/** ****************************************************************************** * * @file rfm22b.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief RF Module hardware layer * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ // ***************************************************************** // RFM22B hardware layer // // This module uses the RFM22B's internal packet handling hardware to encapsulate our own packet data. // // The RFM22B internal hardware packet handler configuration is as follows .. // // 4-byte (32-bit) preamble .. alternating 0's & 1's // 4-byte (32-bit) sync // 1-byte packet length (number of data bytes to follow) // 0 to 255 user data bytes // // Our own packet data will also contain it's own header and 32-bit CRC as a single 16-bit CRC is not sufficient for wireless comms. // // ***************************************************************** #include // memmove #include "stm32f10x.h" #include "main.h" #include "stopwatch.h" #include "gpio_in.h" #include "rfm22b.h" #if defined(PIOS_COM_DEBUG) // #define RFM22_DEBUG // #define RFM22_INT_TIMEOUT_DEBUG #endif // ***************************************************************** // forward delarations #if defined(RFM22_EXT_INT_USE) void rfm22_processInt(void); #endif // ************************************ // this is too adjust the RF module so that it is on frequency #define OSC_LOAD_CAP 0x7F // cap = 12.5pf .. default #define OSC_LOAD_CAP_1 0x7D // board 1 #define OSC_LOAD_CAP_2 0x7B // board 2 #define OSC_LOAD_CAP_3 0x7E // board 3 #define OSC_LOAD_CAP_4 0x7F // board 4 // ************************************ #define TX_TEST_MODE_TIMELIMIT_MS 30000 // TX test modes time limit (in ms) #define TX_PREAMBLE_NIBBLES 8 // 7 to 511 (number of nibbles) #define RX_PREAMBLE_NIBBLES 5 // 5 to 31 (number of nibbles) #define FIFO_SIZE 64 // the size of the rf modules internal FIFO buffers #define TX_FIFO_HI_WATERMARK 62 // 0-63 #define TX_FIFO_LO_WATERMARK 32 // 0-63 #define RX_FIFO_HI_WATERMARK 32 // 0-63 #define SYNC_BYTE_1 0x2D // RF sync bytes (32-bit in all) #define SYNC_BYTE_2 0xD4 // #define SYNC_BYTE_3 0x4B // #define SYNC_BYTE_4 0x59 // // ************************************ // the default TX power level #define RFM22_DEFAULT_RF_POWER rfm22_tx_pwr_txpow_0 // +1dBm ... 1.25mW //#define RFM22_DEFAULT_RF_POWER rfm22_tx_pwr_txpow_1 // +2dBm ... 1.6mW //#define RFM22_DEFAULT_RF_POWER rfm22_tx_pwr_txpow_2 // +5dBm ... 3.16mW //#define RFM22_DEFAULT_RF_POWER rfm22_tx_pwr_txpow_3 // +8dBm ... 6.3mW //#define RFM22_DEFAULT_RF_POWER rfm22_tx_pwr_txpow_4 // +11dBm .. 12.6mW //#define RFM22_DEFAULT_RF_POWER rfm22_tx_pwr_txpow_5 // +14dBm .. 25mW //#define RFM22_DEFAULT_RF_POWER rfm22_tx_pwr_txpow_6 // +17dBm .. 50mW //#define RFM22_DEFAULT_RF_POWER rfm22_tx_pwr_txpow_7 // +20dBm .. 100mW // ************************************ // the default RF datarate //#define RFM22_DEFAULT_RF_DATARATE 500 // 500 bits per sec //#define RFM22_DEFAULT_RF_DATARATE 1000 // 1k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 2000 // 2k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 4000 // 4k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 8000 // 8k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 9600 // 9.6k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 16000 // 16k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 19200 // 19k2 bits per sec //#define RFM22_DEFAULT_RF_DATARATE 24000 // 24k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 32000 // 32k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 64000 // 64k bits per sec #define RFM22_DEFAULT_RF_DATARATE 128000 // 128k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 192000 // 192k bits per sec //#define RFM22_DEFAULT_RF_DATARATE 256000 // 256k bits per sec .. NOT YET WORKING // ************************************ // GFSK modulation // no manchester encoding // data whitening // FIFO mode // 5-nibble rx preamble length detection // 10-nibble tx preamble length #define LOOKUP_SIZE 14 /* // xtal 20 ppm */ // xtal 10 ppm, 434MHz uint32_t data_rate[LOOKUP_SIZE] = { 500, 1000, 2000, 4000, 8000, 9600, 16000, 19200, 24000, 32000, 64000, 128000, 192000, 256000}; uint8_t modulation_index[LOOKUP_SIZE] = { 16, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; uint32_t freq_deviation[LOOKUP_SIZE] = { 4000, 4000, 4000, 4000, 4000, 4800, 8000, 9600, 12000, 16000, 32000, 64000, 96000, 128000}; uint32_t rx_bandwidth[LOOKUP_SIZE] = { 17500, 17500, 17500, 17500, 17500, 19400, 32200, 38600, 51200, 64100, 137900, 269300, 420200, 518800}; int8_t est_rx_sens_dBm[LOOKUP_SIZE] = { -118, -118, -117, -116, -115, -115, -112, -112, -110, -109, -106, -103, -101, -100}; // estimated receiver sensitivity for BER = 1E-3 uint8_t reg_1C[LOOKUP_SIZE] = { 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3B, 0x26, 0x2B, 0x2E, 0x16, 0x07, 0x83, 0x8A, 0x8C}; // rfm22_if_filter_bandwidth uint8_t reg_1D[LOOKUP_SIZE] = { 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40}; // rfm22_afc_loop_gearshift_override uint8_t reg_20[LOOKUP_SIZE] = { 0xE8, 0xF4, 0xFA, 0x7D, 0x3F, 0x34, 0x3F, 0x34, 0x2A, 0x3F, 0x3F, 0x5E, 0x3F, 0x2F}; // rfm22_clk_recovery_oversampling_ratio uint8_t reg_21[LOOKUP_SIZE] = { 0x60, 0x20, 0x00, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x02, 0x02, 0x01, 0x02, 0x02}; // rfm22_clk_recovery_offset2 uint8_t reg_22[LOOKUP_SIZE] = { 0x20, 0x41, 0x83, 0x06, 0x0C, 0x75, 0x0C, 0x75, 0x12, 0x0C, 0x0C, 0x5D, 0x0C, 0xBB}; // rfm22_clk_recovery_offset1 uint8_t reg_23[LOOKUP_SIZE] = { 0xC5, 0x89, 0x12, 0x25, 0x4A, 0x25, 0x4A, 0x25, 0x6F, 0x4A, 0x4A, 0x86, 0x4A, 0x0D}; // rfm22_clk_recovery_offset0 uint8_t reg_24[LOOKUP_SIZE] = { 0x00, 0x00, 0x00, 0x02, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x02, 0x04, 0x05}; // rfm22_clk_recovery_timing_loop_gain1 uint8_t reg_25[LOOKUP_SIZE] = { 0x0A, 0x23, 0x85, 0x0E, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBB, 0x12, 0x74}; // rfm22_clk_recovery_timing_loop_gain0 uint8_t reg_2A[LOOKUP_SIZE] = { 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0E, 0x12, 0x17, 0x31, 0x50, 0x50, 0x50}; // rfm22_afc_limiter .. AFC_pull_in_range = ±AFCLimiter[7:0] x (hbsel+1) x 625 Hz uint8_t reg_6E[LOOKUP_SIZE] = { 0x04, 0x08, 0x10, 0x20, 0x41, 0x4E, 0x83, 0x9D, 0xC4, 0x08, 0x10, 0x20, 0x31, 0x41}; // rfm22_tx_data_rate1 uint8_t reg_6F[LOOKUP_SIZE] = { 0x19, 0x31, 0x62, 0xC5, 0x89, 0xA5, 0x12, 0x49, 0x9C, 0x31, 0x62, 0xC5, 0x27, 0x89}; // rfm22_tx_data_rate0 uint8_t reg_70[LOOKUP_SIZE] = { 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D}; // rfm22_modulation_mode_control1 uint8_t reg_71[LOOKUP_SIZE] = { 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23, 0x23}; // rfm22_modulation_mode_control2 uint8_t reg_72[LOOKUP_SIZE] = { 0x06, 0x06, 0x06, 0x06, 0x06, 0x08, 0x0D, 0x0F, 0x13, 0x1A, 0x33, 0x66, 0x9A, 0xCD}; // rfm22_frequency_deviation // ************************************ volatile bool initialized = false; #if