/** ****************************************************************************** * * @file sixpointcalibrationmodel.cpp * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014. * * @brief Six point calibration for Magnetometer and Accelerometer * @see The GNU Public License (GPL) Version 3 * @defgroup * @{ * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "sixpointcalibrationmodel.h" #include #include "extensionsystem/pluginmanager.h" #include #include "math.h" #include "calibration/calibrationuiutils.h" #define POINT_SAMPLE_SIZE 50 #define GRAVITY 9.81f #define sign(x) ((x < 0) ? -1 : 1) namespace OpenPilot { SixPointCalibrationModel::SixPointCalibrationModel(QObject *parent) : QObject(parent), collectingData(false), calibratingMag(false), calibratingAccel(false), position(-1) {} /********** Six point calibration **************/ void SixPointCalibrationModel::magStart() { start(false, true); } void SixPointCalibrationModel::accelStart() { start(true, false); } /** * Called by the "Start" button. Sets up the meta data and enables the * buttons to perform six point calibration of the magnetometer (optionally * accel) to compute the scale and bias of this sensor based on the current * home location magnetic strength. */ void SixPointCalibrationModel::start(bool calibrateAccel, bool calibrateMag) { calibratingAccel = calibrateAccel; calibratingMag = calibrateMag; // Store and reset board rotation before calibration starts storeAndClearBoardRotation(); RevoCalibration *revoCalibration = RevoCalibration::GetInstance(getObjectManager()); HomeLocation *homeLocation = HomeLocation::GetInstance(getObjectManager()); AccelGyroSettings *accelGyroSettings = AccelGyroSettings::GetInstance(getObjectManager()); Q_ASSERT(revoCalibration); Q_ASSERT(homeLocation); RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData(); savedSettings.revoCalibration = revoCalibration->getData(); HomeLocation::DataFields homeLocationData = homeLocation->getData(); AccelGyroSettings::DataFields accelGyroSettingsData = accelGyroSettings->getData(); savedSettings.accelGyroSettings = accelGyroSettings->getData(); // check if Homelocation is set if (!homeLocationData.Set) { QMessageBox msgBox; msgBox.setInformativeText(tr("

HomeLocation not SET.

Please set your HomeLocation and try again. Aborting calibration!

")); msgBox.setStandardButtons(QMessageBox::Ok); msgBox.setDefaultButton(QMessageBox::Ok); msgBox.setIcon(QMessageBox::Information); msgBox.exec(); return; } // Calibration accel accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_X] = 1; accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Y] = 1; accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Z] = 1; accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_X] = 0; accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Y] = 0; accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Z] = 0; accel_accum_x.clear(); accel_accum_y.clear(); accel_accum_z.clear(); // Calibration mag // Reset the transformation matrix to identity for (int i = 0; i < RevoCalibration::MAG_TRANSFORM_R2C2; i++) { revoCalibrationData.mag_transform[i] = 0; } revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C0] = 1; revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C1] = 1; revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C2] = 1; revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X] = 0; revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y] = 0; revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z] = 0; // Disable adaptive mag nulling initialMagCorrectionRate = revoCalibrationData.MagBiasNullingRate; revoCalibrationData.MagBiasNullingRate = 0; revoCalibration->setData(revoCalibrationData); accelGyroSettings->setData(accelGyroSettingsData); QThread::usleep(100000); mag_accum_x.clear(); mag_accum_y.clear(); mag_accum_z.clear(); UAVObject::Metadata mdata; /* Need to get as many accel updates as possible */ AccelState *accelState = AccelState::GetInstance(getObjectManager()); Q_ASSERT(accelState); initialAccelStateMdata = accelState->getMetadata(); mdata = initialAccelStateMdata; UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC); mdata.flightTelemetryUpdatePeriod = 100; accelState->setMetadata(mdata); /* Need to get as many mag updates as possible */ MagState *mag = MagState::GetInstance(getObjectManager()); Q_ASSERT(mag); initialMagStateMdata = mag->getMetadata(); mdata = initialMagStateMdata; UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC); mdata.flightTelemetryUpdatePeriod = 100; mag->setMetadata(mdata); /* Show instructions and enable controls */ displayInstructions(tr("Place horizontally, nose pointing north and click save