/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup GSPModule GPS Module * @brief Process GPS information (UBX binary format) * @{ * * @file UBX.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief GPS module, handles GPS and NMEA stream * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "openpilot.h" #include "pios.h" #if defined(PIOS_INCLUDE_GPS_UBX_PARSER) #include "inc/UBX.h" #include "inc/GPS.h" // If a PVT sentence is received in the last UBX_PVT_TIMEOUT (ms) timeframe it disables VELNED/POSLLH/SOL/TIMEUTC #define UBX_PVT_TIMEOUT (1000) // parse incoming character stream for messages in UBX binary format int parse_ubx_stream(uint8_t c, char *gps_rx_buffer, GPSPositionSensorData *GpsData, struct GPS_RX_STATS *gpsRxStats) { enum proto_states { START, UBX_SY2, UBX_CLASS, UBX_ID, UBX_LEN1, UBX_LEN2, UBX_PAYLOAD, UBX_CHK1, UBX_CHK2, FINISHED }; static enum proto_states proto_state = START; static uint8_t rx_count = 0; struct UBXPacket *ubx = (struct UBXPacket *)gps_rx_buffer; switch (proto_state) { case START: // detect protocol if (c == UBX_SYNC1) { // first UBX sync char found proto_state = UBX_SY2; } break; case UBX_SY2: if (c == UBX_SYNC2) { // second UBX sync char found proto_state = UBX_CLASS; } else { proto_state = START; // reset state } break; case UBX_CLASS: ubx->header.class = c; proto_state = UBX_ID; break; case UBX_ID: ubx->header.id = c; proto_state = UBX_LEN1; break; case UBX_LEN1: ubx->header.len = c; proto_state = UBX_LEN2; break; case UBX_LEN2: ubx->header.len += (c << 8); if (ubx->header.len > sizeof(UBXPayload)) { gpsRxStats->gpsRxOverflow++; proto_state = START; } else { rx_count = 0; proto_state = UBX_PAYLOAD; } break; case UBX_PAYLOAD: if (rx_count < ubx->header.len) { ubx->payload.payload[rx_count] = c; if (++rx_count == ubx->header.len) { proto_state = UBX_CHK1; } } else { gpsRxStats->gpsRxOverflow++; proto_state = START; } break; case UBX_CHK1: ubx->header.ck_a = c; proto_state = UBX_CHK2; break; case UBX_CHK2: ubx->header.ck_b = c; if (checksum_ubx_message(ubx)) { // message complete and valid parse_ubx_message(ubx, GpsData); proto_state = FINISHED; } else { gpsRxStats->gpsRxChkSumError++; proto_state = START; } break; default: break; } if (proto_state == START) { return PARSER_ERROR; // parser couldn't use this byte } else if (proto_state == FINISHED) { gpsRxStats->gpsRxReceived++; proto_state = START; return PARSER_COMPLETE; // message complete & processed } return PARSER_INCOMPLETE; // message not (yet) complete } // Keep track of various GPS messages needed to make up a single UAVO update // time-of-week timestamp is used to correlate matching messages #define POSLLH_RECEIVED (1 << 0) #define STATUS_RECEIVED (1 << 1) #define DOP_RECEIVED (1 << 2) #define VELNED_RECEIVED (1 << 3) #define SOL_RECEIVED (1 << 4) #define ALL_RECEIVED (SOL_RECEIVED | VELNED_RECEIVED | DOP_RECEIVED | POSLLH_RECEIVED) #define NONE_RECEIVED 0 static struct msgtracker { uint32_t currentTOW; // TOW of the message set currently in progress uint8_t msg_received; // keep track of received message types } msgtracker; // Check if a message belongs to the current data set and register it as 'received' bool check_msgtracker(uint32_t tow, uint8_t msg_flag) { if (tow > msgtracker.currentTOW ? true // start of a new message set : (msgtracker.currentTOW - tow > 6 * 24 * 3600 * 1000)) { // 6 days, TOW wrap around occured msgtracker.currentTOW = tow; msgtracker.msg_received = NONE_RECEIVED; } else if (tow < msgtracker.currentTOW) { // message