/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup StabilizationModule Stabilization Module * @brief Stabilization PID loops in an airframe type independent manner * @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the * PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeState "Attitude State" * @{ * * @file stabilization.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Attitude stabilization module. * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include "stabilization.h" #include "stabilizationsettings.h" #include "actuatordesired.h" #include "ratedesired.h" #include "relaytuning.h" #include "relaytuningsettings.h" #include "stabilizationdesired.h" #include "attitudestate.h" #include "airspeedstate.h" #include "gyrostate.h" #include "flightstatus.h" #include "manualcontrol.h" // Just to get a macro #include "taskinfo.h" // Math libraries #include "CoordinateConversions.h" #include "pid.h" #include "sin_lookup.h" // Includes for various stabilization algorithms #include "relay_tuning.h" #include "virtualflybar.h" // Includes for various stabilization algorithms #include "relay_tuning.h" // Private constants #define MAX_QUEUE_SIZE 1 #if defined(PIOS_STABILIZATION_STACK_SIZE) #define STACK_SIZE_BYTES PIOS_STABILIZATION_STACK_SIZE #else #define STACK_SIZE_BYTES 724 #endif #define TASK_PRIORITY (tskIDLE_PRIORITY + 4) #define FAILSAFE_TIMEOUT_MS 30 // The PID_RATE_ROLL set is used by Rate mode and the rate portion of Attitude mode // The PID_RATE set is used by the attitude portion of Attitude mode // The PID_RATEA_ROLL set is used by Rattitude mode because it needs to maintain // - two independant rate PIDs because it does rate and attitude simultaneously enum { PID_RATE_ROLL, PID_RATE_PITCH, PID_RATE_YAW, PID_ROLL, PID_PITCH, PID_YAW, PID_RATEA_ROLL, PID_RATEA_PITCH, PID_RATEA_YAW, PID_MAX }; // Private variables static xTaskHandle taskHandle; static StabilizationSettingsData settings; static xQueueHandle queue; float gyro_alpha = 0; float axis_lock_accum[3] = { 0, 0, 0 }; uint8_t max_axis_lock = 0; uint8_t max_axislock_rate = 0; float weak_leveling_kp = 0; uint8_t weak_leveling_max = 0; bool lowThrottleZeroIntegral; bool lowThrottleZeroAxis[MAX_AXES]; float vbar_decay = 0.991f; struct pid pids[PID_MAX]; static uint8_t rattitude_anti_windup; static float cruise_control_min_throttle; static float cruise_control_max_throttle; static uint8_t cruise_control_max_angle; static float cruise_control_max_power_factor; static float cruise_control_power_trim; static int8_t cruise_control_inverted_power_switch; static float cruise_control_neutral_thrust; // Private functions static void stabilizationTask(void *parameters); static float bound(float val, float range); static void ZeroPids(void); static void SettingsUpdatedCb(UAVObjEvent *ev); static float stab_log2f(float x); static float stab_powf(float x, uint8_t p); /** * Module initialization */ int32_t StabilizationStart() { // Initialize variables // Create object queue queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent)); // Listen for updates. // AttitudeStateConnectQueue(queue); GyroStateConnectQueue(queue); StabilizationSettingsConnectCallback(SettingsUpdatedCb); SettingsUpdatedCb(StabilizationSettingsHandle()); // Start main task xTaskCreate(stabilizationTask, (signed char *)"Stabilization", STACK_SIZE_BYTES / 4, NULL, TASK_PRIORITY, &taskHandle); PIOS_TASK_MONITOR_RegisterTask(TASKINFO_RUNNING_STABILIZATION, taskHandle); #ifdef PIOS_INCLUDE_WDG PIOS_WDG_RegisterFlag(PIOS_WDG_STABILIZATION); #endif return 0; } /** * Module initialization */ int32_t StabilizationInitialize() { // Initialize variables StabilizationSettingsInitialize(); ActuatorDesiredInitialize(); #ifdef DIAG_RATEDESIRED RateDesiredInitialize(); #endif #ifdef REVOLUTION