/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_PWM PWM Input Functions * @brief Code to measure with PWM input * @{ * * @file pios_pwm.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief PWM Input functions (STM32 dependent) * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Project Includes */ #include "pios.h" #include "pios_pwm_priv.h" #if defined(PIOS_INCLUDE_PWM) /* Local Variables */ static uint8_t CaptureState[PIOS_PWM_MAX_INPUTS]; static uint16_t RiseValue[PIOS_PWM_MAX_INPUTS]; static uint16_t FallValue[PIOS_PWM_MAX_INPUTS]; static uint32_t CaptureValue[PIOS_PWM_MAX_INPUTS]; //static uint8_t SupervisorState = 0; static uint32_t CapCounter[PIOS_PWM_MAX_INPUTS]; //static uint32_t CapCounterPrev[MAX_CHANNELS]; /** * Initialises all the pins */ void PIOS_PWM_Init(void) { for (uint8_t i = 0; i < pios_pwm_cfg.num_channels; i++) { /* Flush counter variables */ CaptureState[i] = 0; RiseValue[i] = 0; FallValue[i] = 0; CaptureValue[i] = 0; NVIC_InitTypeDef NVIC_InitStructure = pios_pwm_cfg.irq.init; GPIO_InitTypeDef GPIO_InitStructure = pios_pwm_cfg.gpio_init; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure = pios_pwm_cfg.tim_base_init; TIM_ICInitTypeDef TIM_ICInitStructure = pios_pwm_cfg.tim_ic_init; struct pios_pwm_channel channel = pios_pwm_cfg.channels[i]; /* Enable appropriate clock to timer module */ switch((int32_t) channel.timer) { case (int32_t)TIM1: NVIC_InitStructure.NVIC_IRQChannel = TIM1_CC_IRQn; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); break; case (int32_t)TIM2: NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); break; case (int32_t)TIM3: NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); break; case (int32_t)TIM4: NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE); break; #ifdef STM32F10X_HD case (int32_t)TIM5: NVIC_InitStructure.NVIC_IRQChannel = TIM5_IRQn; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5, ENABLE); break; case (int32_t)TIM6: NVIC_InitStructure.NVIC_IRQChannel = TIM6_IRQn; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE); break; case (int32_t)TIM7: NVIC_InitStructure.NVIC_IRQChannel = TIM7_IRQn; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM7, ENABLE); break; case (int32_t)TIM8: NVIC_InitStructure.NVIC_IRQChannel = TIM8_CC_IRQn; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM8, ENABLE); break; #endif } NVIC_Init(&NVIC_InitStructure); /* Enable GPIO */ GPIO_InitStructure.GPIO_Pin = channel.pin; GPIO_Init(channel.port, &GPIO_InitStructure); /* Configure timer for input capture */ TIM_ICInitStructure.TIM_Channel = channel.channel; TIM_ICInit(channel.timer, &TIM_ICInitStructure); /* Configure timer clocks */ TIM_InternalClockConfig(channel.timer); if(channel.timer->PSC != ((PIOS_MASTER_CLOCK / 1000000) - 1)) TIM_TimeBaseInit(channel.timer, &TIM_TimeBaseStructure); /* Enable the Capture Compare Interrupt Request */ TIM_ITConfig(channel.timer, channel.ccr, ENABLE); /* Enable timers */ TIM_Cmd(channel.timer, ENABLE); } if(pios_pwm_cfg.remap) { /* Warning, I don't think this will work for multiple remaps at once */ GPIO_PinRemapConfig(pios_pwm_cfg.remap, ENABLE); } #if 0 /* Supervisor Setup */ #if (PIOS_PWM_SUPV_ENABLED) /* Flush counter variables */ for (i = 0; i < PIOS_PWM_NUM_INPUTS; i++) { CapCounter[i] = 0; } for (i = 0; i < PIOS_PWM_NUM_INPUTS; i++) { CapCounterPrev[i] = 0; } /* Enable timer clock */ PIOS_PWM_SUPV_TIMER_RCC_FUNC; /* Configure interrupts */ NVIC_InitStructure.NVIC_IRQChannel = PIOS_PWM_SUPV_IRQ_CHANNEL; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = PIOS_IRQ_PRIO_MID; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); /* Time base configuration */ TIM_TimeBaseStructInit(&TIM_TimeBaseStructure); TIM_TimeBaseStructure.TIM_Period = ((1000000 / PIOS_PWM_SUPV_HZ) - 1); TIM_TimeBaseStructure.TIM_Prescaler = (PIOS_MASTER_CLOCK / 1000000) - 1; /* For 1 uS accuracy */ TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(PIOS_PWM_SUPV_TIMER, &TIM_TimeBaseStructure); /* Enable the CC2 Interrupt Request */ TIM_ITConfig(PIOS_PWM_SUPV_TIMER, TIM_IT_Update, ENABLE); /* Clear update pending flag */ TIM_ClearFlag(TIM2, TIM_FLAG_Update); /* Enable counter */ TIM_Cmd(PIOS_PWM_SUPV_TIMER, ENABLE); #endif /* Setup local variable which stays in this scope */ /* Doing this here and using a local variable saves doing it in the ISR */ TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStructure.TIM_ICFilter = 0x0; #endif } /** * Get the value of an input channel * \param[in] Channel Number of the channel desired * \output -1 Channel not available * \output >0 Channel value */ int32_t PIOS_PWM_Get(int8_t Channel) { /* Return error if channel not available */ if (Channel >= pios_pwm_cfg.num_channels) { return -1; } return CaptureValue[Channel]; } void PIOS_PWM_irq_handler(TIM_TypeDef * timer) { uint16_t val = 0; for(uint8_t i = 0; i < pios_pwm_cfg.num_channels; i++) { struct pios_pwm_channel channel = pios_pwm_cfg.channels[i]; if ((channel.timer == timer) && (TIM_GetITStatus(channel.timer, channel.ccr) == SET)) { TIM_ClearITPendingBit(channel.timer, channel.ccr); switch(channel.channel) { case TIM_Channel_1: val = TIM_GetCapture1(channel.timer); break; case TIM_Channel_2: val = TIM_GetCapture2(channel.timer); break; case TIM_Channel_3: val = TIM_GetCapture3(channel.timer); break; case TIM_Channel_4: val = TIM_GetCapture4(channel.timer); break; } if (CaptureState[i] == 0) { RiseValue[i] = val; } else { FallValue[i] = val; } // flip state machine and capture value here /* Simple rise or fall state machine */ TIM_ICInitTypeDef TIM_ICInitStructure = pios_pwm_cfg.tim_ic_init; if (CaptureState[i] == 0) { /* Switch states */ CaptureState[i] = 1; /* Switch polarity of input capture */ TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Falling; TIM_ICInitStructure.TIM_Channel = channel.channel; TIM_ICInit(channel.timer, &TIM_ICInitStructure); } else { /* Capture computation */ if (FallValue[i] > RiseValue[i]) { CaptureValue[i] = (FallValue[i] - RiseValue[i]); } else { CaptureValue[i] = ((channel.timer->ARR - RiseValue[i]) + FallValue[i]); } /* Switch states */ CaptureState[i] = 0; /* Increase supervisor counter */ CapCounter[i]++; /* Switch polarity of input capture */ TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; TIM_ICInitStructure.TIM_Channel = channel.channel; TIM_ICInit(channel.timer, &TIM_ICInitStructure); } } } } #if 0 /** * Handle TIM5 global interrupt request */ void TIM5_IRQHandler(void) { /* Do this as it's more efficient */ if (TIM_GetITStatus(PIOS_PWM_TIM_PORT[2], PIOS_PWM_TIM_CCR[2]) == SET) { if (CaptureState[2] == 0) { RiseValue[2] = TIM_GetCapture1(PIOS_PWM_TIM_PORT[2]); } else { FallValue[2] = TIM_GetCapture1(PIOS_PWM_TIM_PORT[2]); } /* Clear TIM3 Capture compare interrupt pending bit */ TIM_ClearITPendingBit(PIOS_PWM_TIM_PORT[2], PIOS_PWM_TIM_CCR[2]); /* Simple rise or fall state machine */ if (CaptureState[2] == 0) { /* Switch states */ CaptureState[2] = 1; /* Switch polarity of input capture */ TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Falling; TIM_ICInitStructure.TIM_Channel = PIOS_PWM_TIM_CHANNEL[2]; TIM_ICInit(PIOS_PWM_TIM_PORT[2], &TIM_ICInitStructure); } else { /* Capture computation */ if (FallValue[2] > RiseValue[2]) { CaptureValue[2] = (FallValue[2] - RiseValue[2]); } else { CaptureValue[2] = ((0xFFFF - RiseValue[2]) + FallValue[2]); } /* Switch states */ CaptureState[2] = 0; /* Increase supervisor counter */ CapCounter[2]++; /* Switch polarity of input capture */ TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; TIM_ICInitStructure.TIM_Channel = PIOS_PWM_TIM_CHANNEL[2]; TIM_ICInit(PIOS_PWM_TIM_PORT[2], &TIM_ICInitStructure); } } } /** * This function handles TIM3 global interrupt request. */ PIOS_PWM_SUPV_IRQ_FUNC { /* Clear timer interrupt pending bit */ TIM_ClearITPendingBit(PIOS_PWM_SUPV_TIMER, TIM_IT_Update); /* Simple state machine */ if (SupervisorState == 0) { /* Save this states values */ for (int32_t i = 0; i < PIOS_PWM_NUM_INPUTS; i++) { CapCounterPrev[i] = CapCounter[i]; } /* Move to next state */ SupervisorState = 1; } else { /* See what channels have been updated */ for (int32_t i = 0; i < PIOS_PWM_NUM_INPUTS; i++) { if (CapCounter[i] == CapCounterPrev[i]) { CaptureValue[i] = 0; } } /* Move to next state */ SupervisorState = 0; } } #endif #endif /** * @} * @} */