outdated (don't process) return false; } msgtracker.msg_received |= msg_flag; // register reception of this msg type return true; } bool checksum_ubx_message(struct UBXPacket *ubx) { int i; uint8_t ck_a, ck_b; ck_a = ubx->header.class; ck_b = ck_a; ck_a += ubx->header.id; ck_b += ck_a; ck_a += ubx->header.len & 0xff; ck_b += ck_a; ck_a += ubx->header.len >> 8; ck_b += ck_a; for (i = 0; i < ubx->header.len; i++) { ck_a += ubx->payload.payload[i]; ck_b += ck_a; } if (ubx->header.ck_a == ck_a && ubx->header.ck_b == ck_b) { return true; } else { return false; } } void parse_ubx_nav_posllh(struct UBX_NAV_POSLLH *posllh, GPSPositionSensorData *GpsPosition) { if (check_msgtracker(posllh->iTOW, POSLLH_RECEIVED)) { if (GpsPosition->Status != GPSPOSITIONSENSOR_STATUS_NOFIX) { GpsPosition->Altitude = (float)posllh->hMSL * 0.001f; GpsPosition->GeoidSeparation = (float)(posllh->height - posllh->hMSL) * 0.001f; GpsPosition->Latitude = posllh->lat; GpsPosition->Longitude = posllh->lon; } } } void parse_ubx_nav_sol(struct UBX_NAV_SOL *sol, GPSPositionSensorData *GpsPosition) { if (check_msgtracker(sol->iTOW, SOL_RECEIVED)) { GpsPosition->Satellites = sol->numSV; if (sol->flags & STATUS_FLAGS_GPSFIX_OK) { switch (sol->gpsFix) { case STATUS_GPSFIX_2DFIX: GpsPosition->Status = GPSPOSITIONSENSOR_STATUS_FIX2D; break; case STATUS_GPSFIX_3DFIX: GpsPosition->Status = GPSPOSITIONSENSOR_STATUS_FIX3D; break; default: GpsPosition->Status = GPSPOSITIONSENSOR_STATUS_NOFIX; } } else { // fix is not valid so we make sure to treat is as NOFIX GpsPosition->Status = GPSPOSITIONSENSOR_STATUS_NOFIX; } } } void parse_ubx_nav_dop(struct UBX_NAV_DOP *dop, GPSPositionSensorData *GpsPosition) { if (check_msgtracker(dop->iTOW, DOP_RECEIVED)) { GpsPosition->HDOP = (float)dop->hDOP * 0.01f; GpsPosition->VDOP = (float)dop->vDOP * 0.01f; GpsPosition->PDOP = (float)dop->pDOP * 0.01f; } } void parse_ubx_nav_velned(struct UBX_NAV_VELNED *velned, GPSPositionSensorData *GpsPosition) { GPSVelocitySensorData GpsVelocity; if (check_msgtracker(velned->iTOW, VELNED_RECEIVED)) { if (GpsPosition->Status != GPSPOSITIONSENSOR_STATUS_NOFIX) { GpsVelocity.North = (float)velned->velN / 100.0f; GpsVelocity.East = (float)velned->velE / 100.0f; GpsVelocity.Down = (float)velned->velD / 100.0f; GPSVelocitySensorSet(&GpsVelocity); GpsPosition->Groundspeed = (float)velned->gSpeed * 0.01f; GpsPosition->Heading = (float)velned->heading * 1.0e-5f; } } } void parse_ubx_nav_pvt(struct UBX_NAV_PVT *pvt, GPSPositionSensorData *GpsPosition) { GPSVelocitySensorData GpsVelocity; check_msgtracker(pvt->iTOW, (ALL_RECEIVED)); GpsVelocity.North = (float)pvt->velN * 0.001f; GpsVelocity.East = (float)pvt->velE * 0.001f; GpsVelocity.Down = (float)pvt->velD * 0.001f; GPSVelocitySensorSet(&GpsVelocity); GpsPosition->Groundspeed = (float)pvt->gSpeed * 0.001f; GpsPosition->Heading = (float)pvt->heading * 1.0e-5f; GpsPosition->Altitude = (float)pvt->hMSL * 0.001f; GpsPosition->GeoidSeparation = (float)(pvt->height - pvt->hMSL) * 0.001f; GpsPosition->Latitude = pvt->lat; GpsPosition->Longitude = pvt->lon; GpsPosition->Satellites = pvt->numSV; GpsPosition->PDOP = pvt->pDOP * 0.01f; if (pvt->flags & PVT_FLAGS_GNSSFIX_OK) { GpsPosition->Status = pvt->fixType == PVT_FIX_TYPE_3D ? GPSPOSITIONSENSOR_STATUS_FIX3D : GPSPOSITIONSENSOR_STATUS_FIX2D; } else { GpsPosition->Status = GPSPOSITIONSENSOR_STATUS_NOFIX; } #if !defined(PIOS_GPS_MINIMAL) if (pvt->valid & PVT_VALID_VALIDTIME) { // Time is valid, set GpsTime GPSTimeData