/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup OSDGENModule osdgen Module * @brief Process OSD information * @{ * * @file osdgen.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief OSD gen module, handles OSD draw. Parts from CL-OSD and SUPEROSD projects * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ // **************** #include "openpilot.h" #include "osdgen.h" #include "attitudeactual.h" #include "gpsposition.h" #include "homelocation.h" #include "gpstime.h" #include "gpssatellites.h" #include "osdsettings.h" #include "fonts.h" #include "font12x18.h" #include "font8x10.h" #include "WMMInternal.h" #include "splash.h" static uint16_t angleA=0; static int16_t angleB=90; static int16_t angleC=0; static int16_t sum=2; static int16_t m_pitch=0; static int16_t m_roll=0; static int16_t m_yaw=0; static int16_t m_batt=0; static int16_t m_alt=0; static uint8_t m_gpsStatus=0; static int32_t m_gpsLat=0; static int32_t m_gpsLon=0; static float m_gpsAlt=0; static float m_gpsSpd=0; extern uint8_t *draw_buffer_level; extern uint8_t *draw_buffer_mask; extern uint8_t *disp_buffer_level; extern uint8_t *disp_buffer_mask; TTime timex; // **************** // Private functions static void osdgenTask(void *parameters); // **************** // Private constants #define LONG_TIME 0xffff xSemaphoreHandle osdSemaphore = NULL; #define STACK_SIZE_BYTES 4096 #define TASK_PRIORITY (tskIDLE_PRIORITY + 4) #define UPDATE_PERIOD 100 // **************** // Private variables static xTaskHandle osdgenTaskHandle; struct splashEntry { unsigned int width, height; uint8_t *level; uint8_t *mask; }; struct splashEntry splash[3] = { { oplogo_width, oplogo_height, &oplogo_bits, &oplogo_mask_bits }, { level_width, level_height, &level_bits, &level_mask_bits }, { llama_width, llama_height, &llama_bits, &llama_mask_bits }, }; uint16_t mirror(uint16_t source) { int result = ((source & 0x8000) >> 7) | ((source & 0x4000) >> 5) | ((source & 0x2000) >> 3) | ((source & 0x1000) >> 1) | ((source & 0x0800) << 1) | ((source & 0x0400) << 3) | ((source & 0x0200) << 5) | ((source & 0x0100) << 7) | ((source & 0x0080) >> 7) | ((source & 0x0040) >> 5) | ((source & 0x0020) >> 3) | ((source & 0x0010) >> 1) | ((source & 0x0008) << 1) | ((source & 0x0004) << 3) | ((source & 0x0002) << 5) | ((source & 0x0001) << 7); return result; } void clearGraphics() { memset((uint8_t *) draw_buffer_mask, 0, GRAPHICS_WIDTH * GRAPHICS_HEIGHT); memset((uint8_t *) draw_buffer_level, 0, GRAPHICS_WIDTH * GRAPHICS_HEIGHT); } void copyimage(uint16_t offsetx, uint16_t offsety, int image) { //check top/left position if (!validPos(offsetx, offsety)) { return; } struct splashEntry splash_info; splash_info = splash[image]; offsetx=offsetx/8; for (uint16_t y = offsety; y < ((splash_info.height)+offsety); y++) { for (uint16_t x = offsetx; x < (((splash_info.width)/8)+offsetx); x++) { draw_buffer_level[y*GRAPHICS_WIDTH+x] = mirror(splash_info.level[(y-offsety)*((splash_info.width)/8)+(x-offsetx)]); draw_buffer_mask[y*GRAPHICS_WIDTH+x] = mirror(splash_info.mask[(y-offsety)*((splash_info.width)/8)+(x-offsetx)]); } } } uint8_t validPos(uint16_t x, uint16_t y) { if ( x < GRAPHICS_HDEADBAND || x >= GRAPHICS_WIDTH_REAL || y >= GRAPHICS_HEIGHT_REAL) { return 0; } return 1; } // Credit for this one goes to