AirspeedStateInitialize(); #endif // Code required for relay tuning sin_lookup_initalize(); RelayTuningSettingsInitialize(); RelayTuningInitialize(); return 0; } MODULE_INITCALL(StabilizationInitialize, StabilizationStart); /** * Module task */ static void stabilizationTask(__attribute__((unused)) void *parameters) { UAVObjEvent ev; uint32_t timeval = PIOS_DELAY_GetRaw(); ActuatorDesiredData actuatorDesired; StabilizationDesiredData stabDesired; RateDesiredData rateDesired; AttitudeStateData attitudeState; GyroStateData gyroStateData; FlightStatusData flightStatus; #ifdef REVOLUTION AirspeedStateData airspeedState; #endif SettingsUpdatedCb((UAVObjEvent *)NULL); // Main task loop ZeroPids(); while (1) { float dT; #ifdef PIOS_INCLUDE_WDG PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION); #endif // Wait until the Gyro object is updated, if a timeout then go to failsafe if (xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE) { AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_WARNING); continue; } dT = PIOS_DELAY_DiffuS(timeval) * 1.0e-6f; timeval = PIOS_DELAY_GetRaw(); FlightStatusGet(&flightStatus); StabilizationDesiredGet(&stabDesired); AttitudeStateGet(&attitudeState); GyroStateGet(&gyroStateData); #ifdef DIAG_RATEDESIRED RateDesiredGet(&rateDesired); #endif #ifdef REVOLUTION float speedScaleFactor; // Scale PID coefficients based on current airspeed estimation - needed for fixed wing planes AirspeedStateGet(&airspeedState); if (settings.ScaleToAirspeed < 0.1f || airspeedState.CalibratedAirspeed < 0.1f) { // feature has been turned off speedScaleFactor = 1.0f; } else { // scale the factor to be 1.0 at the specified airspeed (for example 10m/s) but scaled by 1/speed^2 speedScaleFactor = (settings.ScaleToAirspeed * settings.ScaleToAirspeed) / (airspeedState.CalibratedAirspeed * airspeedState.CalibratedAirspeed); if (speedScaleFactor < settings.ScaleToAirspeedLimits.Min) { speedScaleFactor = settings.ScaleToAirspeedLimits.Min; } if (speedScaleFactor > settings.ScaleToAirspeedLimits.Max) { speedScaleFactor = settings.ScaleToAirspeedLimits.Max; } } #else const float speedScaleFactor = 1.0f; #endif #if defined(PIOS_QUATERNION_STABILIZATION) // Quaternion calculation of error in each axis. Uses more memory. float rpy_desired[3]; float q_desired[4]; float q_error[4]; float local_error[3]; // Essentially zero errors for anything in rate or none if (stabDesired.StabilizationMode.Roll == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) { rpy_desired[0] = stabDesired.Roll; } else { rpy_desired[0] = attitudeState.Roll; } if (stabDesired.StabilizationMode.Pitch == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) { rpy_desired[1] = stabDesired.Pitch; } else { rpy_desired[1] = attitudeState.Pitch; } if (stabDesired.StabilizationMode.Yaw == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) { rpy_desired[2] = stabDesired.Yaw; } else { rpy_desired[2] = attitudeState.Yaw; } RPY2Quaternion(rpy_desired, q_desired); quat_inverse(q_desired); quat_mult(q_desired, &attitudeState.q1, q_error); quat_inverse(q_error); Quaternion2RPY(q_error, local_error); #else /* if defined(PIOS_QUATERNION_STABILIZATION) */ // Simpler algorithm for CC, less memory float local_error[3] = { stabDesired.Roll - attitudeState.Roll, stabDesired.Pitch - attitudeState.Pitch, stabDesired.Yaw - attitudeState.Yaw }; // find shortest way float modulo = fmodf(local_error[2] + 180.0f, 360.0f); if (modulo < 0) { local_error[2] = modulo + 180.0f; } else { local_error[2] = modulo - 180.0f; } #endif /* if defined(PIOS_QUATERNION_STABILIZATION) */ float gyro_filtered[3]; gyro_filtered[0] = gyro_filtered[0] * gyro_alpha + gyroStateData.x * (1 - gyro_alpha); gyro_filtered[1] = gyro_filtered[1] * gyro_alpha + gyroStateData.y * (1 - gyro_alpha); gyro_filtered[2] = gyro_filtered[2] * gyro_alpha + gyroStateData.z * (1 - gyro_alpha); float *stabDesiredAxis = &stabDesired.Roll; float *actuatorDesiredAxis = &actuatorDesired.Roll; float *rateDesiredAxis = &rateDesired.Roll; ActuatorDesiredGet(&actuatorDesired); // A flag to track which stabilization mode each axis is in static uint8_t previous_mode[MAX_AXES] = { 255, 255, 255 }; bool error = false; // Run the selected stabilization algorithm on each axis: for (uint8_t i = 0; i < MAX_AXES; i++) { // Check whether this axis mode needs to be reinitialized bool reinit = (cast_struct_to_array(stabDesired.StabilizationMode, stabDesired.StabilizationMode.Roll)[i] != previous_mode[i]); previous_mode[i] = cast_struct_to_array(stabDesired.StabilizationMode, stabDesired.StabilizationMode.Roll)[i]; // Apply the selected control law switch (cast_struct_to_array(stabDesired.StabilizationMode, stabDesired.StabilizationMode.Roll)[i]) { case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE: if (reinit) { pids[PID_RATE_ROLL + i].iAccumulator = 0; } // Store to rate desired variable for storing to UAVO rateDesiredAxis[i] = bound(stabDesiredAxis[i], cast_struct_to_array(settings.ManualRate, settings.ManualRate.Roll)[i]); // Compute the inner loop actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT); actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f); break; case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE: if (reinit) { pids[PID_ROLL + i].iAccumulator = 0; pids[PID_RATE_ROLL + i].iAccumulator = 0; } // Compute the outer loop rateDesiredAxis[i] = pid_apply(&pids[PID_ROLL + i], local_error[i], dT); rateDesiredAxis[i] = bound(rateDesiredAxis[i], cast_struct_to_array(settings.MaximumRate, settings.MaximumRate.Roll)[i]); // Compute the inner loop actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT); actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f); break; case STABILIZATIONDESIRED_STABILIZATIONMODE_RATTITUDE: // A parameterization from Attitude mode at center stick // - to Rate mode at full stick // This is done by parameterizing to use the rotation rate that Attitude mode // - would use at center stick to using the rotation rate that Rate mode // - would use at full stick in a weighted average sort of way. { if (reinit) { pids[PID_ROLL + i].iAccumulator = 0; pids[PID_RATE_ROLL + i].iAccumulator = 0; pids[PID_RATEA_ROLL + i].iAccumulator = 0; } // Compute what Rate mode would give for this stick angle's rate // Save Rate's rate in a temp for later merging with Attitude's rate float rateDesiredAxisRate; rateDesiredAxisRate = bound(stabDesiredAxis[i], 1.0f) * cast_struct_to_array(settings.ManualRate, settings.ManualRate.Roll)[i]; // Compute what Attitude mode would give for this stick angle's rate // stabDesired for this mode is [-1.0f,+1.0f] // - multiply by Attitude mode max angle to get desired angle // - subtract off the actual angle to get the angle error // This is what local_error[] holds for Attitude mode float attitude_error = stabDesiredAxis[i] * cast_struct_to_array(settings.RollMax, settings.RollMax)[i] - cast_struct_to_array(attitudeState.Roll, attitudeState.Roll)[i]; // Compute the outer loop just like Attitude mode does float rateDesiredAxisAttitude; rateDesiredAxisAttitude = pid_apply(&pids[PID_ROLL + i], attitude_error, dT); rateDesiredAxisAttitude = bound(rateDesiredAxisAttitude, cast_struct_to_array(settings.MaximumRate, settings.MaximumRate.Roll)[i]); // Compute the weighted average rate desired // Using max() rather than sqrt() for cpu speed; // - this makes the stick region into a square; // - this is a feature! // - hold a roll angle and add just pitch without the stick sensitivity changing // magnitude = sqrt(stabDesired.Roll*stabDesired.Roll + stabDesired.Pitch*stabDesired.Pitch); float