defined(RFM22_EXT_INT_USE) volatile bool exec_using_spi; // set this if you want to access the SPI bus outside of the interrupt volatile bool inside_ext_int; // this is set whenever we are inside the interrupt #endif uint8_t device_type; // the RF chips device ID number uint8_t device_version; // the RF chips revision number volatile uint8_t rf_mode; // holds our current RF mode uint32_t lower_carrier_frequency_limit_Hz; // the minimum RF frequency we can use uint32_t upper_carrier_frequency_limit_Hz; // the maximum RF frequency we can use float carrier_frequency_hz; // the current RF frequency we are on uint32_t carrier_datarate_bps; // the RF data rate we are using uint8_t hbsel; // holds the hbsel (1 or 2) float frequency_step_size; // uint8_t frequency_hop_channel; // current frequency hop channel uint8_t frequency_hop_step_size_reg; // uint8_t adc_config; // holds the adc config reg value volatile uint8_t device_status; // device status register volatile uint8_t int_status1; // interrupt status register 1 volatile uint8_t int_status2; // interrupt status register 2 volatile uint8_t ezmac_status; // ezmac status register volatile int16_t afc_correction; // afc correction reading volatile int32_t afc_correction_Hz; // afc correction reading (in Hz) volatile int16_t temperature_reg; // the temperature sensor reading #if defined(RFM22_DEBUG) volatile uint8_t prev_device_status; // just for debugging volatile uint8_t prev_int_status1; // " " volatile uint8_t prev_int_status2; // " " volatile uint8_t prev_ezmac_status; // " " bool debug_outputted; #endif volatile uint8_t osc_load_cap; // xtal frequency calibration value volatile uint8_t rssi; // the current RSSI (register value) volatile int16_t rssi_dBm; // dBm value uint8_t tx_power; // the transmit power to use for data transmissions volatile uint8_t tx_pwr; // the tx power register read back volatile uint8_t rx_buffer_current; // the current receive buffer in use (double buffer) volatile uint8_t rx_buffer[256] __attribute__ ((aligned(4))); // the receive buffer .. received packet data is saved here volatile uint16_t rx_buffer_wr; // the receive buffer write index volatile uint8_t rx_packet_buf[256] __attribute__ ((aligned(4))); // the received packet volatile uint16_t rx_packet_wr; // the receive packet write index volatile int16_t rx_packet_rssi_dBm; // the receive packet signal strength volatile int32_t rx_packet_afc_Hz; // the receive packet frequency offset volatile uint8_t *tx_data_addr; // the address of the data we send in the transmitted packets volatile uint16_t tx_data_rd; // the tx data read index volatile uint16_t tx_data_wr; // the tx data write index int lookup_index; volatile bool power_on_reset; // set if the RF module has reset itself volatile uint16_t rfm22_int_timer; // used to detect if the RF module stops responding. thus act accordingly if it does stop responding. volatile uint16_t rfm22_int_time_outs; // counter volatile uint16_t prev_rfm22_int_time_outs; // uint32_t clear_channel_count = (TX_PREAMBLE_NIBBLES + 4) * 2; // minimum clear channel time before allowing transmit uint16_t timeout_ms = 20000; // uint16_t timeout_sync_ms = 3; // uint16_t timeout_data_ms = 20; // // ************************************ // SPI read/write void rfm22_startBurstWrite(uint8_t addr) { // wait 1us .. so we don't toggle the CS line to quickly PIOS_DELAY_WaituS(1); // chip select line LOW PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0); PIOS_SPI_TransferByte(RFM22_PIOS_SPI, 0x80 | addr); } inline void rfm22_burstWrite(uint8_t data) { PIOS_SPI_TransferByte(RFM22_PIOS_SPI, data); } void rfm22_endBurstWrite(void) { // chip select line HIGH PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 1); } void rfm22_write(uint8_t addr, uint8_t data) { // wait 1us .. so we don't toggle the CS line to quickly PIOS_DELAY_WaituS(1); // chip select line LOW PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0); PIOS_SPI_TransferByte(RFM22_PIOS_SPI, 0x80 | addr); PIOS_SPI_TransferByte(RFM22_PIOS_SPI, data); // chip select line HIGH PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 1); } void rfm22_startBurstRead(uint8_t addr) { // wait 1us .. so we don't toggle the CS line to quickly PIOS_DELAY_WaituS(1); // chip select line LOW PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0); PIOS_SPI_TransferByte(RFM22_PIOS_SPI, addr & 0x7f); } inline uint8_t rfm22_burstRead(void) { return PIOS_SPI_TransferByte(RFM22_PIOS_SPI, 0xff); } void rfm22_endBurstRead(void) { // chip select line HIGH PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 1); } uint8_t rfm22_read(uint8_t addr) { uint8_t rdata; // wait 1us .. so we don't toggle the CS line to quickly PIOS_DELAY_WaituS(1); // chip select line LOW PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 0); PIOS_SPI_TransferByte(RFM22_PIOS_SPI, addr & 0x7f); rdata = PIOS_SPI_TransferByte(RFM22_PIOS_SPI, 0xff); // chip select line HIGH PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 1); return rdata; } // ************************************ // external interrupt #if defined(RFM22_EXT_INT_USE) void RFM22_EXT_INT_FUNC(void) { inside_ext_int = TRUE; if (EXTI_GetITStatus(RFM22_EXT_INT_LINE) != RESET) { // Clear the EXTI line pending bit EXTI_ClearITPendingBit(RFM22_EXT_INT_LINE); // USB_LED_TOGGLE; // TEST ONLY if (!booting && !exec_using_spi) { // while (!GPIO_IN(RF_INT_PIN) && !exec_using_spi) { // stay here until the interrupt line returns HIGH rfm22_processInt(); } } } inside_ext_int = FALSE; } void rfm22_disableExtInt(void) { // Configure the external interrupt GPIO_EXTILineConfig(RFM22_EXT_INT_PORT_SOURCE, RFM22_EXT_INT_PIN_SOURCE); EXTI_InitTypeDef EXTI_InitStructure; EXTI_InitStructure.EXTI_Line = RFM22_EXT_INT_LINE; EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; EXTI_InitStructure.EXTI_LineCmd = DISABLE; EXTI_Init(&EXTI_InitStructure); EXTI_ClearFlag(RFM22_EXT_INT_LINE); } void rfm22_enableExtInt(void) { // Configure the external interrupt GPIO_EXTILineConfig(RFM22_EXT_INT_PORT_SOURCE, RFM22_EXT_INT_PIN_SOURCE); EXTI_InitTypeDef EXTI_InitStructure; EXTI_InitStructure.EXTI_Line = RFM22_EXT_INT_LINE; EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; EXTI_InitStructure.EXTI_LineCmd = ENABLE; EXTI_Init(&EXTI_InitStructure); EXTI_ClearFlag(RFM22_EXT_INT_LINE); // Enable and set the external interrupt NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = RFM22_EXT_INT_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = RFM22_EXT_INT_PRIORITY; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } #endif // ************************************ // set/get the frequency calibration value void rfm22_setFreqCalibration(uint8_t value) { osc_load_cap = value; if (!initialized || power_on_reset) return; // we haven't yet been initialized #if defined(RFM22_EXT_INT_USE) exec_using_spi = TRUE; #endif rfm22_write(rfm22_xtal_osc_load_cap, osc_load_cap); #if defined(RFM22_EXT_INT_USE) exec_using_spi = FALSE; #endif } uint8_t rfm22_getFreqCalibration(void) { return osc_load_cap; } // ************************************ // radio datarate about 19200 Baud // radio frequency deviation 45kHz // radio receiver bandwidth 67kHz. // // Carson's rule: // The signal bandwidth is about 2(Delta-f + fm) .. // // Delta-f = frequency deviation // fm = maximum frequency of the signal // // This gives 2(45 + 9.6) = 109.2kHz. void rfm22_setDatarate(uint32_t datarate_bps) { #if defined(RFM22_EXT_INT_USE) exec_using_spi = TRUE; #endif // ******* lookup_index = 0; while (lookup_index < (LOOKUP_SIZE - 1) && data_rate[lookup_index] < datarate_bps) lookup_index++; carrier_datarate_bps = datarate_bps = data_rate[lookup_index]; // ******************************** #if defined(RFM22_DEBUG) uint32_t frequency_deviation = freq_deviation[lookup_index]; // Hz uint32_t modulation_bandwidth = datarate_bps + (2 * frequency_deviation); #endif rfm22_write(0x1C, reg_1C[lookup_index]); // rfm22_if_filter_bandwidth rfm22_write(0x1D, reg_1D[lookup_index]); // rfm22_afc_loop_gearshift_override rfm22_write(0x20, reg_20[lookup_index]); // rfm22_clk_recovery_oversampling_ratio rfm22_write(0x21, reg_21[lookup_index]); // rfm22_clk_recovery_offset2 rfm22_write(0x22, reg_22[lookup_index]); // rfm22_clk_recovery_offset1 rfm22_write(0x23, reg_23[lookup_index]); // rfm22_clk_recovery_offset0 rfm22_write(0x24, reg_24[lookup_index]); // rfm22_clk_recovery_timing_loop_gain1 rfm22_write(0x25, reg_25[lookup_index]); // rfm22_clk_recovery_timing_loop_gain0 rfm22_write(0x2A, reg_2A[lookup_index]); // rfm22_afc_limiter if (carrier_datarate_bps < 100000) rfm22_write(0x58, 0x80); // rfm22_chargepump_current_trimming_override else rfm22_write(0x58, 0xC0); // rfm22_chargepump_current_trimming_override rfm22_write(0x6E, reg_6E[lookup_index]); // rfm22_tx_data_rate1 rfm22_write(0x6F, reg_6F[lookup_index]); // rfm22_tx_data_rate0 rfm22_write(0x70, reg_70[lookup_index]); // rfm22_modulation_mode_control1 rfm22_write(0x71, reg_71[lookup_index]); // rfm22_modulation_mode_control2 rfm22_write(0x72, reg_72[lookup_index]); // rfm22_frequency_deviation rfm22_write(rfm22_ook_counter_value1, 0x00); rfm22_write(rfm22_ook_counter_value2, 0x00); // ******************************** // calculate the TX register values /* uint16_t fd = frequency_deviation / 625; uint8_t mmc1 = rfm22_mmc1_enphpwdn | rfm22_mmc1_manppol; uint16_t txdr; if (datarate_bps < 30000) { txdr = (datarate_bps * 20972) / 10000; mmc1 |= rfm22_mmc1_txdtrtscale; } else txdr = (datarate_bps * 6553) / 100000; uint8_t mmc2 = rfm22_mmc2_dtmod_fifo | rfm22_mmc2_modtyp_gfsk; // FIFO mode, GFSK // uint8_t mmc2 = rfm22_mmc2_dtmod_pn9 | rfm22_mmc2_modtyp_gfsk; // PN9 mode, GFSK .. TX TEST MODE if (fd & 0x100) mmc2 |= rfm22_mmc2_fd; rfm22_write(rfm22_frequency_deviation, fd); // set the TX peak frequency deviation rfm22_write(rfm22_modulation_mode_control1, mmc1); rfm22_write(rfm22_modulation_mode_control2, mmc2); rfm22_write(rfm22_tx_data_rate1, txdr >> 8); // set the TX data rate rfm22_write(rfm22_tx_data_rate0, txdr); // " " */ // ******************************** // determine a clear channel time // initialise the stopwatch with a suitable resolution for the datarate STOPWATCH_init(4000000ul / carrier_datarate_bps); // set resolution to the time for 1 nibble (4-bits) at rf datarate // ******************************** // determine suitable time-out periods timeout_sync_ms = (8000ul * 16) / carrier_datarate_bps; // milliseconds if (timeout_sync_ms < 3) timeout_sync_ms = 3; // because out timer resolution is only 1ms timeout_data_ms = (8000ul * 100) / carrier_datarate_bps; // milliseconds if (timeout_data_ms < 3) timeout_data_ms = 3; // because out timer resolution is only 1ms // ******************************** #if defined(RFM22_DEBUG) DEBUG_PRINTF("rf datarate_bps: %d\r\n", datarate_bps); DEBUG_PRINTF("rf frequency_deviation: %d\r\n", frequency_deviation); DEBUG_PRINTF("rf modulation_bandwidth: %u\r\n", modulation_bandwidth); DEBUG_PRINTF("rf_rx_bandwidth[%u]: %u\r\n", lookup_index, rx_bandwidth[lookup_index]); DEBUG_PRINTF("rf est rx sensitivity[%u]: %ddBm\r\n", lookup_index, est_rx_sens_dBm[lookup_index]); #endif // ******* #if defined(RFM22_EXT_INT_USE) exec_using_spi = FALSE; #endif } uint32_t rfm22_getDatarate(void) { return carrier_datarate_bps; } // ************************************ // set/get the current tx power setting void rfm22_setTxPower(uint8_t tx_pwr) { switch (tx_pwr) { case 0: tx_power = rfm22_tx_pwr_txpow_0; break; // +1dBm ... 1.25mW case 1: tx_power = rfm22_tx_pwr_txpow_1; break; // +2dBm ... 1.6mW case 2: tx_power = rfm22_tx_pwr_txpow_2; break; // +5dBm ... 3.16mW case 3: tx_power = rfm22_tx_pwr_txpow_3; break; // +8dBm ... 6.3mW case 4: tx_power = rfm22_tx_pwr_txpow_4; break; // +11dBm .. 12.6mW case 5: tx_power = rfm22_tx_pwr_txpow_5; break; // +14dBm .. 25mW case 6: tx_power = rfm22_tx_pwr_txpow_6; break; // +17dBm .. 50mW case 7: tx_power = rfm22_tx_pwr_txpow_7; break; // +20dBm .. 100mW default: break; } } uint8_t rfm22_getTxPower(void) { return tx_power; } // ************************************ void rfm22_setNominalCarrierFrequency(float frequency_hz) { #if defined(RFM22_EXT_INT_USE) exec_using_spi = TRUE; #endif // ******* if (frequency_hz < lower_carrier_frequency_limit_Hz) frequency_hz = lower_carrier_frequency_limit_Hz; else if (frequency_hz > upper_carrier_frequency_limit_Hz) frequency_hz = upper_carrier_frequency_limit_Hz; carrier_frequency_hz = frequency_hz; if (frequency_hz < 480000000) hbsel = 1; else hbsel = 2; uint8_t fb = (uint8_t)(frequency_hz / (10000000 * hbsel)); uint32_t fc = (uint32_t)(frequency_hz - (10000000 * hbsel * fb)); fc = (fc * 64u) / (10000ul * hbsel); fb -= 24; if (hbsel > 1) fb |= rfm22_fbs_hbsel; fb |= rfm22_fbs_sbse; // is this the RX LO polarity? frequency_step_size = 156.25f * hbsel; rfm22_write(rfm22_frequency_hopping_channel_select, frequency_hop_channel); // frequency hoppping channel (0-255) rfm22_write(rfm22_frequency_offset1, 0); // no frequency offset rfm22_write(rfm22_frequency_offset2, 0); // no frequency offset rfm22_write(rfm22_frequency_band_select, fb); // set the carrier frequency rfm22_write(rfm22_nominal_carrier_frequency1, fc >> 8); // " " rfm22_write(rfm22_nominal_carrier_frequency0, fc & 0xff); // " " // ******* #if defined(RFM22_DEBUG) DEBUG_PRINTF("rf setFreq: %0.2f\r\n", carrier_frequency_hz); #endif #if defined(RFM22_EXT_INT_USE) exec_using_spi = FALSE; #endif } float rfm22_getNominalCarrierFrequency(void) { return carrier_frequency_hz; } float rfm22_getFrequencyStepSize(void) { return frequency_step_size; } void rfm22_setFreqHopChannel(uint8_t channel) { // set the frequency hopping channel frequency_hop_channel = channel; rfm22_write(rfm22_frequency_hopping_channel_select, frequency_hop_channel); } uint8_t rfm22_freqHopChannel(void) { // return the current frequency hopping channel return frequency_hop_channel; } // ************************************ void