/** ****************************************************************************** * * @file simulator.cpp * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @addtogroup GCSPlugins GCS Plugins * @{ * @addtogroup HITLPlugin HITL Plugin * @{ * @brief The Hardware In The Loop plugin *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "simulator.h" #include "qxtlogger.h" #include "extensionsystem/pluginmanager.h" #include "coreplugin/icore.h" #include "coreplugin/threadmanager.h" #include "hitlnoisegeneration.h" volatile bool Simulator::isStarted = false; const float Simulator::GEE = 9.81; const float Simulator::FT2M = 0.3048; const float Simulator::KT2MPS = 0.514444444; const float Simulator::INHG2KPA = 3.386; const float Simulator::FPS2CMPS = 30.48; const float Simulator::DEG2RAD = (M_PI/180.0); const float Simulator::RAD2DEG = (180.0/M_PI); Simulator::Simulator(const SimulatorSettings& params) : simProcess(NULL), time(NULL), inSocket(NULL), outSocket(NULL), settings(params), updatePeriod(50), simTimeout(8000), autopilotConnectionStatus(false), simConnectionStatus(false), txTimer(NULL), simTimer(NULL), name("") { // move to thread moveToThread(Core::ICore::instance()->threadManager()->getRealTimeThread()); connect(this, SIGNAL(myStart()), this, SLOT(onStart()),Qt::QueuedConnection); emit myStart(); QTime currentTime=QTime::currentTime(); gpsPosTime = currentTime; groundTruthTime = currentTime; } Simulator::~Simulator() { if(inSocket) { delete inSocket; inSocket = NULL; } if(outSocket) { delete outSocket; outSocket = NULL; } if(txTimer) { delete txTimer; txTimer = NULL; } if(simTimer) { delete simTimer; simTimer = NULL; } // NOTE: Does not currently work, may need to send control+c to through the terminal if (simProcess != NULL) { //connect(simProcess,SIGNAL(finished(int, QProcess::ExitStatus)),this,SLOT(onFinished(int, QProcess::ExitStatus))); simProcess->disconnect(); if(simProcess->state() == QProcess::Running) simProcess->kill(); //if(simProcess->waitForFinished()) //emit deleteSimProcess(); delete simProcess; simProcess = NULL; } } void Simulator::onDeleteSimulator(void) { // [1] Simulator::setStarted(false); // [2] Simulator::Instances().removeOne(simulatorId); disconnect(this); delete this; } void Simulator::onStart() { QMutexLocker locker(&lock); QThread* mainThread = QThread::currentThread(); qDebug() << "Simulator Thread: "<< mainThread; // Get required UAVObjects ExtensionSystem::PluginManager* pm = ExtensionSystem::PluginManager::instance(); UAVObjectManager* objManager = pm->getObject(); actDesired = ActuatorDesired::GetInstance(objManager); actCommand = ActuatorCommand::GetInstance(objManager); manCtrlCommand = ManualControlCommand::GetInstance(objManager); flightStatus = FlightStatus::GetInstance(objManager); posHome = HomeLocation::GetInstance(objManager); velActual = VelocityActual::GetInstance(objManager); posActual = PositionActual::GetInstance(objManager); baroAlt = BaroAltitude::GetInstance(objManager); baroAirspeed = BaroAirspeed::GetInstance(objManager); attActual = AttitudeActual::GetInstance(objManager); attSettings = AttitudeSettings::GetInstance(objManager); accels = Accels::GetInstance(objManager); gyros = Gyros::GetInstance(objManager); gpsPos = GPSPosition::GetInstance(objManager); gpsVel = GPSVelocity::GetInstance(objManager); telStats = GCSTelemetryStats::GetInstance(objManager); // Listen to autopilot connection events TelemetryManager* telMngr = pm->getObject(); connect(telMngr, SIGNAL(connected()), this, SLOT(onAutopilotConnect())); connect(telMngr, SIGNAL(disconnected()), this, SLOT(onAutopilotDisconnect())); //connect(telStats, SIGNAL(objectUpdated(UAVObject*)), this, SLOT(telStatsUpdated(UAVObject*))); // If already connect setup autopilot GCSTelemetryStats::DataFields stats = telStats->getData(); if ( stats.Status == GCSTelemetryStats::STATUS_CONNECTED ) onAutopilotConnect(); inSocket = new QUdpSocket(); outSocket = new QUdpSocket(); setupUdpPorts(settings.hostAddress,settings.inPort,settings.outPort); emit processOutput("\nLocal interface: " + settings.hostAddress + "\n" + \ "Remote interface: " + settings.remoteAddress + "\n" + \ "inputPort: " + QString::number(settings.inPort) + "\n" + \ "outputPort: " + QString::number(settings.outPort) + "\n"); qxtLog->info("\nLocal interface: " + settings.hostAddress + "\n" + \ "Remote interface: " + settings.remoteAddress + "\n" + \ "inputPort: " + QString::number(settings.inPort) + "\n" + \ "outputPort: " + QString::number(settings.outPort) + "\n"); // if(!inSocket->waitForConnected(5000)) // emit processOutput(QString("Can't connect to %1 on %2 port!").arg(settings.hostAddress).arg(settings.inPort)); // outSocket->connectToHost(settings.hostAddress,settings.outPort); // FG // if(!outSocket->waitForConnected(5000)) // emit processOutput(QString("Can't connect to %1 on %2 port!").arg(settings.hostAddress).arg(settings.outPort)); connect(inSocket, SIGNAL(readyRead()), this, SLOT(receiveUpdate()),Qt::DirectConnection); // Setup transmit timer txTimer = new QTimer(); connect(txTimer, SIGNAL(timeout()), this, SLOT(transmitUpdate()),Qt::DirectConnection); txTimer->setInterval(updatePeriod); txTimer->start(); // Setup simulator connection timer simTimer = new QTimer(); connect(simTimer, SIGNAL(timeout()), this, SLOT(onSimulatorConnectionTimeout()),Qt::DirectConnection); simTimer->setInterval(simTimeout); simTimer->start(); // setup time time = new QTime(); time->start(); current.T=0; current.i=0; } void Simulator::receiveUpdate() { // Update connection timer and status simTimer->setInterval(simTimeout); simTimer->stop(); simTimer->start(); if ( !simConnectionStatus ) { simConnectionStatus = true; emit simulatorConnected(); } // Process data while(inSocket->hasPendingDatagrams()) { // Receive datagram QByteArray datagram; datagram.resize(inSocket->pendingDatagramSize()); QHostAddress sender; quint16 senderPort; inSocket->readDatagram(datagram.data(), datagram.size(), &sender, &senderPort); //QString datastr(datagram); // Process incomming data processUpdate(datagram); } } void Simulator::setupObjects() { setupInputObject(actDesired, settings.minOutputPeriod); /* if (settings.gcsReciever) { setupInputObject(actCommand, settings.outputRate); setupOutputObject(gcsReceiver); } else if (settings.manualControl) { // setupInputObject(actDesired); // setupInputObject(camDesired); // setupInputObject(acsDesired); // setupOutputObject(manCtrlCommand); qDebug() << "ManualControlCommand not implemented yet"; } */ setupOutputObject(posHome, 10000); setupOutputObject(baroAlt, 250); if (settings.gpsPositionEnabled) setupOutputObject(gpsPos, settings.gpsPosRate); if (settings.groundTruthEnabled){ setupOutputObject(posActual, settings.groundTruthRate); setupOutputObject(velActual, settings.groundTruthRate); } if (settings.attRawEnabled) { setupOutputObject(accels, settings.attRawRate); setupOutputObject(gyros, settings.attRawRate); } if (settings.attActualEnabled && settings.attActHW) { setupOutputObject(accels, settings.attRawRate); setupOutputObject(gyros, settings.attRawRate); } if (settings.attActualEnabled && !settings.attActHW) setupOutputObject(attActual, 10); else setupWatchedObject(attActual, 100); } void Simulator::setupInputObject(UAVObject* obj, quint32 updatePeriod) { UAVObject::Metadata mdata; mdata = obj->getDefaultMetadata(); UAVObject::SetGcsAccess(mdata, UAVObject::ACCESS_READONLY); UAVObject::SetGcsTelemetryAcked(mdata, false); UAVObject::SetGcsTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_MANUAL); mdata.gcsTelemetryUpdatePeriod = 0; UAVObject::SetFlightAccess(mdata, UAVObject::ACCESS_READWRITE); UAVObject::SetFlightTelemetryAcked(mdata, false); if (settings.manualOutput) { UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC); mdata.flightTelemetryUpdatePeriod = updatePeriod; } else { UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_ONCHANGE); mdata.flightTelemetryUpdatePeriod = 0; } obj->setMetadata(mdata); } void Simulator::setupWatchedObject(UAVObject *obj, quint32 updatePeriod) { UAVObject::Metadata mdata; mdata = obj->getDefaultMetadata(); UAVObject::SetGcsAccess(mdata, UAVObject::ACCESS_READONLY); UAVObject::SetGcsTelemetryAcked(mdata, false); UAVObject::SetGcsTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_MANUAL); mdata.gcsTelemetryUpdatePeriod = 0; UAVObject::SetFlightAccess(mdata, UAVObject::ACCESS_READWRITE); UAVObject::SetFlightTelemetryAcked(mdata, false); UAVObject::SetFlightTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC); mdata.flightTelemetryUpdatePeriod = updatePeriod; obj->setMetadata(mdata); } void Simulator::setupOutputObject(UAVObject* obj, quint32 updatePeriod) { UAVObject::Metadata mdata; mdata = obj->getDefaultMetadata(); UAVObject::SetFlightAccess(mdata, UAVObject::ACCESS_READONLY); UAVObject::SetGcsAccess(mdata, UAVObject::ACCESS_READWRITE); UAVObject::SetFlightTelemetryUpdateMode(mdata,UAVObject::UPDATEMODE_MANUAL); UAVObject::SetGcsTelemetryAcked(mdata, false); UAVObject::SetGcsTelemetryUpdateMode(mdata, UAVObject::UPDATEMODE_PERIODIC); mdata.gcsTelemetryUpdatePeriod = updatePeriod; obj->setMetadata(mdata); } void Simulator::onAutopilotConnect() { autopilotConnectionStatus = true; setupObjects(); emit autopilotConnected(); } void Simulator::onAutopilotDisconnect() { autopilotConnectionStatus = false; emit autopilotDisconnected(); } void Simulator::onSimulatorConnectionTimeout() { if ( simConnectionStatus ) { simConnectionStatus = false; emit simulatorDisconnected(); } } void Simulator::telStatsUpdated(UAVObject* obj) { Q_UNUSED(obj); GCSTelemetryStats::DataFields stats = telStats->getData(); if ( !autopilotConnectionStatus && stats.Status == GCSTelemetryStats::STATUS_CONNECTED ) { onAutopilotConnect(); } else if ( autopilotConnectionStatus && stats.Status != GCSTelemetryStats::STATUS_CONNECTED ) { onAutopilotDisconnect(); } } void Simulator::updateUAVOs(Output2OP out){ QTime currentTime = QTime::currentTime(); Noise noise; HitlNoiseGeneration noiseSource; if(settings.addNoise){ noise = noiseSource.generateNoise(); } else{ memset(&noise, 0, sizeof(Noise)); } HomeLocation::DataFields homeData = posHome->getData(); if(!once) { // Upon startup, we reset the HomeLocation object to // the plane's location: memset(&homeData, 0, sizeof(HomeLocation::DataFields)); // Update homelocation homeData.Latitude = out.latitude; //Already in *10^7 integer format homeData.Longitude = out.longitude; //Already in *10^7 integer format homeData.Altitude = out.altitude; double LLA[3]; LLA[0]=out.latitude; LLA[1]=out.longitude; LLA[2]=out.altitude; double ECEF[3]; double RNE[9]; Utils::CoordinateConversions().RneFromLLA(LLA,(double (*)[3])RNE); Utils::CoordinateConversions().LLA2ECEF(LLA,ECEF); homeData.Be[0]=0; homeData.Be[1]=0; homeData.Be[2]=0; posHome->setData(homeData); posHome->updated(); // Compute initial distance initN = out.dstN; initE = out.dstE; initD = out.dstD; once=true; } // Update attActual object AttitudeActual::DataFields attActualData; attActualData = attActual->getData(); if (settings.attActHW) { // do nothing /*****************************************/ } else if (settings.attActSim) { // take all data from simulator attActualData.Roll = out.roll + noise.attActualData.Roll; //roll; attActualData.Pitch = out.pitch + noise.attActualData.Pitch; // pitch attActualData.Yaw = out.heading + noise.attActualData.Yaw; // Yaw float rpy[3]; float quat[4]; rpy[0] = attActualData.Roll; rpy[1] = attActualData.Pitch; rpy[2] = attActualData.Yaw; Utils::CoordinateConversions().RPY2Quaternion(rpy,quat); attActualData.q1 = quat[0]; attActualData.q2 = quat[1]; attActualData.q3 = quat[2]; attActualData.q4 = quat[3]; //Set UAVO attActual->setData(attActualData); /*****************************************/ } else if (settings.attActCalc) { // calculate RPY with code from Attitude module static float q[4] = {1, 0, 0, 0}; static float gyro_correct_int2 = 0; float dT = out.delT; AttitudeSettings::DataFields attSettData = attSettings->getData(); float accelKp = attSettData.AccelKp * 0.1666666666666667; float accelKi = attSettData.AccelKp * 0.1666666666666667; float yawBiasRate = attSettData.YawBiasRate; // calibrate sensors on arming if (flightStatus->getData().Armed == FlightStatus::ARMED_ARMING) { accelKp = 2.0; accelKi = 0.9; } float gyro[3] = {out.rollRate, out.pitchRate, out.yawRate}; float attRawAcc[3] = {out.accX, out.accY, out.accZ}; // code from Attitude module begin /////////////////////////////// float *accels = attRawAcc; float grot[3]; float accel_err[3]; // Rotate gravity to body frame and cross with accels grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2])); grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1])); grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]); // CrossProduct { accel_err[0] = accels[1]*grot[2] - grot[1]*accels[2]; accel_err[1] = grot[0]*accels[2] - accels[0]*grot[2]; accel_err[2] = accels[0]*grot[1] - grot[0]*accels[1]; } // Account for accel magnitude float accel_mag = sqrt(accels[0] * accels[0] + accels[1] * accels[1] + accels[2] * accels[2]); accel_err[0] /= accel_mag; accel_err[1] /= accel_mag; accel_err[2] /= accel_mag; // Accumulate integral of error. Scale here so that units are (deg/s) but Ki has units of s gyro_correct_int2 += -gyro[2] * yawBiasRate; // Correct rates based on error, integral component