GpsTime; GpsTime.Year = pvt->year; GpsTime.Month = pvt->month; GpsTime.Day = pvt->day; GpsTime.Hour = pvt->hour; GpsTime.Minute = pvt->min; GpsTime.Second = pvt->sec; GPSTimeSet(&GpsTime); } #endif } #if !defined(PIOS_GPS_MINIMAL) void parse_ubx_nav_timeutc(struct UBX_NAV_TIMEUTC *timeutc) { // Test if time is valid if ((timeutc->valid & TIMEUTC_VALIDTOW) && (timeutc->valid & TIMEUTC_VALIDWKN)) { // Time is valid, set GpsTime GPSTimeData GpsTime; GpsTime.Year = timeutc->year; GpsTime.Month = timeutc->month; GpsTime.Day = timeutc->day; GpsTime.Hour = timeutc->hour; GpsTime.Minute = timeutc->min; GpsTime.Second = timeutc->sec; GPSTimeSet(&GpsTime); } else { // Time is not valid, nothing to do return; } } #endif /* if !defined(PIOS_GPS_MINIMAL) */ #if !defined(PIOS_GPS_MINIMAL) void parse_ubx_nav_svinfo(struct UBX_NAV_SVINFO *svinfo) { uint8_t chan; GPSSatellitesData svdata; svdata.SatsInView = 0; for (chan = 0; chan < svinfo->numCh; chan++) { if (svdata.SatsInView < GPSSATELLITES_PRN_NUMELEM) { svdata.Azimuth[svdata.SatsInView] = (float)svinfo->sv[chan].azim; svdata.Elevation[svdata.SatsInView] = (float)svinfo->sv[chan].elev; svdata.PRN[svdata.SatsInView] = svinfo->sv[chan].svid; svdata.SNR[svdata.SatsInView] = svinfo->sv[chan].cno; svdata.SatsInView++; } } // fill remaining slots (if any) for (chan = svdata.SatsInView; chan < GPSSATELLITES_PRN_NUMELEM; chan++) { svdata.Azimuth[chan] = (float)0.0f; svdata.Elevation[chan] = (float)0.0f; svdata.PRN[chan] = 0; svdata.SNR[chan] = 0; } GPSSatellitesSet(&svdata); } #endif /* if !defined(PIOS_GPS_MINIMAL) */ // UBX message parser // returns UAVObjectID if a UAVObject structure is ready for further processing uint32_t parse_ubx_message(struct UBXPacket *ubx, GPSPositionSensorData *GpsPosition) { uint32_t id = 0; static uint32_t lastPvtTime; static bool ubxInitialized = false; if (!ubxInitialized) { // initialize dop values. If no DOP sentence is received it is safer to initialize them to a high value rather than 0. GpsPosition->HDOP = 99.99f; GpsPosition->PDOP = 99.99f; GpsPosition->VDOP = 99.99f; ubxInitialized = true; } // is it using PVT? bool usePvt = (PIOS_DELAY_GetuSSince(lastPvtTime) < UBX_PVT_TIMEOUT * 1000); switch (ubx->header.class) { case UBX_CLASS_NAV: if (!usePvt) { switch (ubx->header.id) { case UBX_ID_POSLLH: parse_ubx_nav_posllh(&ubx->payload.nav_posllh, GpsPosition); break; case UBX_ID_DOP: parse_ubx_nav_dop(&ubx->payload.nav_dop, GpsPosition); break; case UBX_ID_SOL: parse_ubx_nav_sol(&ubx->payload.nav_sol, GpsPosition); break; case UBX_ID_VELNED: parse_ubx_nav_velned(&ubx->payload.nav_velned, GpsPosition); break; case UBX_ID_PVT: parse_ubx_nav_pvt(&ubx->payload.nav_pvt, GpsPosition); lastPvtTime = PIOS_DELAY_GetuS(); break; #if !defined(PIOS_GPS_MINIMAL) case UBX_ID_TIMEUTC: parse_ubx_nav_timeutc(&ubx->payload.nav_timeutc); break; case UBX_ID_SVINFO: parse_ubx_nav_svinfo(&ubx->payload.nav_svinfo); break; #endif } } else { switch (ubx->header.id) { case UBX_ID_DOP: parse_ubx_nav_dop(&ubx->payload.nav_dop, GpsPosition); break; case UBX_ID_PVT: parse_ubx_nav_pvt(&ubx->payload.nav_pvt, GpsPosition); lastPvtTime = PIOS_DELAY_GetuS(); break; #if !defined(PIOS_GPS_MINIMAL) case UBX_ID_SVINFO: parse_ubx_nav_svinfo(&ubx->payload.nav_svinfo); break; #endif default: break; } } break; } if (msgtracker.msg_received == ALL_RECEIVED) { GPSPositionSensorSet(GpsPosition); msgtracker.msg_received = NONE_RECEIVED; id = GPSPOSITIONSENSOR_OBJID; } return id; } #endif // PIOS_INCLUDE_GPS_UBX_PARSER