wikipedia! :-) void drawCircle(uint16_t x0, uint16_t y0, uint16_t radius) { int f = 1 - radius; int ddF_x = 1; int ddF_y = -2 * radius; int x = 0; int y = radius; write_pixel_lm(x0, y0 + radius,1,1); write_pixel_lm(x0, y0 - radius,1,1); write_pixel_lm(x0 + radius, y0,1,1); write_pixel_lm(x0 - radius, y0,1,1); while(x < y) { // ddF_x == 2 * x + 1; // ddF_y == -2 * y; // f == x*x + y*y - radius*radius + 2*x - y + 1; if(f >= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; write_pixel_lm(x0 + x, y0 + y,1,1); write_pixel_lm(x0 - x, y0 + y,1,1); write_pixel_lm(x0 + x, y0 - y,1,1); write_pixel_lm(x0 - x, y0 - y,1,1); write_pixel_lm(x0 + y, y0 + x,1,1); write_pixel_lm(x0 - y, y0 + x,1,1); write_pixel_lm(x0 + y, y0 - x,1,1); write_pixel_lm(x0 - y, y0 - x,1,1); } } void swap(uint16_t* a, uint16_t* b) { uint16_t temp = *a; *a = *b; *b = temp; } const static int8_t sinData[91] = { 0, 2, 3, 5, 7, 9, 10, 12, 14, 16, 17, 19, 21, 22, 24, 26, 28, 29, 31, 33, 34, 36, 37, 39, 41, 42, 44, 45, 47, 48, 50, 52, 53, 54, 56, 57, 59, 60, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 87, 88, 89, 90, 91, 91, 92, 93, 93, 94, 95, 95, 96, 96, 97, 97, 97, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100}; static int8_t mySin(uint16_t angle) { uint16_t pos = 0; pos = angle % 360; int8_t mult = 1; // 180-359 is same as 0-179 but negative. if (pos >= 180) { pos = pos - 180; mult = -1; } // 0-89 is equal to 90-179 except backwards. if (pos >= 90) { pos = 180 - pos; } return mult * (int8_t)(sinData[pos]); } static int8_t myCos(uint16_t angle) { return mySin(angle + 90); } /// Draws four points relative to the given center point. /// /// \li centerX + X, centerY + Y /// \li centerX + X, centerY - Y /// \li centerX - X, centerY + Y /// \li centerX - X, centerY - Y /// /// \param centerX the x coordinate of the center point /// \param centerY the y coordinate of the center point /// \param deltaX the difference between the centerX coordinate and each pixel drawn /// \param deltaY the difference between the centerY coordinate and each pixel drawn /// \param color the color to draw the pixels with. void plotFourQuadrants(int32_t centerX, int32_t centerY, int32_t deltaX, int32_t deltaY) { write_pixel_lm(centerX + deltaX, centerY + deltaY,1,1); // Ist Quadrant write_pixel_lm(centerX - deltaX, centerY + deltaY,1,1); // IInd Quadrant write_pixel_lm(centerX - deltaX, centerY - deltaY,1,1); // IIIrd Quadrant write_pixel_lm(centerX + deltaX, centerY - deltaY,1,1); // IVth Quadrant } /// Implements the midpoint ellipse drawing algorithm which is a bresenham /// style DDF. /// /// \param centerX the x coordinate of the center of the ellipse /// \param centerY the y coordinate of the center of the ellipse /// \param horizontalRadius the horizontal radius of the ellipse /// \param verticalRadius the vertical radius of the ellipse /// \param color the color of the ellipse border void ellipse(int centerX, int centerY, int horizontalRadius, int verticalRadius) { int64_t doubleHorizontalRadius = horizontalRadius * horizontalRadius; int64_t doubleVerticalRadius = verticalRadius * verticalRadius; int64_t error = doubleVerticalRadius - doubleHorizontalRadius * verticalRadius + (doubleVerticalRadius >> 2); int x = 0; int y = verticalRadius; int deltaX = 0; int deltaY = (doubleHorizontalRadius << 1) * y; plotFourQuadrants(centerX, centerY, x, y); while(deltaY >= deltaX) { x++; deltaX += (doubleVerticalRadius << 1); error += deltaX + doubleVerticalRadius; if(error >= 0) { y--; deltaY -= (doubleHorizontalRadius << 1); error -= deltaY; } plotFourQuadrants(centerX, centerY, x, y); } error = (int64_t)(doubleVerticalRadius * (x + 1 / 2.0) * (x + 1 / 2.0) + doubleHorizontalRadius * (y - 1) * (y - 1) - doubleHorizontalRadius * doubleVerticalRadius); while (y>=0) { error += doubleHorizontalRadius; y--; deltaY -= (doubleHorizontalRadius<<1); error -= deltaY; if(error <= 0) { x++; deltaX += (doubleVerticalRadius << 1); error += deltaX; } plotFourQuadrants(centerX, centerY, x, y); } } void drawArrow(uint16_t x, uint16_t y, uint16_t angle, uint16_t size) { int16_t a = myCos(angle); int16_t b = mySin(angle); a = (a * (size/2)) / 100; b = (b * (size/2)) / 100; write_line_lm((x)-1 - b, (y)-1 + a, (x)-1 + b, (y)-1 - a, 1, 1); //Direction line //write_line_lm((GRAPHICS_SIZE/2)-1 + a/2, (GRAPHICS_SIZE/2)-1 + b/2, (GRAPHICS_SIZE/2)-1 - a/2, (GRAPHICS_SIZE/2)-1 - b/2, 1, 1); //Arrow bottom line write_line_lm((x)-1 + b, (y)-1 - a, (x)-1 - a/2, (y)-1 - b/2, 1, 1); // Arrow "wings" write_line_lm((x)-1 + b, (y)-1 - a, (x)-1 + a/2, (y)-1 + b/2, 1, 1); } void drawBox(uint16_t x1, uint16_t y1, uint16_t x2, uint16_t y2) { write_line_lm(x1, y1, x2, y1, 1, 1); //top write_line_lm(x1, y1, x1, y2, 1, 1); //left write_line_lm(x2, y1, x2, y2, 1, 1); //right write_line_lm(x1, y2, x2, y2, 1, 1); //bottom } // simple routines // SUPEROSD routines, modified /** * write_pixel: Write a pixel at an x,y position to a given surface. * * @param buff pointer to buffer to write in * @param x x coordinate * @param y y coordinate * @param mode 0 = clear bit, 1 = set bit, 2 = toggle bit */ void write_pixel(uint8_t *buff, unsigned int x, unsigned int y, int mode) { CHECK_COORDS(x, y); // Determine the bit in the word to be set and the word // index to set it in. int bitnum = CALC_BIT_IN_WORD(x); int wordnum = CALC_BUFF_ADDR(x, y); // Apply a mask. uint16_t mask = 1 << (7 - bitnum); WRITE_WORD_MODE(buff, wordnum, mask, mode); } /** * write_pixel_lm: write the pixel on both surfaces (level and mask.) * Uses current draw buffer. * * @param x x coordinate * @param y y coordinate * @param mmode 0 = clear, 1 = set, 2 = toggle * @param lmode 0 = black, 1 = white, 2 = toggle */ void write_pixel_lm(unsigned int x, unsigned int y, int mmode, int lmode) { CHECK_COORDS(x, y); // Determine the bit in the word to be set and the word // index to set it in. int bitnum = CALC_BIT_IN_WORD(x); int wordnum = CALC_BUFF_ADDR(x, y); // Apply the masks. uint16_t mask = 1 << (7 - bitnum); WRITE_WORD_MODE(draw_buffer_mask, wordnum, mask, mmode); WRITE_WORD_MODE(draw_buffer_level, wordnum, mask, lmode); } /** * write_hline: optimised horizontal line writing algorithm * * @param buff pointer to buffer to write in * @param x0 x0 coordinate * @param x1 x1 coordinate * @param y y coordinate * @param mode 0 = clear, 1 = set, 2 = toggle */ void write_hline(uint8_t *buff, unsigned int x0, unsigned int x1, unsigned int y, int mode) { CLIP_COORDS(x0, y); CLIP_COORDS(x1, y); if(x0 > x1) { SWAP(x0, x1); } if(x0 == x1) return; /* This is an optimised algorithm for writing horizontal