magnitude; magnitude = fmaxf(fabsf(stabDesired.Roll), fabsf(stabDesired.Pitch)); rateDesiredAxis[i] = (1.0f-magnitude) * rateDesiredAxisAttitude + magnitude * rateDesiredAxisRate; // Compute the inner loop for both Rate mode and Attitude mode // actuatorDesiredAxis[i] is the weighted average of the two PIDs from the two rates actuatorDesiredAxis[i] = (1.0f-magnitude) * pid_apply_setpoint(&pids[PID_RATEA_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT) + magnitude * pid_apply_setpoint(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT); actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f); // settings.RattitudeAntiWindup controls the iAccumulator zeroing // - so both iAccs don't wind up too far; // - nor do both iAccs get held too close to zero at mid stick // I suspect that there would be windup without it // - since rate and attitude fight each other here // - rate trying to pull it over the top and attitude trying to pull it back down // Wind-up increases linearly with cycles for a fixed error. // We must never increase the iAcc or we risk oscillation. // Use the powf() function to make two anti-windup curves // - one for zeroing rate close to center stick // - the other for zeroing attitude close to max stick // the bigger the dT the more anti windup needed // the bigger the PID[].i the more anti windup needed // more anti windup is achieved with a lower powf() power // a doubling of e.g. PID[].i should cause the runtime anti windup factor // to get twice as far away from 1.0 (towards zero) // e.g. from .90 to .80 // magic numbers // these generate the inverted parabola like curves that go through [0,1] and [1,0] // the higher the power, the closer the curve is to a straight line // from [0,1] to [1,1] to [1,0] and the less anti windup is applied // the UAVO RattitudeAntiWindup varies from 0 to 31 // 0 turns off anti windup // 1 gives very little anti-windup because the power given to powf() is 31 // 31 gives a lot of anti-windup because the power given to powf() is 1 // the 32.1 is what does this // the 7.966 and 17.668 cancel the default PID value and dT given to log2f() // if these are non-default, tweaking is thus done so the user doesn't have to readjust // the default value of 10 for UAVO RattitudeAntiWindup gives a power of 22 // these calculations are for magnitude = 0.5, so 22 corresponds to the number of bits // used in the mantissa of the float // i.e. 1.0-(0.5^22) almost underflows // This may only be useful for aircraft with large Ki values and limits if (dT > 0.0f && rattitude_anti_windup > 0.0f) { float factor; // At magnitudes close to one, the Attitude accumulators gets zeroed if (pids[PID_ROLL+i].i > 0.0f) { factor = 1.0f - stab_powf(magnitude, ((uint8_t) (32.1f - 7.966f - stab_log2f(dT * pids[PID_ROLL+i].i))) - rattitude_anti_windup); pids[PID_ROLL+i].iAccumulator *= factor; } if (pids[PID_RATEA_ROLL+i].i > 0.0f) { factor = 1.0f - stab_powf(magnitude, ((uint8_t) (32.1f - 17.668f - stab_log2f(dT * pids[PID_RATEA_ROLL+i].i))) - rattitude_anti_windup); pids[PID_RATEA_ROLL+i].iAccumulator *= factor; } // At magnitudes close to zero, the Rate accumulator gets zeroed if (pids[PID_RATE_ROLL+i].i > 0.0f) { factor = 1.0f - stab_powf(1.0f-magnitude, ((uint8_t) (32.1f - 17.668f - stab_log2f(dT * pids[PID_RATE_ROLL+i].i))) - rattitude_anti_windup); pids[PID_RATE_ROLL+i].iAccumulator *= factor; } } break; } case STABILIZATIONDESIRED_STABILIZATIONMODE_VIRTUALBAR: // Store for debugging output rateDesiredAxis[i] = stabDesiredAxis[i]; // Run a virtual flybar stabilization algorithm on this axis stabilization_virtual_flybar(gyro_filtered[i], rateDesiredAxis[i], &actuatorDesiredAxis[i], dT, reinit, i, &settings); break; case STABILIZATIONDESIRED_STABILIZATIONMODE_WEAKLEVELING: // FIXME: local_error[] is