = -1 - (mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]); // chip Y data.gyro_y = -1 - (mpu6000_rec_buf[9] << 8 | mpu6000_rec_buf[10]); // chip X data.gyro_x = -1 - (mpu6000_rec_buf[11] << 8 | mpu6000_rec_buf[12]); // chip Y break; case PIOS_MPU6000_TOP_270DEG: data.accel_y = mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]; // chip Y data.accel_x = -1 - (mpu6000_rec_buf[1] << 8 | mpu6000_rec_buf[2]); // chip X data.gyro_y = mpu6000_rec_buf[11] << 8 | mpu6000_rec_buf[12]; // chip Y data.gyro_x = -1 - (mpu6000_rec_buf[9] << 8 | mpu6000_rec_buf[10]); // chip X break; } data.gyro_z = -1 - (mpu6000_rec_buf[13] << 8 | mpu6000_rec_buf[14]); data.accel_z = -1 - (mpu6000_rec_buf[5] << 8 | mpu6000_rec_buf[6]); data.temperature = mpu6000_rec_buf[7] << 8 | mpu6000_rec_buf[8]; #else data.gyro_x = mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]; data.gyro_y = mpu6000_rec_buf[5] << 8 | mpu6000_rec_buf[6]; switch (dev->cfg->orientation) { case PIOS_MPU6000_TOP_0DEG: data.gyro_y = mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]; data.gyro_x = mpu6000_rec_buf[5] << 8 | mpu6000_rec_buf[6]; break; case PIOS_MPU6000_TOP_90DEG: data.gyro_y = -1 - (mpu6000_rec_buf[5] << 8 | mpu6000_rec_buf[6]); // chip Y data.gyro_x = mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]; // chip X break; case PIOS_MPU6000_TOP_180DEG: data.gyro_y = -1 - (mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]); data.gyro_x = -1 - (mpu6000_rec_buf[5] << 8 | mpu6000_rec_buf[6]); break; case PIOS_MPU6000_TOP_270DEG: data.gyro_y = mpu6000_rec_buf[5] << 8 | mpu6000_rec_buf[6]; // chip Y data.gyro_x = -1 - (mpu6000_rec_buf[3] << 8 | mpu6000_rec_buf[4]); // chip X break; } data.gyro_z = -1 - (mpu6000_rec_buf[7] << 8 | mpu6000_rec_buf[8]); data.temperature = mpu6000_rec_buf[1] << 8 | mpu6000_rec_buf[2]; #endif portBASE_TYPE xHigherPriorityTaskWoken; xQueueSendToBackFromISR(dev->queue, (void *) &data, &xHigherPriorityTaskWoken); mpu6000_irq++; mpu6000_time_us = PIOS_DELAY_DiffuS(timeval); return xHigherPriorityTaskWoken == pdTRUE; } #endif /* PIOS_INCLUDE_MPU6000 */ /** * @} * @} */