rfm22_reenableRx(void) { #if defined(RFM22_EXT_INT_USE) exec_using_spi = TRUE; #endif RX_LED_OFF; // disable the receiver // rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_xton); // READY mode rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_pllon); // TUNE mode // clear FIFOs rfm22_write(rfm22_op_and_func_ctrl2, rfm22_opfc2_ffclrrx | rfm22_opfc2_ffclrtx); rfm22_write(rfm22_op_and_func_ctrl2, 0x00); rx_buffer_wr = 0; // empty the rx buffer afc_correction = 0; // reset the afc correction reading afc_correction_Hz = 0; // " " rfm22_int_timer = 0; // reset the timer STOPWATCH_reset(); // reset clear channel detect timer rf_mode = RX_WAIT_PREAMBLE_MODE; // enable the receiver // rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_xton | rfm22_opfc1_rxon); rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_pllon | rfm22_opfc1_rxon); #if defined(RFM22_EXT_INT_USE) exec_using_spi = FALSE; #endif } void rfm22_setRxMode(void) { #if defined(RFM22_EXT_INT_USE) exec_using_spi = TRUE; #endif // disable interrupts rfm22_write(rfm22_interrupt_enable1, 0x00); rfm22_write(rfm22_interrupt_enable2, 0x00); // disable the receiver and transmitter // rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_xton); // READY mode rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_pllon); // TUNE mode RX_LED_OFF; TX_LED_OFF; // rfm22_write(rfm22_rx_fifo_control, RX_FIFO_HI_WATERMARK); // RX FIFO Almost Full Threshold (0 - 63) if (rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE) { // FIFO mode, GFSK modulation uint8_t fd_bit = rfm22_read(rfm22_modulation_mode_control2) & rfm22_mmc2_fd; rfm22_write(rfm22_modulation_mode_control2, fd_bit | rfm22_mmc2_dtmod_fifo | rfm22_mmc2_modtyp_gfsk); } rx_buffer_wr = 0; // empty the rx buffer afc_correction = 0; // reset the afc correction reading afc_correction_Hz = 0; // " " rfm22_int_timer = 0; // reset the timer STOPWATCH_reset(); // reset clear channel detect timer rf_mode = RX_WAIT_PREAMBLE_MODE; // enable RX interrupts rfm22_write(rfm22_interrupt_enable1, rfm22_ie1_encrcerror | rfm22_ie1_enpkvalid | rfm22_ie1_enrxffafull | rfm22_ie1_enfferr); rfm22_write(rfm22_interrupt_enable2, rfm22_ie2_enpreainval | rfm22_ie2_enpreaval | rfm22_ie2_enswdet); // read interrupt status - clear interrupts rfm22_read(rfm22_interrupt_status1); rfm22_read(rfm22_interrupt_status2); // clear FIFOs rfm22_write(rfm22_op_and_func_ctrl2, rfm22_opfc2_ffclrrx | rfm22_opfc2_ffclrtx); rfm22_write(rfm22_op_and_func_ctrl2, 0x00); // enable the receiver // rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_xton | rfm22_opfc1_rxon); rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_pllon | rfm22_opfc1_rxon); #if defined(RFM22_EXT_INT_USE) exec_using_spi = FALSE; #endif #if defined(RFM22_DEBUG) DEBUG_PRINTF(" RX Mode\r\n"); #endif } // ************************************ void rfm22_setTxMode(uint8_t mode) { if (mode != TX_DATA_MODE && mode != TX_CARRIER_MODE && rf_mode != TX_PN_MODE) return; // invalid mode #if defined(RFM22_EXT_INT_USE) exec_using_spi = TRUE; #endif // ******************* // disable interrupts rfm22_write(rfm22_interrupt_enable1, 0x00); rfm22_write(rfm22_interrupt_enable2, 0x00); // rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_xton); // READY mode rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_pllon); // TUNE mode RX_LED_OFF; uint8_t fd_bit = rfm22_read(rfm22_modulation_mode_control2) & rfm22_mmc2_fd; if (mode == TX_CARRIER_MODE) { // blank carrier mode - for testing rfm22_write(rfm22_tx_power, rfm22_tx_pwr_papeaken | rfm22_tx_pwr_papeaklvl_0 | rfm22_tx_pwr_lna_sw | rfm22_tx_pwr_txpow_0); // tx power +1dBm ... 1.25mW rfm22_write(rfm22_modulation_mode_control2, fd_bit | rfm22_mmc2_dtmod_pn9 | rfm22_mmc2_modtyp_none); // FIFO mode, Blank carrier } else if (mode == TX_PN_MODE) { // psuedo random data carrier mode - for testing rfm22_write(rfm22_tx_power, rfm22_tx_pwr_papeaken | rfm22_tx_pwr_papeaklvl_0 | rfm22_tx_pwr_lna_sw | rfm22_tx_pwr_txpow_0); // tx power +1dBm ... 1.25mW rfm22_write(rfm22_modulation_mode_control2, fd_bit | rfm22_mmc2_dtmod_pn9 | rfm22_mmc2_modtyp_gfsk); // FIFO mode, PN9 carrier } else { // data transmission // rfm22_write(rfm22_tx_power, rfm22_tx_pwr_lna_sw | tx_power); // set the tx power rfm22_write(rfm22_tx_power, rfm22_tx_pwr_papeaken | rfm22_tx_pwr_papeaklvl_0 | rfm22_tx_pwr_lna_sw | tx_power); // set the tx power rfm22_write(rfm22_modulation_mode_control2, fd_bit | rfm22_mmc2_dtmod_fifo | rfm22_mmc2_modtyp_gfsk); // FIFO mode, GFSK modulation } // rfm22_write(0x72, reg_72[lookup_index]); // rfm22_frequency_deviation // clear FIFOs rfm22_write(rfm22_op_and_func_ctrl2, rfm22_opfc2_ffclrrx | rfm22_opfc2_ffclrtx); rfm22_write(rfm22_op_and_func_ctrl2, 0x00); // ******************* // add some data to the chips TX FIFO before enabling the transmitter if (mode == TX_DATA_MODE) { tx_data_rd = 0; register uint16_t rd = tx_data_rd; // set the total number of data bytes we are going to transmit rfm22_write(rfm22_transmit_packet_length, tx_data_wr); register uint16_t num = tx_data_wr - rd; if (num > (FIFO_SIZE - 1)) num = FIFO_SIZE - 1; // add some data rfm22_startBurstWrite(rfm22_fifo_access); for (register uint16_t i = num; i > 0; i--) rfm22_burstWrite(tx_data_addr[rd++]); rfm22_endBurstWrite(); tx_data_rd += num; #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) // DEBUG_PRINTF(" added_%d_bytes", num); // debug_outputted = true; #endif } // ******************* rfm22_int_timer = 0; // reset the timer rf_mode = mode; // enable TX interrupts // rfm22_write(rfm22_interrupt_enable1, rfm22_ie1_enpksent | rfm22_ie1_entxffaem | rfm22_ie1_enfferr); rfm22_write(rfm22_interrupt_enable1, rfm22_ie1_enpksent | rfm22_ie1_entxffaem); // read interrupt status - clear interrupts rfm22_read(rfm22_interrupt_status1); rfm22_read(rfm22_interrupt_status2); // enable the transmitter // rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_xton | rfm22_opfc1_txon); rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_pllon | rfm22_opfc1_txon); TX_LED_ON; // ******************* // create new slightly random clear channel detector count value uint32_t ccc = (TX_PREAMBLE_NIBBLES + 8) + 4; // minimum clear channel time before allowing transmit clear_channel_count = ccc + (random32 % (ccc * 2)); // plus a some randomness // ******************* #if defined(RFM22_EXT_INT_USE) exec_using_spi = FALSE; #endif #if defined(RFM22_DEBUG) if (rf_mode == TX_DATA_MODE) DEBUG_PRINTF(" TX_Data_Mode\r\n"); else if (rf_mode == TX_CARRIER_MODE) DEBUG_PRINTF(" TX_Carrier_Mode\r\n"); else if (rf_mode == TX_PN_MODE) DEBUG_PRINTF(" TX_PN_Mode\r\n"); #endif } // ************************************ // external interrupt line triggered (or polled) from the rf chip void rfm22_processRxInt(void) { register uint8_t int_stat1 = int_status1; register uint8_t int_stat2 = int_status2; if (int_stat2 & rfm22_is2_ipreaval) { // Valid preamble detected if (rf_mode == RX_WAIT_PREAMBLE_MODE) { rfm22_int_timer = 0; // reset the timer rf_mode = RX_WAIT_SYNC_MODE; RX_LED_ON; #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) DEBUG_PRINTF(" pream_det"); debug_outputted = true; #endif } } /* else if (int_stat2 & rfm22_is2_ipreainval) { // Invalid preamble detected if (rf_mode == RX_WAIT_SYNC_MODE) { #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) DEBUG_PRINTF(" invalid_preamble"); debug_outputted = true; #endif // rfm22_reenableRx(); // re-enable the receiver rfm22_setRxMode(); return; } else { } } */ if (int_stat2 & rfm22_is2_iswdet) { // Sync word detected STOPWATCH_reset(); // reset timer if (rf_mode == RX_WAIT_PREAMBLE_MODE || rf_mode == RX_WAIT_SYNC_MODE) { rfm22_int_timer = 0; // reset the timer rf_mode = RX_DATA_MODE; RX_LED_ON; // read the 10-bit signed afc correction value afc_correction = (uint16_t)rfm22_read(rfm22_afc_correction_read) << 8; // bits 9 to 2 afc_correction |= (uint16_t)rfm22_read(rfm22_ook_counter_value1) & 0x00c0; // bits 1 & 0 afc_correction >>= 6; // convert the afc value to Hz afc_correction_Hz = (int32_t)(frequency_step_size * afc_correction + 0.5f); #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) DEBUG_PRINTF(" sync_det"); DEBUG_PRINTF(" AFC_%d_%dHz", afc_correction, afc_correction_Hz); debug_outputted = true; #endif } } if (int_stat1 & rfm22_is1_irxffafull) { // RX FIFO almost full, it needs emptying if (rf_mode == RX_DATA_MODE) { // read data from the rf chips FIFO buffer rfm22_int_timer = 0; // reset the timer register uint16_t len = rfm22_read(rfm22_received_packet_length); // read the total length of the packet data register uint16_t wr = rx_buffer_wr; if ((wr + RX_FIFO_HI_WATERMARK) > len) { // some kind of error in the RF module #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) DEBUG_PRINTF(" r_size_error1"); debug_outputted = true; #endif // rfm22_reenableRx(); // re-enable the receiver rfm22_setRxMode(); return; } if (((wr + RX_FIFO_HI_WATERMARK) >= len) && !(int_stat1 & rfm22_is1_ipkvalid)) { // some kind of error in the RF module #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) DEBUG_PRINTF(" r_size_error2"); debug_outputted = true; #endif // rfm22_reenableRx(); // re-enable the receiver rfm22_setRxMode(); return; } // fetch the rx'ed data from the rf chips RX FIFO rfm22_startBurstRead(rfm22_fifo_access); for (register uint16_t i = RX_FIFO_HI_WATERMARK; i > 0; i--) { register uint8_t b = rfm22_burstRead(); // read a byte from the rf modules RX FIFO buffer if (wr < sizeof(rx_buffer)) rx_buffer[wr++] = b; // save the byte into our rx buffer } rfm22_endBurstRead(); rx_buffer_wr = wr; #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) // DEBUG_PRINTF(" r_data_%u/%u", rx_buffer_wr, len); // debug_outputted = true; #endif } else { // just clear the RX FIFO rfm22_startBurstRead(rfm22_fifo_access); for (register uint16_t i = RX_FIFO_HI_WATERMARK; i > 0; i--) rfm22_burstRead(); // read a byte from the rf modules RX FIFO buffer rfm22_endBurstRead(); } } if (int_stat1 & rfm22_is1_icrerror) { // CRC error .. discard the received data if (rf_mode == RX_DATA_MODE) { rfm22_int_timer = 0; // reset the timer #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) DEBUG_PRINTF(" CRC_ERR"); debug_outputted = true; #endif // rfm22_reenableRx(); // re-enable the receiver rfm22_setRxMode(); // reset the receiver return; } } // if (int_stat2 & rfm22_is2_irssi) // { // RSSI level is >= the set threshold // } // if (device_status & rfm22_ds_rxffem) // { // RX FIFO empty // } // if (device_status & rfm22_ds_headerr) // { // Header check error // } if (int_stat1 & rfm22_is1_ipkvalid) { // Valid packet received if (rf_mode == RX_DATA_MODE) { rfm22_int_timer = 0; // reset the timer // disable the receiver // rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_xton); // READY mode rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_pllon); // TUNE mode register uint16_t len = rfm22_read(rfm22_received_packet_length); // read the total length of the packet data register uint16_t wr = rx_buffer_wr; if (wr < len) { // their must still be data in the RX FIFO we need to get rfm22_startBurstRead(rfm22_fifo_access); while (wr < len) { if (wr >= sizeof(rx_buffer)) break; rx_buffer[wr++] = rfm22_burstRead(); } rfm22_endBurstRead(); rx_buffer_wr = wr; } // rfm22_reenableRx(); // re-enable the receiver rfm22_setRxMode(); // reset the receiver if (wr != len) { // we have a packet length error .. discard the packet #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) DEBUG_PRINTF(" r_pack_len_error_%u_%u", len, wr); debug_outputted = true; #endif return; } // we have a valid received packet #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) DEBUG_PRINTF(" VALID_R_PACKET_%u", wr); debug_outputted = true; #endif if (rx_packet_wr == 0) { // save the received packet for further processing rx_packet_rssi_dBm = rssi_dBm; // remember the rssi for this packet rx_packet_afc_Hz = afc_correction_Hz; // remember the afc offset for this packet memmove((void *)rx_packet_buf, (void *)rx_buffer, wr); // copy the packet data rx_packet_wr = wr; // save the length of the data } else { // the save buffer is still in use .. nothing we can do but to drop the packet } // return; } else { //// rfm22_reenableRx(); // re-enable the receiver // rfm22_setRxMode(); // reset the receiver // return; } } } void rfm22_processTxInt(void) { register uint8_t int_stat1 = int_status1; // register uint8_t int_stat2 = int_status2; /* if (int_stat1 & rfm22_is1_ifferr) { // FIFO underflow/overflow error rfm22_setRxMode(); tx_data_addr = NULL; tx_data_rd = tx_data_wr = 0; return; } */ if (int_stat1 & rfm22_is1_ixtffaem) { // TX FIFO almost empty, it needs filling up #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) // DEBUG_PRINTF(" T_FIFO_AE"); // debug_outputted = true; #endif if (rf_mode == TX_DATA_MODE) { if ((tx_data_wr > 0) && (tx_data_rd < tx_data_wr)) { // we have more data to send rfm22_int_timer = 0; // reset the timer register uint16_t rd = tx_data_rd; register uint16_t num = tx_data_wr - rd; if (num > (FIFO_SIZE - TX_FIFO_LO_WATERMARK - 1)) num = FIFO_SIZE - TX_FIFO_LO_WATERMARK - 1; // top-up the rf chips TX FIFO buffer rfm22_startBurstWrite(rfm22_fifo_access); for (register uint16_t i = num; i > 0; i--) rfm22_burstWrite(tx_data_addr[rd++]); rfm22_endBurstWrite(); tx_data_rd = rd; #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) // DEBUG_PRINTF(" added_%d_bytes", num); // debug_outputted = true; #endif } // return; } } if (int_stat1 & rfm22_is1_ipksent) { // Packet has been sent #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) DEBUG_PRINTF(" T_Sent"); debug_outputted = true; #endif if (rf_mode == TX_DATA_MODE) { rfm22_setRxMode(); // back to receive mode tx_data_addr = NULL; tx_data_rd = tx_data_wr = 0; return; } } // if (int_stat1 & rfm22_is1_itxffafull) // { // TX FIFO almost full, it needs to be transmitted // } } void rfm22_processInt(void) { // this is called from the external interrupt handler #if !defined(RFM22_EXT_INT_USE) if (GPIO_IN(RF_INT_PIN)) return; // the external int line is high (no signalled interrupt) #endif if (!initialized || power_on_reset) return; // we haven't yet been initialized #if defined(RFM22_DEBUG) debug_outputted = false; #endif // ******************************** // read the RF modules current status registers // read device status register device_status = rfm22_read(rfm22_device_status); // read ezmac status register ezmac_status = rfm22_read(rfm22_ezmac_status); // read interrupt status registers - clears the interrupt line int_status1 = rfm22_read(rfm22_interrupt_status1); int_status2 = rfm22_read(rfm22_interrupt_status2); if (rf_mode != TX_DATA_MODE && rf_mode != TX_CARRIER_MODE && rf_mode != TX_PN_MODE) { rssi = rfm22_read(rfm22_rssi); // read rx signal strength .. 