/** ****************************************************************************** * * @file coordinateconversions.cpp * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief General conversions with different coordinate systems. * - all angles in deg * - distances in meters * - altitude above WGS-84 elipsoid * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "coordinateconversions.h" #include #include #include #define RAD2DEG (180.0/M_PI) #define DEG2RAD (M_PI/180.0) namespace Utils { CoordinateConversions::CoordinateConversions() { } /** * Get rotation matrix from ECEF to NED for that LLA * @param[in] LLA Longitude latitude altitude for this location * @param[out] Rne[3][3] Rotation matrix */ void CoordinateConversions::RneFromLLA(double LLA[3], double Rne[3][3]){ float sinLat, sinLon, cosLat, cosLon; sinLat=(float)sin(DEG2RAD*LLA[0]); sinLon=(float)sin(DEG2RAD*LLA[1]); cosLat=(float)cos(DEG2RAD*LLA[0]); cosLon=(float)cos(DEG2RAD*LLA[1]); Rne[0][0] = -sinLat*cosLon; Rne[0][1] = -sinLat*sinLon; Rne[0][2] = cosLat; Rne[1][0] = -sinLon; Rne[1][1] = cosLon; Rne[1][2] = 0; Rne[2][0] = -cosLat*cosLon; Rne[2][1] = -cosLat*sinLon; Rne[2][2] = -sinLat; } /** * Convert from LLA coordinates to ECEF coordinates * @param[in] LLA[3] latitude longitude alititude coordinates in * @param[out] ECEF[3] location in ECEF coordinates */ void CoordinateConversions::LLA2ECEF(double LLA[3], double ECEF[3]){ const double a = 6378137.0; // Equatorial Radius const double e = 8.1819190842622e-2; // Eccentricity double sinLat, sinLon, cosLat, cosLon; double N; sinLat=sin(DEG2RAD*LLA[0]); sinLon=sin(DEG2RAD*LLA[1]); cosLat=cos(DEG2RAD*LLA[0]); cosLon=cos(DEG2RAD*LLA[1]); N = a / sqrt(1.0 - e*e*sinLat*sinLat); //prime vertical radius of curvature ECEF[0] = (N+LLA[2])*cosLat*cosLon; ECEF[1] = (N+LLA[2])*cosLat*sinLon; ECEF[2] = ((1-e*e)*N + LLA[2]) * sinLat; } /** * Convert from ECEF coordinates to LLA coordinates * @param[in] ECEF[3] location in ECEF coordinates * @param[out] LLA[3] latitude longitude alititude coordinates */ int CoordinateConversions::ECEF2LLA(double ECEF[3], double LLA[3]) { const double a = 6378137.0; // Equatorial Radius const double e = 8.1819190842622e-2; // Eccentricity double x=ECEF[0], y=ECEF[1], z=ECEF[2]; double Lat, N, NplusH, delta, esLat; uint16_t iter; LLA[1] = RAD2DEG*atan2(y,x); N = a; NplusH = N; delta = 1; Lat = 1; iter=0; while (((delta > 1.0e-14)||(delta < -1.0e-14)) && (iter < 100)) { delta = Lat - atan(z / (sqrt(x*x + y*y)*(1-(N*e*e/NplusH)))); Lat = Lat-delta; esLat = e*sin(Lat); N = a / sqrt(1 - esLat*esLat); NplusH = sqrt(x*x + y*y)/cos(Lat); iter += 1; } LLA[0] = RAD2DEG*Lat; LLA[2] = NplusH - N; if (iter==500) return (0); else return (1); } /** * Get the current location in Longitude, Latitude Altitude (above WSG-84 ellipsoid) * @param[in] BaseECEF the ECEF of the home location (in m) * @param[in] NED the offset from the home location (in m) * @param[out] position three element double for position in decimal degrees and altitude in meters * @returns * @arg 0 success * @arg -1 for failure */ int CoordinateConversions::NED2LLA_HomeECEF(double BaseECEFm[3], double NED[3], double position[3]) { int i; // stored value is in cm, convert to m double BaseLLA[3]; double ECEF[3]; double Rne [3][3]; // Get LLA address to compute conversion matrix ECEF2LLA(BaseECEFm, BaseLLA); RneFromLLA(BaseLLA, Rne); /* P = ECEF + Rne' * NED */ for(i = 0; i < 3; i++) ECEF[i] = BaseECEFm[i] + Rne[0][i]*NED[0] + Rne[1][i]*NED[1] + Rne[2][i]*NED[2]; ECEF2LLA(ECEF,position); return 0; } /** * Get the current location in Longitude, Latitude, Altitude (above WSG-84 ellipsoid) * @param[in] homeLLA the latitude, longitude, and altitude of the home location (in [m]) * @param[in] NED the offset from the home location (in [m]) * @param[out] position three element double for position in decimal degrees and altitude in meters * @returns * @arg 0 success * @arg -1 for failure */ int CoordinateConversions::NED2LLA_HomeLLA(double homeLLA[3], double NED[3], double position[3]) { double T[3]; T[0] = homeLLA[2]+6.378137E6f * M_PI / 180.0; T[1] = cosf(homeLLA[0] * M_PI / 180.0)*(homeLLA[2]+6.378137E6f) * M_PI / 180.0; T[2] = -1.0f; position[0] = homeLLA[0] + NED[0] / T[0]; position[1] = homeLLA[1] + NED[1] / T[1]; position[2] = homeLLA[2] + NED[2] / T[2]; return 0; } void CoordinateConversions::LLA2Base(double LLA[3], double BaseECEF[3], float Rne[3][3], float NED[3]) { double ECEF[3]; float diff[3]; LLA2ECEF(LLA, ECEF); diff[0] = (float)(ECEF[0] - BaseECEF[0]); diff[1] = (float)(ECEF[1] - BaseECEF[1]); diff[2] = (float)(ECEF[2] - BaseECEF[2]); NED[0] = Rne[0][0] * diff[0] + Rne[0][1] * diff[1] + Rne[0][2] * diff[2]; NED[1] = Rne[1][0] * diff[0] + Rne[1][1] * diff[1] + Rne[1][2] * diff[2]; NED[2] = Rne[2][0] * diff[0] + Rne[2][1] * diff[1] + Rne[2][2] * diff[2]; } // ****** find roll, pitch, yaw from quaternion ******** void CoordinateConversions::Quaternion2RPY(const float q[4], float rpy[3]) { float R13, R11, R12, R23, R33; float q0s = q[0] * q[0]; float q1s = q[1] * q[1]; float q2s = q[2] * q[2]; float q3s = q[3] * q[3]; R13 = 2 * (q[1] * q[3] - q[0] * q[2]); R11 = q0s + q1s - q2s - q3s; R12 = 2 * (q[1] * q[2] + q[0] * q[3]); R23 = 2 * (q[2] * q[3] + q[0] * q[1]); R33 = q0s - q1s - q2s + q3s; rpy[1] = RAD2DEG * asinf(-R13); // pitch always between -pi/2 to pi/2 rpy[2] = RAD2DEG * atan2f(R12, R11); rpy[0] = RAD2DEG * atan2f(R23, R33); //TODO: consider the cases where |R13| ~= 1, |pitch| ~= pi/2 } // ****** find quaternion from roll, pitch, yaw ******** void CoordinateConversions::RPY2Quaternion(const float rpy[3], float q[4]) { float phi, theta, psi; float cphi, sphi, ctheta, stheta, cpsi, spsi; phi = DEG2RAD * rpy[0] / 2; theta = DEG2RAD * rpy[1] / 2; psi = DEG2RAD * rpy[2] / 2; cphi = cosf(phi); sphi = sinf(phi); ctheta = cosf(theta); stheta = sinf(theta); cpsi = cosf(psi); spsi = sinf(psi); q[0] = cphi * ctheta * cpsi + sphi * stheta * spsi; q[1] = sphi * ctheta * cpsi - cphi * stheta * spsi; q[2] = cphi * stheta * cpsi + sphi * ctheta * spsi; q[3] = cphi * ctheta * spsi - sphi * stheta * cpsi; if (q[0] < 0) { // q0 always positive for uniqueness q[0] = -q[0]; q[1] = -q[1]; q[2] = -q[2]; q[3] = -q[3]; } } //** Find Rbe, that rotates a vector from earth fixed to body frame, from quaternion ** void CoordinateConversions::Quaternion2R(const float q[4], float Rbe[3][3]) { float q0s = q[0] * q[0], q1s = q[1] * q[1], q2s = q[2] * q[2], q3s = q[3] * q[3]; Rbe[0][0] = q0s + q1s - q2s - q3s; Rbe[0][1] = 2 * (q[1] * q[2] + q[0] * q[3]); Rbe[0][2] = 2 * (q[1] * q[3] - q[0] * q[2]); Rbe[1][0] = 2 * (q[1] * q[2] - q[0] * q[3]); Rbe[1][1] = q0s - q1s + q2s - q3s; Rbe[1][2] = 2 * (q[2] * q[3] + q[0] * q[1]); Rbe[2][0] = 2 * (q[1] * q[3] + q[0] * q[2]); Rbe[2][1] = 2 * (q[2] * q[3] - q[0] * q[1]); Rbe[2][2] = q0s - q1s - q2s + q3s; } }