rate - attitude for Weak Leveling // The only ramifications are: // Weak Leveling Kp is off by a factor of 3 to 12 and may need a different default in GCS // Changing Rate mode max rate currently requires a change to Kp // That would be changed to Attitude mode max angle affecting Kp // Also does not take dT into account { if (reinit) { pids[PID_RATE_ROLL + i].iAccumulator = 0; } float weak_leveling = local_error[i] * weak_leveling_kp; weak_leveling = bound(weak_leveling, weak_leveling_max); // Compute desired rate as input biased towards leveling rateDesiredAxis[i] = stabDesiredAxis[i] + weak_leveling; actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT); actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f); break; } case STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK: if (reinit) { pids[PID_RATE_ROLL + i].iAccumulator = 0; } if (fabsf(stabDesiredAxis[i]) > max_axislock_rate) { // While getting strong commands act like rate mode rateDesiredAxis[i] = stabDesiredAxis[i]; axis_lock_accum[i] = 0; } else { // For weaker commands or no command simply attitude lock (almost) on no gyro change axis_lock_accum[i] += (stabDesiredAxis[i] - gyro_filtered[i]) * dT; axis_lock_accum[i] = bound(axis_lock_accum[i], max_axis_lock); rateDesiredAxis[i] = pid_apply(&pids[PID_ROLL + i], axis_lock_accum[i], dT); } rateDesiredAxis[i] = bound(rateDesiredAxis[i], cast_struct_to_array(settings.ManualRate, settings.ManualRate.Roll)[i]); actuatorDesiredAxis[i] = pid_apply_setpoint(&pids[PID_RATE_ROLL + i], speedScaleFactor, rateDesiredAxis[i], gyro_filtered[i], dT); actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f); break; case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYRATE: // Store to rate desired variable for storing to UAVO rateDesiredAxis[i] = bound(stabDesiredAxis[i], cast_struct_to_array(settings.ManualRate, settings.ManualRate.Roll)[i]); // Run the relay controller which also estimates the oscillation parameters stabilization_relay_rate(rateDesiredAxis[i] - gyro_filtered[i], &actuatorDesiredAxis[i], i, reinit); actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f); break; case STABILIZATIONDESIRED_STABILIZATIONMODE_RELAYATTITUDE: if (reinit) { pids[PID_ROLL + i].iAccumulator = 0; } // Compute the outer loop like attitude mode rateDesiredAxis[i] = pid_apply(&pids[PID_ROLL + i], local_error[i], dT); rateDesiredAxis[i] = bound(rateDesiredAxis[i], cast_struct_to_array(settings.MaximumRate, settings.MaximumRate.Roll)[i]); // Run the relay controller which also estimates the oscillation parameters stabilization_relay_rate(rateDesiredAxis[i] - gyro_filtered[i], &actuatorDesiredAxis[i], i, reinit); actuatorDesiredAxis[i] = bound(actuatorDesiredAxis[i], 1.0f); break; case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE: actuatorDesiredAxis[i] = bound(stabDesiredAxis[i], 1.0f); break; default: error = true; break; } } if (settings.VbarPiroComp == STABILIZATIONSETTINGS_VBARPIROCOMP_TRUE) { stabilization_virtual_flybar_pirocomp(gyro_filtered[2], dT); } #ifdef DIAG_RATEDESIRED RateDesiredSet(&rateDesired); #endif // Save dT actuatorDesired.UpdateTime = dT * 1000; actuatorDesired.Throttle = stabDesired.Throttle; // Suppress desired output while disarmed or throttle low, for configured axis if (flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED || stabDesired.Throttle < 0) { if (lowThrottleZeroAxis[ROLL]) { actuatorDesired.Roll = 0.0f; } if (lowThrottleZeroAxis[PITCH]) { actuatorDesired.Pitch = 0.0f; } if (lowThrottleZeroAxis[YAW]) { actuatorDesired.Yaw = 0.0f; } } // modify throttle according to 1/cos(bank angle) // to maintain same altitdue with changing bank angle // but without manually adjusting throttle // do it here and all the various flight modes (e.g. Altitude Hold) can use it if (cruise_control_max_power_factor > 0.0001f) { static uint8_t toggle; static float factor; float angle; // get attitude state and calculate angle // do it every 8th iteration to save CPU if ((toggle++ & 7) == 0) { // spherical right triangle // 0 <= acosf() <= Pi angle = RAD2DEG(acosf(cos_lookup_deg(attitudeState.Roll) * cos_lookup_deg(attitudeState.Pitch))); // if past the cutoff angle (60 to 180 (180 means never)) if (angle > cruise_control_max_angle) { // -1 reversed collective, 0 zero power, or 1 normal power // these are all unboosted factor = cruise_control_inverted_power_switch; } else { // avoid singularity if (angle > 89.999f && angle < 90.001f) { factor = cruise_control_max_power_factor; } else { factor = 1.0f / fabsf(cos_lookup_deg(angle)); if (factor > cruise_control_max_power_factor) { factor = cruise_control_max_power_factor; } } // factor in the power trim, no effect at 1.0, linear effect increases with factor factor = (factor - 1.0f) * cruise_control_power_trim + 1.0f; // if inverted and they want negative boost if (angle > 90.0f && cruise_control_inverted_power_switch == (int8_t) -1) { factor = -factor; // as long as throttle is getting reversed // we may as well do pitch and yaw for a complete "invert switch" actuatorDesired.Pitch = -actuatorDesired.Pitch; actuatorDesired.Yaw = -actuatorDesired.Yaw; } } } // also don't adjust throttle if <= 0, leaves neg alone and zero throttle stops motors if (actuatorDesired.Throttle > cruise_control_min_throttle) { // quad example factor of 2 at hover power of 40%: (0.4 - 0.0) * 2.0 + 0.0 = 0.8 // CP heli example factor of 2 at hover stick of 60%: (0.6 - 0.5) * 2.0 + 0.5 = 0.7 actuatorDesired.Throttle = (actuatorDesired.Throttle - cruise_control_neutral_thrust) * factor + cruise_control_neutral_thrust; if (actuatorDesired.Throttle > cruise_control_max_throttle) { actuatorDesired.Throttle = cruise_control_max_throttle; } else if (actuatorDesired.Throttle < cruise_control_min_throttle) { actuatorDesired.Throttle = cruise_control_min_throttle; } } } if (PARSE_FLIGHT_MODE(flightStatus.FlightMode) != FLIGHTMODE_MANUAL) { ActuatorDesiredSet(&actuatorDesired); } else { // Force all axes to reinitialize when engaged for (uint8_t i = 0; i < MAX_AXES; i++) { previous_mode[i] = 255; } } if (flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED || (lowThrottleZeroIntegral && stabDesired.Throttle < 0)) { // Force all axes to reinitialize when engaged for (uint8_t i = 0; i < MAX_AXES; i++) { previous_mode[i] = 255; } } // Clear or set alarms. Done like this to prevent toggline each cycle // and hammering system alarms if (error) { AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION, SYSTEMALARMS_ALARM_ERROR); } else { AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION); } } } /** * Clear the accumulators and derivatives for all the axes */ static void ZeroPids(void) { for (uint32_t i = 0; i < PID_MAX; i++) { pid_zero(&pids[i]); } for (uint8_t i = 0; i < 3; i++) { axis_lock_accum[i] = 0.0f; } } /** * Bound input value between limits */ static float bound(float val, float range) { if (val < -range) { return -range; } else if (val > range) { return range; } return val; } // x small (0.0 < x < .01) so interpolation of fractional part is reasonable static float stab_log2f(float x) { union { volatile float f; volatile uint32_t i; volatile unsigned char c[4]; } __attribute__((packed)) u1, u2; u2.f = u1.f = x; u1.i <<= 1; u2.i &= 0xff800000; // get and unbias the exponent, add in a linear interpolation of the fractional part return (float) (u1.c[3] - 127) + (x / u2.f) - 1.0f; } // 0<=x<=1, 0<=p<=31 static float stab_powf(float x, uint8_t p) { float retval = 1.0f; while (p) { if (p&1) { retval *= x; } x *= x; p >>= 1; } return