dealt with in updateSensors gyro[0] += accel_err[0] * accelKp / dT; gyro[1] += accel_err[1] * accelKp / dT; gyro[2] += accel_err[2] * accelKp / dT + gyro_correct_int2; // Work out time derivative from INSAlgo writeup // Also accounts for the fact that gyros are in deg/s float qdot[4]; qdot[0] = (-q[1] * gyro[0] - q[2] * gyro[1] - q[3] * gyro[2]) * dT * M_PI / 180 / 2; qdot[1] = (+q[0] * gyro[0] - q[3] * gyro[1] + q[2] * gyro[2]) * dT * M_PI / 180 / 2; qdot[2] = (+q[3] * gyro[0] + q[0] * gyro[1] - q[1] * gyro[2]) * dT * M_PI / 180 / 2; qdot[3] = (-q[2] * gyro[0] + q[1] * gyro[1] + q[0] * gyro[2]) * dT * M_PI / 180 / 2; // Take a time step q[0] += qdot[0]; q[1] += qdot[1]; q[2] += qdot[2]; q[3] += qdot[3]; if(q[0] < 0) { q[0] = -q[0]; q[1] = -q[1]; q[2] = -q[2]; q[3] = -q[3]; } // Renomalize float qmag = sqrt((q[0] * q[0]) + (q[1] * q[1]) + (q[2] * q[2]) + (q[3] * q[3])); q[0] /= qmag; q[1] /= qmag; q[2] /= qmag; q[3] /= qmag; // If quaternion has become inappropriately short or is nan reinit. // THIS SHOULD NEVER ACTUALLY HAPPEN if((fabs(qmag) < 1e-3) || (qmag != qmag)) { q[0] = 1; q[1] = 0; q[2] = 0; q[3] = 0; } float rpy2[3]; // Quaternion2RPY { float q0s, q1s, q2s, q3s; q0s = q[0] * q[0]; q1s = q[1] * q[1]; q2s = q[2] * q[2]; q3s = q[3] * q[3]; float R13, R11, R12, R23, R33; R13 = 2 * (q[1] * q[3] - q[0] * q[2]); R11 = q0s + q1s - q2s - q3s; R12 = 2 * (q[1] * q[2] + q[0] * q[3]); R23 = 2 * (q[2] * q[3] + q[0] * q[1]); R33 = q0s - q1s - q2s + q3s; rpy2[1] = RAD2DEG * asinf(-R13); // pitch always between -pi/2 to pi/2 rpy2[2] = RAD2DEG * atan2f(R12, R11); rpy2[0] = RAD2DEG * atan2f(R23, R33); } attActualData.Roll = rpy2[0]; attActualData.Pitch = rpy2[1]; attActualData.Yaw = rpy2[2]; attActualData.q1 = q[0]; attActualData.q2 = q[1]; attActualData.q3 = q[2]; attActualData.q4 = q[3]; //Set UAVO attActual->setData(attActualData); /*****************************************/ } if (settings.gcsReceiver) { // static QTime gcsRcvrTime = currentTime; // if (!settings.manualOutput || gcsRcvrTime.msecsTo(currentTime) >= settings.outputRate) { // GCSReceiver::DataFields gcsRcvrData; // gcsRcvrData = gcsReceiver->getData(); // for (int i = 0; i < 8; ++i) // gcsRcvrData.Channel[i] = 1500 + (ch[i] * 500); // gcsReceiver->setData(gcsRcvrData); // if (settings.manualOutput) // gcsRcvrTime = currentTime; // } } else if (settings.manualControl) { // not implemented yet } if (settings.gpsPositionEnabled) { if (gpsPosTime.msecsTo(currentTime) >= settings.gpsPosRate) { // Update GPS Position objects GPSPosition::DataFields gpsPosData; memset(&gpsPosData, 0, sizeof(GPSPosition::DataFields)); gpsPosData.Altitude = out.altitude + noise.gpsPosData.Altitude; gpsPosData.Heading = out.heading + noise.gpsPosData.Heading; gpsPosData.Groundspeed = out.groundspeed + noise.gpsPosData.Groundspeed; gpsPosData.Latitude = out.latitude + noise.gpsPosData.Latitude; //Already in *10^7 integer format gpsPosData.Longitude = out.longitude + noise.gpsPosData.Longitude; //Already in *10^7 integer format gpsPosData.GeoidSeparation = 0.0; gpsPosData.PDOP = 3.0; gpsPosData.VDOP = gpsPosData.PDOP*1.5; gpsPosData.Satellites = 10; gpsPosData.Status = GPSPosition::STATUS_FIX3D; gpsPos->setData(gpsPosData); // Update GPS Velocity.