45 = -100dBm, 205 = -20dBm rssi_dBm = ((int16_t)rssi / 2) - 122; // convert to dBm } else { tx_pwr = rfm22_read(rfm22_tx_power); // read the tx power register } if (int_status2 & rfm22_is2_ipor) { // the RF module has gone and done a reset - we need to re-initialize the rf module initialized = FALSE; power_on_reset = TRUE; return; } // ******************************** // debug stuff #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) if (prev_device_status != device_status || prev_int_status1 != int_status1 || prev_int_status2 != int_status2 || prev_ezmac_status != ezmac_status) { DEBUG_PRINTF("%02x %02x %02x %02x %dC", device_status, int_status1, int_status2, ezmac_status, temperature_reg); if ((device_status & rfm22_ds_cps_mask) == rfm22_ds_cps_rx) DEBUG_PRINTF(" %ddBm", rssi_dBm); // rx mode else if ((device_status & rfm22_ds_cps_mask) == rfm22_ds_cps_tx) DEBUG_PRINTF(" %s", (tx_pwr & rfm22_tx_pwr_papeakval) ? "ANT_MISMATCH" : "ant_ok"); // tx mode debug_outputted = true; prev_device_status = device_status; prev_int_status1 = int_status1; prev_int_status2 = int_status2; prev_ezmac_status = ezmac_status; } #endif // ******************************** // read the ADC - temperature sensor .. this can only be used in IDLE mode /* if (!(rfm22_read(rfm22_adc_config) & rfm22_ac_adcstartbusy)) { // the ADC has completed it's conversion // read the ADC sample temperature_reg = (int16_t)rfm22_read(rfm22_adc_value) * 0.5f - 64; // start a new ADC conversion rfm22_write(rfm22_adc_config, adc_config | rfm22_ac_adcstartbusy); #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) DEBUG_PRINTF(", %dC", temperature_reg); debug_outputted = true; #endif } */ // ******************************** register uint16_t timer_ms = rfm22_int_timer; switch (rf_mode) { case RX_WAIT_PREAMBLE_MODE: case RX_WAIT_SYNC_MODE: case RX_DATA_MODE: if (device_status & (rfm22_ds_ffunfl | rfm22_ds_ffovfl)) { // FIFO under/over flow error #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) DEBUG_PRINTF(" R_UNDER/OVERRUN"); debug_outputted = true; #endif rfm22_setRxMode(); // reset the receiver tx_data_rd = tx_data_wr = 0; // wipe TX buffer break; } if (rf_mode == RX_WAIT_SYNC_MODE && timer_ms >= timeout_sync_ms) { rfm22_int_time_outs++; #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) DEBUG_PRINTF(" R_SYNC_TIMEOUT"); debug_outputted = true; #endif rfm22_setRxMode(); // reset the receiver tx_data_rd = tx_data_wr = 0; // wipe TX buffer break; } if (rf_mode == RX_DATA_MODE && timer_ms >= timeout_data_ms) { // missing interrupts rfm22_int_time_outs++; rfm22_setRxMode(); // reset the receiver tx_data_rd = tx_data_wr = 0; // wipe TX buffer break; } if ((device_status & rfm22_ds_cps_mask) != rfm22_ds_cps_rx) { // the rf module is not in rx mode if (timer_ms >= 100) { rfm22_int_time_outs++; #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) DEBUG_PRINTF(" R_TIMEOUT"); debug_outputted = true; #endif rfm22_setRxMode(); // reset the receiver tx_data_rd = tx_data_wr = 0; // wipe TX buffer break; } } rfm22_processRxInt(); // process the interrupt break; case TX_DATA_MODE: if (device_status & (rfm22_ds_ffunfl | rfm22_ds_ffovfl)) { // FIFO under/over flow error #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) DEBUG_PRINTF(" T_UNDER/OVERRUN"); debug_outputted = true; #endif rfm22_setRxMode(); // back to rx mode tx_data_rd = tx_data_wr = 0; // wipe TX buffer break; } if (timer_ms >= timeout_data_ms) { rfm22_int_time_outs++; rfm22_setRxMode(); // back to rx mode tx_data_rd = tx_data_wr = 0; // wipe TX buffer break; } if ((device_status & rfm22_ds_cps_mask) != rfm22_ds_cps_tx) { // the rf module is not in tx mode if (timer_ms >= 100) { rfm22_int_time_outs++; #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) DEBUG_PRINTF(" T_TIMEOUT"); debug_outputted = true; #endif rfm22_setRxMode(); // back to rx mode tx_data_rd = tx_data_wr = 0; // wipe TX buffer break; } } rfm22_processTxInt(); // process the interrupt break; case TX_CARRIER_MODE: case TX_PN_MODE: if (timer_ms >= TX_TEST_MODE_TIMELIMIT_MS) // 'nn'ms limit { rfm22_setRxMode(); // back to rx mode tx_data_rd = tx_data_wr = 0; // wipe TX buffer break; } break; default: // unknown mode - this should NEVER happen, maybe we should do a complete CPU reset here rfm22_setRxMode(); // to rx mode tx_data_rd = tx_data_wr = 0; // wipe TX buffer break; } // ******************************** #if defined(RFM22_DEBUG) && !defined(RFM22_EXT_INT_USE) if (debug_outputted) { switch (rf_mode) { case RX_WAIT_PREAMBLE_MODE: DEBUG_PRINTF(" R_WAIT_PREAMBLE\r\n"); break; case RX_WAIT_SYNC_MODE: DEBUG_PRINTF(" R_WAIT_SYNC\r\n"); break; case RX_DATA_MODE: DEBUG_PRINTF(" R_DATA\r\n"); break; case TX_DATA_MODE: DEBUG_PRINTF(" T_DATA\r\n"); break; case TX_CARRIER_MODE: DEBUG_PRINTF(" T_CARRIER\r\n"); break; case TX_PN_MODE: DEBUG_PRINTF(" T_PN\r\n"); break; default: DEBUG_PRINTF(" UNKNOWN_MODE\r\n"); break; } } #endif // ******************************** } // ************************************ int16_t rfm22_receivedRSSI(void) { // return the packets signal strength if (!initialized) return -200; else return rx_packet_rssi_dBm; } int32_t rfm22_receivedAFCHz(void) { // return the packets offset frequency if (!initialized) return 0; else return rx_packet_afc_Hz; } uint16_t rfm22_receivedLength(void) { // return the size of the data received if (!initialized) return 0; else return rx_packet_wr; } uint8_t * rfm22_receivedPointer(void) { // return the address of the data return (uint8_t *)&rx_packet_buf; } void rfm22_receivedDone(void) { // empty the rx packet buffer rx_packet_wr = 0; } // ************************************ int32_t rfm22_sendData(void *data, uint16_t length, bool send_immediately) { if (!initialized) return -1; // we are not yet initialized if (length == 0) return -2; // no data to send if (length > 255) return -3; // too much data if (tx_data_wr > 0) return -4; // already have data to be sent if (rf_mode == TX_DATA_MODE || rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE) return -5; // we are currently transmitting tx_data_addr = data; tx_data_rd = 0; tx_data_wr = length; #if