position..."), true); showHelp(CALIBRATION_HELPER_IMAGE_NED); disableAllCalibrations(); savePositionEnabledChanged(true); position = 0; } /** * Saves the data from the aircraft in one of six positions. * This is called when they click "save position" and starts * averaging data for this position. */ void SixPointCalibrationModel::savePositionData() { QMutexLocker lock(&sensorsUpdateLock); savePositionEnabledChanged(false); accel_accum_x.clear(); accel_accum_y.clear(); accel_accum_z.clear(); mag_accum_x.clear(); mag_accum_y.clear(); mag_accum_z.clear(); collectingData = true; AccelState *accelState = AccelState::GetInstance(getObjectManager()); Q_ASSERT(accelState); MagState *mag = MagState::GetInstance(getObjectManager()); Q_ASSERT(mag); connect(accelState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(getSample(UAVObject *))); connect(mag, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(getSample(UAVObject *))); displayInstructions(tr("Hold..."), false); } /** * Grab a sample of mag (optionally accel) data while in this position and * store it for averaging. When sufficient points are collected advance * to the next position (give message to user) or compute the scale and bias */ void SixPointCalibrationModel::getSample(UAVObject *obj) { QMutexLocker lock(&sensorsUpdateLock); // This is necessary to prevent a race condition on disconnect signal and another update if (collectingData == true) { if (obj->getObjID() == AccelState::OBJID) { AccelState *accelState = AccelState::GetInstance(getObjectManager()); Q_ASSERT(accelState); AccelState::DataFields accelStateData = accelState->getData(); accel_accum_x.append(accelStateData.x); accel_accum_y.append(accelStateData.y); accel_accum_z.append(accelStateData.z); } else if (obj->getObjID() == MagState::OBJID) { MagState *mag = MagState::GetInstance(getObjectManager()); Q_ASSERT(mag); MagState::DataFields magData = mag->getData(); mag_accum_x.append(magData.x); mag_accum_y.append(magData.y); mag_accum_z.append(magData.z); } else { Q_ASSERT(0); } } if (accel_accum_x.size() >= POINT_SAMPLE_SIZE && mag_accum_x.size() >= POINT_SAMPLE_SIZE && collectingData == true) { collectingData = false; savePositionEnabledChanged(true); // Store the mean for this position for the accel AccelState *accelState = AccelState::GetInstance(getObjectManager()); Q_ASSERT(accelState); disconnect(accelState, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(getSample(UAVObject *))); accel_data_x[position] = CalibrationUtils::listMean(accel_accum_x); accel_data_y[position] = CalibrationUtils::listMean(accel_accum_y); accel_data_z[position] = CalibrationUtils::listMean(accel_accum_z); // Store the mean for this position for the mag MagState *mag = MagState::GetInstance(getObjectManager()); Q_ASSERT(mag); disconnect(mag, SIGNAL(objectUpdated(UAVObject *)), this, SLOT(getSample(UAVObject *))); mag_data_x[position] = CalibrationUtils::listMean(mag_accum_x); mag_data_y[position] = CalibrationUtils::listMean(mag_accum_y); mag_data_z[position] = CalibrationUtils::listMean(mag_accum_z); position = (position + 1) % 6; if (position == 1) { displayInstructions(tr("Place with nose down, right side west and click save position..."), false); showHelp(CALIBRATION_HELPER_IMAGE_DWN); } if (position == 2) { displayInstructions(tr("Place right side down, nose west and click save position..."), false); showHelp(CALIBRATION_HELPER_IMAGE_WDS); } if (position == 3) { displayInstructions(tr("Place upside down, nose east and click save position..."), false); showHelp(CALIBRATION_HELPER_IMAGE_ENU); } if (position == 4) { displayInstructions(tr("Place with nose up, left side north and click save position..."), false); showHelp(CALIBRATION_HELPER_IMAGE_USE); } if (position == 5) { displayInstructions(tr("Place with left side down, nose south and click save position..."), false); showHelp(CALIBRATION_HELPER_IMAGE_SUW); } if (position == 0) { compute(calibratingMag, calibratingAccel); savePositionEnabledChanged(false); enableAllCalibrations(); showHelp(CALIBRATION_HELPER_IMAGE_EMPTY); /* Cleanup original settings */ accelState->setMetadata(initialAccelStateMdata); mag->setMetadata(initialMagStateMdata); // Recall saved board rotation recallBoardRotation(); } } } /** * Computes the scale and bias for the magnetomer and (compile option) * for the accel once all the data has been collected in 6 positions. */ void SixPointCalibrationModel::compute(bool mag, bool accel) { double S[3], b[3]; double Be_length; AccelGyroSettings *accelGyroSettings = AccelGyroSettings::GetInstance(getObjectManager()); RevoCalibration *revoCalibration = RevoCalibration::GetInstance(getObjectManager()); HomeLocation *homeLocation = HomeLocation::GetInstance(getObjectManager()); Q_ASSERT(revoCalibration); Q_ASSERT(homeLocation); AccelGyroSettings::DataFields accelGyroSettingsData = accelGyroSettings->getData(); RevoCalibration::DataFields revoCalibrationData = revoCalibration->getData(); HomeLocation::DataFields homeLocationData = homeLocation->getData(); // Calibration accel if (accel) { OpenPilot::CalibrationUtils::SixPointInConstFieldCal(homeLocationData.g_e, accel_data_x, accel_data_y, accel_data_z, S, b); accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_X] = fabs(S[0]); accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Y] = fabs(S[1]); accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Z] = fabs(S[2]); accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_X] = -sign(S[0]) * b[0]; accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Y] = -sign(S[1]) * b[1]; accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Z] = -sign(S[2]) * b[2]; } // Calibration mag if (mag) { Be_length = sqrt(pow(homeLocationData.Be[0], 2) + pow(homeLocationData.Be[1], 2) + pow(homeLocationData.Be[2], 2)); OpenPilot::CalibrationUtils::SixPointInConstFieldCal(Be_length, mag_data_x, mag_data_y, mag_data_z, S, b); revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C0] = fabs(S[0]); revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C1] = fabs(S[1]); revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C2] = fabs(S[2]); revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X] = -sign(S[0]) * b[0]; revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y] = -sign(S[1]) * b[1]; revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z] = -sign(S[2]) * b[2]; } // Restore the previous setting revoCalibrationData.MagBiasNullingRate = initialMagCorrectionRate; bool good_calibration = true; // Check the mag calibration is good if (mag) { good_calibration &= revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C0] == revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R0C0]; good_calibration &= revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C1] == revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R1C1]; good_calibration &= revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C2] == revoCalibrationData.mag_transform[RevoCalibration::MAG_TRANSFORM_R2C2]; good_calibration &= revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X] == revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_X]; good_calibration &= revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y] == revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Y]; good_calibration &= revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z] == revoCalibrationData.mag_bias[RevoCalibration::MAG_BIAS_Z]; } // Check the accel calibration is good if (accel) { good_calibration &= accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_X] == accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_X]; good_calibration &= accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Y] == accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Y]; good_calibration &= accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Z] == accelGyroSettingsData.accel_scale[AccelGyroSettings::ACCEL_SCALE_Z]; good_calibration &= accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_X] == accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_X]; good_calibration &= accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Y] == accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Y]; good_calibration &= accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Z] == accelGyroSettingsData.accel_bias[AccelGyroSettings::ACCEL_BIAS_Z]; } if (good_calibration) { if (mag) { revoCalibration->setData(revoCalibrationData); } else { revoCalibration->setData(savedSettings.revoCalibration); } if (accel) { accelGyroSettings->setData(accelGyroSettingsData); } else { accelGyroSettings->setData(savedSettings.accelGyroSettings); } displayInstructions(tr("Sensor scale and bias computed succesfully."), true); } else { displayInstructions(tr("Bad calibration. Please review the instructions and repeat."), true); } position = -1; // set to run again } UAVObjectManager *SixPointCalibrationModel::getObjectManager() { ExtensionSystem::PluginManager *pm = ExtensionSystem::PluginManager::instance(); UAVObjectManager *objMngr = pm->getObject(); Q_ASSERT(objMngr); return objMngr; } void SixPointCalibrationModel::showHelp(QString image) { if (image == CALIBRATION_HELPER_IMAGE_EMPTY) { displayVisualHelp(image); } else { if (calibratingAccel) { displayVisualHelp(CALIBRATION_HELPER_BOARD_PREFIX + image); } else { displayVisualHelp(CALIBRATION_HELPER_PLANE_PREFIX + image); } } } }