{North,East,Down} GPSVelocity::DataFields gpsVelData; memset(&gpsVelData, 0, sizeof(GPSVelocity::DataFields)); gpsVelData.North = out.velNorth + noise.gpsVelData.North; gpsVelData.East = out.velEast + noise.gpsVelData.East; gpsVelData.Down = out.velDown + noise.gpsVelData.Down; gpsVel->setData(gpsVelData); gpsPosTime.addMSecs(settings.gpsPosRate); } } // Update VelocityActual.{North,East,Down} if (settings.groundTruthEnabled) { if (groundTruthTime.msecsTo(currentTime) >= settings.groundTruthRate) { VelocityActual::DataFields velocityActualData; memset(&velocityActualData, 0, sizeof(VelocityActual::DataFields)); velocityActualData.North = out.velNorth + noise.velocityActualData.North; velocityActualData.East = out.velEast + noise.velocityActualData.East; velocityActualData.Down = out.velDown + noise.velocityActualData.Down; velActual->setData(velocityActualData); // Update PositionActual.{Nort,East,Down} PositionActual::DataFields positionActualData; memset(&positionActualData, 0, sizeof(PositionActual::DataFields)); positionActualData.North = (out.dstN-initN) + noise.positionActualData.North; positionActualData.East = (out.dstE-initE) + noise.positionActualData.East; positionActualData.Down = (out.dstD/*-initD*/) + noise.positionActualData.Down; posActual->setData(positionActualData); groundTruthTime.addMSecs(settings.groundTruthRate); } } // if (settings.sonarAltitude) { // static QTime sonarAltTime = currentTime; // if (sonarAltTime.msecsTo(currentTime) >= settings.sonarAltRate) { // SonarAltitude::DataFields sonarAltData; // sonarAltData = sonarAlt->getData(); // float sAlt = settings.sonarMaxAlt; // // 0.35 rad ~= 20 degree // if ((agl < (sAlt * 2.0)) && (roll < 0.35) && (pitch < 0.35)) { // float x = agl * qTan(roll); // float y = agl * qTan(pitch); // float h = qSqrt(x*x + y*y + agl*agl); // sAlt = qMin(h, sAlt); // } // sonarAltData.Altitude = sAlt; // sonarAlt->setData(sonarAltData); // sonarAltTime = currentTime; // } // } // Update BaroAltitude object if (settings.baroAltitudeEnabled){ if (baroAltTime.msecsTo(currentTime) >= settings.baroAltRate) { BaroAltitude::DataFields baroAltData; memset(&baroAltData, 0, sizeof(BaroAltitude::DataFields)); baroAltData.Altitude = out.altitude + noise.baroAltData.Altitude; baroAltData.Temperature = out.temperature + noise.baroAltData.Temperature; baroAltData.Pressure = out.pressure + noise.baroAltData.Pressure; baroAlt->setData(baroAltData); // Update BaroAirspeed object BaroAirspeed::DataFields baroAirspeedData; memset(&baroAirspeedData, 0, sizeof(BaroAirspeed::DataFields)); baroAirspeedData.CalibratedAirspeed = out.calibratedAirspeed + noise.baroAirspeed.CalibratedAirspeed; baroAirspeed->setData(baroAirspeedData); } } // Update raw attitude sensors if (settings.attRawEnabled) { if (attRawTime.msecsTo(currentTime) >= settings.attRawRate) { //Update gyroscope sensor data Gyros::DataFields gyroData; memset(&gyroData, 0, sizeof(Gyros::DataFields)); gyroData.x = out.rollRate + noise.gyroData.x; gyroData.y = out.pitchRate + noise.gyroData.y; gyroData.z = out.yawRate + noise.gyroData.z; gyros->setData(gyroData); //Update accelerometer sensor data Accels::DataFields accelData; memset(&accelData, 0, sizeof(Accels::DataFields)); accelData.x = out.accX + noise.accelData.x; accelData.y = out.accY + noise.accelData.y; accelData.z = out.accZ + noise.accelData.z; accels->setData(accelData); attRawTime.addMSecs(settings.attRawRate); } } }