defined(RFM22_DEBUG) DEBUG_PRINTF("rf sendData(0x%08x %u)\r\n", (uint32_t)tx_data_addr, tx_data_wr); #endif if (send_immediately || rfm22_channelIsClear()) // is the channel clear to transmit on? rfm22_setTxMode(TX_DATA_MODE); // transmit NOW return tx_data_wr; } // ************************************ // enable a blank tx carrier (for frequency alignment) void rfm22_setTxCarrierMode(void) { if (!initialized) return; if (rf_mode != TX_CARRIER_MODE) rfm22_setTxMode(TX_CARRIER_MODE); } // enable a psuedo random data tx carrier (for spectrum inspection) void rfm22_setTxPNMode(void) { if (!initialized) return; if (rf_mode != TX_PN_MODE) rfm22_setTxMode(TX_PN_MODE); } // ************************************ // return the current mode int8_t rfm22_currentMode(void) { return rf_mode; } // return TRUE if we are transmitting bool rfm22_transmitting(void) { return (rf_mode == TX_DATA_MODE || rf_mode == TX_CARRIER_MODE || rf_mode == TX_PN_MODE); } // return TRUE if the channel is clear to transmit on bool rfm22_channelIsClear(void) { if (!initialized) return FALSE; // we haven't yet been initialized if (rf_mode != RX_WAIT_PREAMBLE_MODE && rf_mode != RX_WAIT_SYNC_MODE) return FALSE; // we are receiving something or we are transmitting return TRUE; // return (STOPWATCH_get_count() > clear_channel_count); } // return TRUE if the transmiter is ready for use bool rfm22_txReady(void) { if (!initialized) return FALSE; // we haven't yet been initialized return (tx_data_rd == 0 && tx_data_wr == 0 && rf_mode != TX_DATA_MODE && rf_mode != TX_CARRIER_MODE && rf_mode != TX_PN_MODE); } // ************************************ // can be called from an interrupt if you wish void rfm22_1ms_tick(void) { // call this once every ms if (!initialized) return; // we haven't yet been initialized if (rfm22_int_timer < 0xffff) rfm22_int_timer++; } // ***************************************************************************** // call this as often as possible - not from an interrupt void rfm22_process(void) { if (!initialized) return; // we haven't yet been initialized #if !defined(RFM22_EXT_INT_USE) rfm22_processInt(); // manually poll the interrupt line routine #endif if (power_on_reset) { // we need to re-initialize the RF module - it told us it's reset itself float current_freq = carrier_frequency_hz; // fetch current rf nominal frequency uint32_t freq_hop_step_size = (uint32_t)frequency_hop_step_size_reg * 10000; // fetch the frequency hoppping step size rfm22_init(lower_carrier_frequency_limit_Hz, upper_carrier_frequency_limit_Hz, freq_hop_step_size); rfm22_setNominalCarrierFrequency(current_freq); // restore the nominal carrier frequency return; } switch (rf_mode) { case RX_WAIT_PREAMBLE_MODE: if (rfm22_int_timer >= timeout_ms) { // assume somethings locked up rfm22_int_time_outs++; rfm22_setRxMode(); // reset the RF module to rx mode tx_data_rd = tx_data_wr = 0; // wipe TX buffer break; } // go to transmit mode if we have data to send and the channel is clear to transmit on if (tx_data_rd == 0 && tx_data_wr > 0 && rfm22_channelIsClear()) { rfm22_setTxMode(TX_DATA_MODE); // transmit packet NOW break; } break; case RX_WAIT_SYNC_MODE: if (rfm22_int_timer >= timeout_sync_ms) { // assume somethings locked up rfm22_int_time_outs++; rfm22_setRxMode(); // reset the RF module to rx mode tx_data_rd = tx_data_wr = 0; // wipe TX buffer break; } // go to transmit mode if we have data to send and the channel is clear to transmit on if (tx_data_rd == 0 && tx_data_wr > 0 && rfm22_channelIsClear()) { rfm22_setTxMode(TX_DATA_MODE); // transmit packet NOW break; } break; case RX_DATA_MODE: case TX_DATA_MODE: if (rfm22_int_timer >= timeout_data_ms) { // assume somethings locked up rfm22_int_time_outs++; rfm22_setRxMode(); // reset the RF module to rx mode tx_data_rd = tx_data_wr = 0; // wipe TX buffer break; } break; case TX_CARRIER_MODE: case TX_PN_MODE: if (rfm22_int_timer >= TX_TEST_MODE_TIMELIMIT_MS) { rfm22_setRxMode(); // back to rx mode tx_data_rd = tx_data_wr = 0; // wipe TX buffer break; } break; default: // unknown mode - this should never happen, maybe we should do a complete CPU reset here? rfm22_setRxMode(); // to rx mode tx_data_rd = tx_data_wr = 0; // wipe TX buffer break; } #if defined(RFM22_INT_TIMEOUT_DEBUG) if (prev_rfm22_int_time_outs != rfm22_int_time_outs) { prev_rfm22_int_time_outs = rfm22_int_time_outs; DEBUG_PRINTF("rf int timeouts %d\r\n", rfm22_int_time_outs); } #endif } // ************************************ // Initialize this hardware layer module and the rf module int rfm22_init(uint32_t min_frequency_hz, uint32_t max_frequency_hz, uint32_t freq_hop_step_size) { initialized = false; #if defined(RFM22_EXT_INT_USE) rfm22_disableExtInt(); #endif power_on_reset = false; #if defined(RFM22_DEBUG) DEBUG_PRINTF("\r\nRF init\r\n"); #endif // **************** #if defined(RFM22_EXT_INT_USE) exec_using_spi = TRUE; #endif // **************** // setup the SPI port // chip select line HIGH PIOS_SPI_RC_PinSet(RFM22_PIOS_SPI, 1); // set SPI port SCLK frequency .. 4.5MHz PIOS_SPI_SetClockSpeed(RFM22_PIOS_SPI, PIOS_SPI_PRESCALER_16); // **************** // software reset the RF chip .. following procedure according to Si4x3x Errata (rev. B) rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_swres); // software reset the radio PIOS_DELAY_WaitmS(26); // wait 26ms for (int i = 50; i > 0; i--) { PIOS_DELAY_WaitmS(1); // wait 1ms // read the status registers int_status1 = rfm22_read(rfm22_interrupt_status1); int_status2 = rfm22_read(rfm22_interrupt_status2); if (int_status2 & rfm22_is2_ichiprdy) break; } // **************** // read status - clears interrupt device_status = rfm22_read(rfm22_device_status); int_status1 = rfm22_read(rfm22_interrupt_status1); int_status2 = rfm22_read(rfm22_interrupt_status2); ezmac_status = rfm22_read(rfm22_ezmac_status); // disable all interrupts rfm22_write(rfm22_interrupt_enable1, 0x00); rfm22_write(rfm22_interrupt_enable2, 0x00); // **************** #if defined(RFM22_EXT_INT_USE) exec_using_spi = FALSE; #endif // **************** #if defined(RFM22_EXT_INT_USE) inside_ext_int = FALSE; #endif rf_mode = RX_WAIT_PREAMBLE_MODE; device_status = int_status1 = int_status2 = ezmac_status = 0; rssi = 0; rssi_dBm = -200; rx_buffer_current = 0; rx_buffer_wr = 0; rx_packet_wr = 0; tx_data_addr = NULL; tx_data_rd = tx_data_wr = 0; lookup_index = 0; rfm22_int_timer = 0; rfm22_int_time_outs = 0; prev_rfm22_int_time_outs = 0; hbsel = 0; frequency_step_size = 0.0f; frequency_hop_channel = 0; afc_correction = 0; temperature_reg = 0; // set the TX power tx_power = RFM22_DEFAULT_RF_POWER; tx_pwr = 0; // **************** // set the minimum and maximum carrier frequency allowed if (min_frequency_hz < rfm22_min_carrier_frequency_Hz) min_frequency_hz = rfm22_min_carrier_frequency_Hz; else if (min_frequency_hz > rfm22_max_carrier_frequency_Hz) min_frequency_hz = rfm22_max_carrier_frequency_Hz; if (max_frequency_hz < rfm22_min_carrier_frequency_Hz) max_frequency_hz = rfm22_min_carrier_frequency_Hz; else if (max_frequency_hz > rfm22_max_carrier_frequency_Hz) max_frequency_hz = rfm22_max_carrier_frequency_Hz; if (min_frequency_hz > max_frequency_hz) { // swap them over uint32_t tmp = min_frequency_hz; min_frequency_hz = max_frequency_hz; max_frequency_hz = tmp; } lower_carrier_frequency_limit_Hz = min_frequency_hz; upper_carrier_frequency_limit_Hz = max_frequency_hz; // **************** freq_hop_step_size /= 10000; // in 10kHz increments if (freq_hop_step_size > 255) freq_hop_step_size = 255; frequency_hop_step_size_reg = freq_hop_step_size; // **************** // read the RF chip ID bytes device_type = rfm22_read(rfm22_device_type) & rfm22_dt_mask; // read the device type #if defined(RFM22_DEBUG) DEBUG_PRINTF("rf device type: %d\r\n", device_type); #endif if (device_type != 0x08) return -1; // incorrect RF module type device_version = rfm22_read(rfm22_device_version) & rfm22_dv_mask; // read the device version #if defined(RFM22_DEBUG) DEBUG_PRINTF("rf device version: %d\r\n", device_version); #endif // if (device_version != RFM22_DEVICE_VERSION_V2) // V2 // return -2; // incorrect RF module version // if (device_version != RFM22_DEVICE_VERSION_A0) // A0 // return -2; // incorrect RF module version if (device_version != RFM22_DEVICE_VERSION_B1) // B1 return -2; // incorrect RF module version // **************** // disable Low Duty Cycle Mode rfm22_write(rfm22_op_and_func_ctrl2, 0x00); // calibrate our RF module to be exactly on frequency .. different for every module osc_load_cap = OSC_LOAD_CAP; // default /* if (serial_number_crc32 == 0x176C1EC6) osc_load_cap = OSC_LOAD_CAP_1; else if (serial_number_crc32 == 0xA524A3B0) osc_load_cap = OSC_LOAD_CAP_2; else if (serial_number_crc32 == 0x9F6393C1) osc_load_cap = OSC_LOAD_CAP_3; else if (serial_number_crc32 == 0x994ECD31) osc_load_cap = OSC_LOAD_CAP_4; */ rfm22_write(rfm22_xtal_osc_load_cap, osc_load_cap); rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_xton); // READY mode // rfm22_write(rfm22_op_and_func_ctrl1, rfm22_opfc1_pllon); // TUNE mode // choose the 3 GPIO pin functions rfm22_write(rfm22_io_port_config, rfm22_io_port_default); // GPIO port use default value rfm22_write(rfm22_gpio0_config, rfm22_gpio0_config_drv3 | rfm22_gpio0_config_txstate); // GPIO0 = TX State (to control RF Switch) rfm22_write(rfm22_gpio1_config, rfm22_gpio1_config_drv3 | rfm22_gpio1_config_rxstate); // GPIO1 = RX State (to control RF Switch) rfm22_write(rfm22_gpio2_config, rfm22_gpio2_config_drv3 | rfm22_gpio2_config_cca); // GPIO2 = Clear Channel Assessment // set the RF datarate rfm22_setDatarate(RFM22_DEFAULT_RF_DATARATE); // Enable data whitening // uint8_t txdtrtscale_bit = rfm22_read(rfm22_modulation_mode_control1) & rfm22_mmc1_txdtrtscale; // rfm22_write(rfm22_modulation_mode_control1, txdtrtscale_bit | rfm22_mmc1_enwhite); // FIFO mode, GFSK modulation uint8_t fd_bit = rfm22_read(rfm22_modulation_mode_control2) & rfm22_mmc2_fd; rfm22_write(rfm22_modulation_mode_control2, rfm22_mmc2_trclk_clk_none | rfm22_mmc2_dtmod_fifo | fd_bit | rfm22_mmc2_modtyp_gfsk); rfm22_write(rfm22_cpu_output_clk, rfm22_coc_1MHz); // 1MHz clock output // setup to read the internal temperature sensor adc_config = rfm22_ac_adcsel_temp_sensor | rfm22_ac_adcref_bg; // ADC used to sample the temperature sensor rfm22_write(rfm22_adc_config, adc_config); // rfm22_write(rfm22_adc_sensor_amp_offset, 0); // adc offset rfm22_write(rfm22_temp_sensor_calib, rfm22_tsc_tsrange0 | rfm22_tsc_entsoffs); // temp sensor calibration .. –40C to +64C 0.5C resolution rfm22_write(rfm22_temp_value_offset, 0); // temp sensor offset rfm22_write(rfm22_adc_config, adc_config | rfm22_ac_adcstartbusy); // start an ADC conversion rfm22_write(rfm22_rssi_threshold_clear_chan_indicator, (-80 + 122) * 2); // set the RSSI threshold interrupt to about -80dBm // enable the internal Tx & Rx packet handlers (with CRC) // rfm22_write(rfm22_data_access_control, rfm22_dac_enpacrx | rfm22_dac_enpactx | rfm22_dac_encrc | rfm22_dac_crc_crc16); // enable the internal Tx & Rx packet handlers (without CRC) rfm22_write(rfm22_data_access_control, rfm22_dac_enpacrx | rfm22_dac_enpactx); rfm22_write(rfm22_preamble_length, TX_PREAMBLE_NIBBLES); // x-nibbles tx preamble rfm22_write(rfm22_preamble_detection_ctrl1, RX_PREAMBLE_NIBBLES << 3); // x-nibbles rx preamble detection rfm22_write(rfm22_header_control1, rfm22_header_cntl1_bcen_none | rfm22_header_cntl1_hdch_none); // header control - we are not using the header rfm22_write(rfm22_header_control2, rfm22_header_cntl2_hdlen_none | rfm22_header_cntl2_synclen_3210 | ((TX_PREAMBLE_NIBBLES >> 8) & 0x01)); // no header bytes, synchronization word length 3, 2, 1 & 0 used, packet length included in header. rfm22_write(rfm22_sync_word3, SYNC_BYTE_1); // sync word rfm22_write(rfm22_sync_word2, SYNC_BYTE_2); // rfm22_write(rfm22_sync_word1, SYNC_BYTE_3); // rfm22_write(rfm22_sync_word0, SYNC_BYTE_4); // /* rfm22_write(rfm22_transmit_header3, 'p'); // set tx header rfm22_write(rfm22_transmit_header2, 'i'); // rfm22_write(rfm22_transmit_header1, 'p'); // rfm22_write(rfm22_transmit_header0, ' '); // rfm22_write(rfm22_check_header3, 'p'); // set expected rx header rfm22_write(rfm22_check_header2, 'i'); // rfm22_write(rfm22_check_header1, 'p'); // rfm22_write(rfm22_check_header0, ' '); // // all the bits to be checked rfm22_write(rfm22_header_enable3, 0xff); rfm22_write(rfm22_header_enable2, 0xff); rfm22_write(rfm22_header_enable1, 0xff); rfm22_write(rfm22_header_enable0, 0xff); */ // no bits to be checked rfm22_write(rfm22_header_enable3, 0x00); rfm22_write(rfm22_header_enable2, 0x00); rfm22_write(rfm22_header_enable1, 0x00); rfm22_write(rfm22_header_enable0, 0x00); // rfm22_write(rfm22_modem_test, 0x01); rfm22_write(rfm22_agc_override1, rfm22_agc_ovr1_agcen); // rfm22_write(rfm22_agc_override1, rfm22_agc_ovr1_sgi | rfm22_agc_ovr1_agcen); rfm22_write(rfm22_frequency_hopping_step_size, frequency_hop_step_size_reg); // set frequency hopping channel step size (multiples of 10kHz) rfm22_setNominalCarrierFrequency((min_frequency_hz + max_frequency_hz) / 2); // set our nominal carrier frequency rfm22_write(rfm22_tx_power, rfm22_tx_pwr_papeaken | rfm22_tx_pwr_papeaklvl_0 | rfm22_tx_pwr_lna_sw | tx_power); // set the tx power // rfm22_write(rfm22_vco_current_trimming, 0x7f); // rfm22_write(rfm22_vco_calibration_override, 0x40); // rfm22_write(rfm22_chargepump_current_trimming_override, 0x80); rfm22_write(rfm22_tx_fifo_control1, TX_FIFO_HI_WATERMARK); // TX FIFO Almost Full Threshold (0 - 63) rfm22_write(rfm22_tx_fifo_control2, TX_FIFO_LO_WATERMARK); // TX FIFO Almost Empty Threshold (0 - 63) rfm22_write(rfm22_rx_fifo_control, RX_FIFO_HI_WATERMARK); // RX FIFO Almost Full Threshold (0 - 63) #if defined(RFM22_EXT_INT_USE) // Enable RF module external interrupt rfm22_enableExtInt(); #endif rfm22_setRxMode(); initialized = true; return 0; // ok } // ************************************