retval; } static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev) { StabilizationSettingsGet(&settings); // Set the roll rate PID constants pid_configure(&pids[PID_RATE_ROLL], settings.RollRatePID.Kp, settings.RollRatePID.Ki, settings.RollRatePID.Kd, settings.RollRatePID.ILimit); // Set the pitch rate PID constants pid_configure(&pids[PID_RATE_PITCH], settings.PitchRatePID.Kp, settings.PitchRatePID.Ki, settings.PitchRatePID.Kd, settings.PitchRatePID.ILimit); // Set the yaw rate PID constants pid_configure(&pids[PID_RATE_YAW], settings.YawRatePID.Kp, settings.YawRatePID.Ki, settings.YawRatePID.Kd, settings.YawRatePID.ILimit); // Set the roll attitude PI constants pid_configure(&pids[PID_ROLL], settings.RollPI.Kp, settings.RollPI.Ki, 0, settings.RollPI.ILimit); // Set the pitch attitude PI constants pid_configure(&pids[PID_PITCH], settings.PitchPI.Kp, settings.PitchPI.Ki, 0, settings.PitchPI.ILimit); // Set the yaw attitude PI constants pid_configure(&pids[PID_YAW], settings.YawPI.Kp, settings.YawPI.Ki, 0, settings.YawPI.ILimit); // Set the Rattitude roll rate PID constants pid_configure(&pids[PID_RATEA_ROLL], settings.RollRatePID.Kp, settings.RollRatePID.Ki, settings.RollRatePID.Kd, settings.RollRatePID.ILimit); // Set the Rattitude pitch rate PID constants pid_configure(&pids[PID_RATEA_PITCH], settings.PitchRatePID.Kp, settings.PitchRatePID.Ki, settings.PitchRatePID.Kd, settings.PitchRatePID.ILimit); // Set the Rattitude yaw rate PID constants pid_configure(&pids[PID_RATEA_YAW], settings.YawRatePID.Kp, settings.YawRatePID.Ki, settings.YawRatePID.Kd, settings.YawRatePID.ILimit); // Set up the derivative term pid_configure_derivative(settings.DerivativeCutoff, settings.DerivativeGamma); // Maximum deviation to accumulate for axis lock max_axis_lock = settings.MaxAxisLock; max_axislock_rate = settings.MaxAxisLockRate; // Settings for weak leveling weak_leveling_kp = settings.WeakLevelingKp; weak_leveling_max = settings.MaxWeakLevelingRate; // Whether to zero the PID integrals while throttle is low lowThrottleZeroIntegral = settings.LowThrottleZeroIntegral == STABILIZATIONSETTINGS_LOWTHROTTLEZEROINTEGRAL_TRUE; // Whether to suppress (zero) the StabilizationDesired output for each axis while disarmed or throttle is low lowThrottleZeroAxis[ROLL] = settings.LowThrottleZeroAxis.Roll == STABILIZATIONSETTINGS_LOWTHROTTLEZEROAXIS_TRUE; lowThrottleZeroAxis[PITCH] = settings.LowThrottleZeroAxis.Pitch == STABILIZATIONSETTINGS_LOWTHROTTLEZEROAXIS_TRUE; lowThrottleZeroAxis[YAW] = settings.LowThrottleZeroAxis.Yaw == STABILIZATIONSETTINGS_LOWTHROTTLEZEROAXIS_TRUE; // The dT has some jitter iteration to iteration that we don't want to // make thie result unpredictable. Still, it's nicer to specify the constant // based on a time (in ms) rather than a fixed multiplier. The error between // update rates on OP (~300 Hz) and CC (~475 Hz) is negligible for this // calculation const float fakeDt = 0.0025f; if (settings.GyroTau < 0.0001f) { gyro_alpha = 0; // not trusting this to resolve to 0 } else { gyro_alpha = expf(-fakeDt / settings.GyroTau); } // Compute time constant for vbar decay term based on a tau vbar_decay = expf(-fakeDt / settings.VbarTau); // Rattitude flight mode anti-windup factor rattitude_anti_windup = settings.RattitudeAntiWindup; cruise_control_min_throttle = (float) settings.CruiseControlMinThrottle / 100.0f; cruise_control_max_throttle = (float) settings.CruiseControlMaxThrottle / 100.0f; cruise_control_max_angle = settings.CruiseControlMaxAngle; cruise_control_max_power_factor = settings.CruiseControlMaxPowerFactor; cruise_control_power_trim = settings.CruiseControlPowerTrim / 100.0f; cruise_control_inverted_power_switch = settings.CruiseControlInvertedPowerSwitch; cruise_control_neutral_thrust = (float) settings.CruiseControlNeutralThrust / 100.0f; } /** * @} * @} */