lines. * We begin by finding the addresses of the x0 and x1 points. */ int addr0 = CALC_BUFF_ADDR(x0, y); int addr1 = CALC_BUFF_ADDR(x1, y); int addr0_bit = CALC_BIT_IN_WORD(x0); int addr1_bit = CALC_BIT_IN_WORD(x1); int mask, mask_l, mask_r, i; /* If the addresses are equal, we only need to write one word * which is an island. */ if(addr0 == addr1) { mask = COMPUTE_HLINE_ISLAND_MASK(addr0_bit, addr1_bit); WRITE_WORD_MODE(buff, addr0, mask, mode); } /* Otherwise we need to write the edges and then the middle. */ else { mask_l = COMPUTE_HLINE_EDGE_L_MASK(addr0_bit); mask_r = COMPUTE_HLINE_EDGE_R_MASK(addr1_bit); WRITE_WORD_MODE(buff, addr0, mask_l, mode); WRITE_WORD_MODE(buff, addr1, mask_r, mode); // Now write 0xffff words from start+1 to end-1. for(i = addr0 + 1; i <= addr1 - 1; i++) { WRITE_WORD_MODE(buff, i, 0xff, mode); } } } /** * write_hline_lm: write both level and mask buffers. * * @param x0 x0 coordinate * @param x1 x1 coordinate * @param y y coordinate * @param lmode 0 = clear, 1 = set, 2 = toggle * @param mmode 0 = clear, 1 = set, 2 = toggle */ void write_hline_lm(unsigned int x0, unsigned int x1, unsigned int y, int lmode, int mmode) { // TODO: an optimisation would compute the masks and apply to // both buffers simultaneously. write_hline(draw_buffer_level, x0, x1, y, lmode); write_hline(draw_buffer_mask, x0, x1, y, mmode); } /** * write_hline_outlined: outlined horizontal line with varying endcaps * Always uses draw buffer. * * @param x0 x0 coordinate * @param x1 x1 coordinate * @param y y coordinate * @param endcap0 0 = none, 1 = single pixel, 2 = full cap * @param endcap1 0 = none, 1 = single pixel, 2 = full cap * @param mode 0 = black outline, white body, 1 = white outline, black body * @param mmode 0 = clear, 1 = set, 2 = toggle */ void write_hline_outlined(unsigned int x0, unsigned int x1, unsigned int y, int endcap0, int endcap1, int mode, int mmode) { int stroke, fill; SETUP_STROKE_FILL(stroke, fill, mode) if(x0 > x1) { SWAP(x0, x1); } // Draw the main body of the line. write_hline_lm(x0 + 1, x1 - 1, y - 1, stroke, mmode); write_hline_lm(x0 + 1, x1 - 1, y + 1, stroke, mmode); write_hline_lm(x0 + 1, x1 - 1, y, fill, mmode); // Draw the endcaps, if any. DRAW_ENDCAP_HLINE(endcap0, x0, y, stroke, fill, mmode); DRAW_ENDCAP_HLINE(endcap1, x1, y, stroke, fill, mmode); } /** * write_vline: optimised vertical line writing algorithm * * @param buff pointer to buffer to write in * @param x x coordinate * @param y0 y0 coordinate * @param y1 y1 coordinate * @param mode 0 = clear, 1 = set, 2 = toggle */ void write_vline(uint8_t *buff, unsigned int x, unsigned int y0, unsigned int y1, int mode) { unsigned int a; CLIP_COORDS(x, y0); CLIP_COORDS(x, y1); if(y0 > y1) { SWAP(y0, y1); } if(y0 == y1) return; /* This is an optimised algorithm for writing vertical lines. * We begin by finding the addresses of the x,y0 and x,y1 points. */ int addr0 = CALC_BUFF_ADDR(x, y0); int addr1 = CALC_BUFF_ADDR(x, y1); /* Then we calculate the pixel data to be written. */ int bitnum = CALC_BIT_IN_WORD(x); uint16_t mask = 1 << (7 - bitnum); /* Run from addr0 to addr1 placing pixels. Increment by the number * of words n each graphics line. */ for(a = addr0; a <= addr1; a += GRAPHICS_WIDTH_REAL / 8) { WRITE_WORD_MODE(buff, a, mask, mode); } } /** * write_vline_lm: write both level and mask buffers. * * @param x x coordinate * @param y0 y0 coordinate * @param y1 y1 coordinate * @param lmode 0 = clear, 1 = set, 2 = toggle * @param mmode 0 = clear, 1 = set, 2 = toggle */ void write_vline_lm(unsigned int x, unsigned int y0, unsigned int y1, int lmode, int mmode) { // TODO: an optimisation would compute the masks and apply to // both buffers simultaneously. write_vline(draw_buffer_level, x, y0, y1, lmode); write_vline(draw_buffer_mask, x, y0, y1, mmode); } /** * write_vline_outlined: outlined vertical line with varying endcaps * Always uses draw buffer. * * @param x x coordinate * @param y0 y0 coordinate * @param y1 y1 coordinate * @param endcap0 0 = none, 1 = single pixel, 2 = full cap * @param endcap1 0 = none, 1 = single pixel, 2 = full cap * @param mode 0 = black outline, white body, 1 = white outline, black body * @param mmode 0 = clear, 1 = set, 2 = toggle */ void write_vline_outlined(unsigned int x, unsigned int y0, unsigned int y1, int endcap0, int endcap1, int mode, int mmode) { int stroke, fill; if(y0 > y1) { SWAP(y0, y1); } SETUP_STROKE_FILL(stroke, fill, mode); // Draw the main body of the line. write_vline_lm(x - 1, y0 + 1, y1 - 1, stroke, mmode); write_vline_lm(x + 1, y0 + 1, y1 - 1, stroke, mmode); write_vline_lm(x, y0 + 1, y1 - 1, fill, mmode); // Draw the endcaps, if any. DRAW_ENDCAP_VLINE(endcap0, x, y0, stroke, fill, mmode); DRAW_ENDCAP_VLINE(endcap1, x, y1, stroke, fill, mmode); } /** * write_filled_rectangle: draw a filled rectangle. * * Uses an optimised algorithm which is similar to the horizontal * line writing algorithm, but optimised for writing the lines * multiple times without recalculating lots of stuff. * * @param buff pointer to buffer to write in * @param x x coordinate (left) * @param y y coordinate (top) * @param width rectangle width * @param height rectangle height * @param mode 0 = clear, 1 = set, 2 = toggle */ void write_filled_rectangle(uint8_t *buff, unsigned int x, unsigned int y, unsigned int width, unsigned int height, int mode) { int yy, addr0_old, addr1_old; CHECK_COORDS(x, y); CHECK_COORD_X(x + width); CHECK_COORD_Y(y + height); if(width <= 0 || height <= 0) return; // Calculate as if the rectangle was only a horizontal line. We then // step these addresses through each row until we iterate `height` times. int addr0 = CALC_BUFF_ADDR(x, y); int addr1 = CALC_BUFF_ADDR(x + width, y); int addr0_bit = CALC_BIT_IN_WORD(x); int addr1_bit = CALC_BIT_IN_WORD(x + width); int mask, mask_l, mask_r, i; // If the addresses are equal, we need to write one word vertically. if(addr0 == addr1) { mask = COMPUTE_HLINE_ISLAND_MASK(addr0_bit, addr1_bit); while(height--) { WRITE_WORD_MODE(buff, addr0, mask, mode); addr0 += GRAPHICS_WIDTH_REAL / 8; } } // Otherwise we need to write the edges and then the middle repeatedly. else { mask_l = COMPUTE_HLINE_EDGE_L_MASK(addr0_bit); mask_r = COMPUTE_HLINE_EDGE_R_MASK(addr1_bit); // Write edges first. yy = 0; addr0_old = addr0; addr1_old = addr1; while(yy < height) { WRITE_WORD_MODE(buff, addr0, mask_l, mode); WRITE_WORD_MODE(buff, addr1, mask_r, mode); addr0 += GRAPHICS_WIDTH_REAL / 8; addr1 += GRAPHICS_WIDTH_REAL / 8; yy++; } // Now write 0xffff words from start+1 to end-1 for each row. yy = 0; addr0 = addr0_old; addr1 = addr1_old; while(yy < height) { for(i = addr0 + 1; i <= addr1 - 1; i++) { WRITE_WORD_MODE(buff, i, 0xff, mode); } addr0 += GRAPHICS_WIDTH_REAL / 8; addr1 += GRAPHICS_WIDTH_REAL / 8; yy++; } } } /** * write_filled_rectangle_lm: draw a filled rectangle on both draw buffers. * * @param x x coordinate (left) * @param y y coordinate (top) * @param width rectangle width * @param height rectangle height * @param lmode 0 = clear, 1 = set, 2 = toggle * @param mmode 0 = clear, 1 = set, 2 = toggle */ void write_filled_rectangle_lm(unsigned int x, unsigned int y, unsigned int width, unsigned int height, int lmode, int mmode) { write_filled_rectangle(draw_buffer_mask, x, y, width, height, mmode); write_filled_rectangle(draw_buffer_level, x, y, width, height, lmode); } /** * write_rectangle_outlined: draw an outline of a rectangle. Essentially * a convenience wrapper for draw_hline_outlined and draw_vline_outlined. * * @param x x coordinate (left) * @param y y coordinate (top) * @param width rectangle width * @param height rectangle height * @param mode 0 = black outline, white body, 1 = white outline, black body * @param mmode 0 = clear, 1 = set, 2 = toggle */ void write_rectangle_outlined(unsigned int x, unsigned int y, int width, int height, int mode, int mmode) { //CHECK_COORDS(x, y); //CHECK_COORDS(x + width, y + height); //if((x + width) > DISP_WIDTH) width = DISP_WIDTH - x; //if((y + height) > DISP_HEIGHT) height = DISP_HEIGHT - y; write_hline_outlined(x, x + width, y, ENDCAP_ROUND, ENDCAP_ROUND, mode, mmode); write_hline_outlined(x, x + width, y + height, ENDCAP_ROUND, ENDCAP_ROUND, mode, mmode); write_vline_outlined(x, y, y + height, ENDCAP_ROUND, ENDCAP_ROUND, mode, mmode); write_vline_outlined(x + width, y, y + height, ENDCAP_ROUND, ENDCAP_ROUND, mode, mmode); } /** * write_circle: draw the outline of a circle on a given buffer, * with an optional dash pattern for the line instead of a normal line. * * @param buff pointer to buffer to write in * @param cx origin x coordinate * @param cy origin y coordinate * @param r radius * @param dashp dash period (pixels) - zero for no dash * @param mode 0 = clear, 1 = set, 2 = toggle */ void write_circle(uint8_t *buff, unsigned int cx, unsigned int cy, unsigned int r, unsigned int dashp, int mode) { CHECK_COORDS(cx, cy); int error = -r, x = r, y = 0; while(x >= y) { if(dashp == 0 || (y % dashp) < (dashp / 2)) { CIRCLE_PLOT_8(buff, cx, cy, x, y, mode); } error += (y * 2) + 1; y++; if(error >= 0) { --x; error -= x * 2; } } } /** * write_circle_outlined: draw an outlined circle on the draw buffer. * * @param cx origin x coordinate * @param cy origin y coordinate * @param r radius * @param dashp dash period (pixels) - zero for no dash * @param bmode 0 = 4-neighbour border, 1 = 8-neighbour border * @param mode 0 = black outline, white body, 1 = white outline, black body * @param mmode 0 = clear, 1 = set, 2 = toggle */ void write_circle_outlined(unsigned int cx, unsigned int cy, unsigned int r, unsigned int dashp, int bmode, int mode, int mmode) { int stroke, fill; CHECK_COORDS(cx, cy); SETUP_STROKE_FILL(stroke, fill, mode); // This is a two step procedure. First, we draw the outline of the // circle, then we draw the inner part. int error = -r, x = r, y = 0; while(x >= y) { if(dashp == 0 || (y % dashp) < (dashp / 2)) { CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x + 1, y, mmode); CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x + 1, y, stroke); CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x, y + 1, mmode); CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x, y + 1, stroke); CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x - 1, y, mmode); CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x - 1, y, stroke); CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x, y - 1, mmode); CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x, y - 1, stroke); if(bmode == 1) { CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x + 1, y + 1, mmode); CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x + 1, y + 1, stroke); CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x - 1, y - 1, mmode); CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x - 1, y - 1, stroke); } } error += (y * 2) + 1; y++; if(error >= 0) { --x; error -= x * 2; } } error = -r; x = r; y = 0; while(x >= y) { if(dashp == 0 || (y % dashp) < (dashp / 2)) { CIRCLE_PLOT_8(draw_buffer_mask, cx, cy, x, y, mmode); CIRCLE_PLOT_8(draw_buffer_level, cx, cy, x, y, fill); } error += (y * 2) + 1; y++; if(error >= 0) { --x; error -= x * 2; } } } /** * write_circle_filled: fill a circle on a given buffer. * * @param buff pointer to buffer to write in * @param cx origin x coordinate * @param cy origin y coordinate * @param r radius * @param mode 0 = clear, 1 = set, 2 = toggle */ void write_circle_filled(uint8_t *buff, unsigned int cx, unsigned int cy, unsigned int r, int mode) { CHECK_COORDS(cx, cy); int error = -r, x = r, y = 0, xch = 0; // It turns out that filled circles can take advantage of the midpoint // circle algorithm. We simply draw very fast horizontal lines across each // pair of X,Y coordinates. In some cases, this can even be faster than // drawing an outlined circle! // // Due to multiple writes to each set of pixels, we have a special exception // for when using the toggling draw mode. while(x >= y) { if(y != 0) { write_hline(buff, cx - x, cx + x, cy + y, mode); write_hline(buff, cx - x, cx + x, cy - y, mode); if(mode != 2 || (mode == 2 && xch && (cx - x) != (cx - y))) { write_hline(buff, cx - y, cx + y, cy + x, mode); write_hline(buff, cx - y, cx + y, cy - x, mode); xch = 0; } } error += (y * 2) + 1; y++; if(error >= 0) { --x; xch = 1; error -= x * 2; } } // Handle toggle mode. if(mode == 2) { write_hline(buff, cx - r, cx + r, cy, mode); } } /** * write_line: Draw a line of arbitrary angle. * * @param buff pointer to buffer to write in * @param x0 first x coordinate * @param y0 first y coordinate * @param x1 second x coordinate * @param y1 second y coordinate * @param mode 0 = clear, 1 = set, 2 = toggle */ void write_line(uint8_t *buff, unsigned int x0, unsigned int y0, unsigned int x1, unsigned int y1, int mode) { // Based on http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm int steep = abs(y1 - y0) > abs(x1 - x0); if(steep) { SWAP(x0, y0); SWAP(x1, y1); } if(x0 > x1) { SWAP(x0, x1); SWAP(y0, y1); } int deltax = x1 - x0; int deltay = abs(y1 - y0); int error = deltax / 2; int ystep; int y = y0; int x, lasty = y, stox = 0; if(y0 < y1) ystep = 1; else ystep = -1; for(x = x0; x < x1; x++) { if(steep) { write_pixel(buff, y, x, mode); } else { write_pixel(buff, x, y, mode); } error -= deltay; if(error < 0) { y += ystep; error += deltax; } } } /** * write_line_lm: Draw a line of arbitrary angle. * * @param x0 first x coordinate * @param y0 first y coordinate * @param x1 second x coordinate * @param y1 second y coordinate * @param mmode 0 = clear, 1 = set, 2 = toggle * @param lmode 0 = clear, 1 = set, 2 = toggle */ void write_line_lm(unsigned int x0, unsigned int y0, unsigned int x1, unsigned int y1, int mmode, int lmode) { write_line(draw_buffer_mask, x0, y0, x1, y1, mmode); write_line(draw_buffer_level, x0, y0, x1, y1, lmode); } /** * write_line_outlined: Draw a line of arbitrary angle, with an outline. * * @param buff pointer to buffer to write in * @param x0 first x coordinate * @param y0 first y coordinate * @param x1 second x coordinate * @param y1 second y coordinate * @param endcap0 0 = none, 1 = single pixel, 2 = full cap * @param endcap1 0 = none, 1 = single pixel, 2 = full cap * @param mode 0 = black outline, white body, 1 = white outline, black body * @param mmode 0 = clear, 1 = set, 2 = toggle */ void write_line_outlined(unsigned int x0, unsigned int y0, unsigned int x1, unsigned int y1, int endcap0, int endcap1, int mode, int mmode) { // Based on http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm // This could be improved for speed. int omode, imode; if(mode == 0) { omode = 0; imode = 1; } else { omode = 1; imode = 0; } int steep = abs(y1 - y0) > abs(x1 - x0); if(steep) { SWAP(x0, y0); SWAP(x1, y1); } if(x0 > x1) { SWAP(x0, x1); SWAP(y0, y1); } int deltax = x1 - x0; int deltay = abs(y1 - y0); int error = deltax / 2; int ystep; int y = y0; int x; if(y0 < y1) ystep = 1; else ystep = -1; // Draw the outline. for(x = x0; x < x1; x++) { if(steep) { write_pixel_lm(y - 1, x, mmode, omode); write_pixel_lm(y + 1, x, mmode, omode); write_pixel_lm(y, x - 1, mmode, omode); write_pixel_lm(y, x + 1, mmode, omode); } else { write_pixel_lm(x - 1, y, mmode, omode); write_pixel_lm(x + 1, y, mmode, omode); write_pixel_lm(x, y - 1, mmode, omode); write_pixel_lm(x, y + 1, mmode, omode); } error -= deltay; if(error < 0) { y += ystep; error += deltax; } } // Now draw the innards. error = deltax / 2; y = y0; for(x = x0; x < x1; x++) { if(steep) { write_pixel_lm(y, x, mmode, imode); } else { write_pixel_lm(x, y, mmode, imode); } error -= deltay; if(error < 0) { y += ystep; error += deltax; } } } /** * write_word_misaligned: Write a misaligned word across two addresses * with an x offset. * * This allows for many pixels to be set in one write. * * @param buff buffer to write in * @param word word to write (16 bits) * @param addr address of first word * @param xoff x offset (0-15) * @param mode 0 = clear, 1 = set, 2 = toggle */ void write_word_misaligned(uint8_t *buff, uint16_t word, unsigned int addr, unsigned int xoff, int mode) { uint16_t firstmask = word >> xoff; uint16_t lastmask = word << (16 - xoff); WRITE_WORD_MODE(buff, addr+1, firstmask && 0x00ff, mode); WRITE_WORD_MODE(buff, addr, (firstmask & 0xff00) >> 8, mode); if(xoff > 0) WRITE_WORD_MODE(buff, addr+2, (lastmask & 0xff00) >> 8, mode); } /** * write_word_misaligned_NAND: Write a misaligned word across two addresses * with an x offset, using a NAND mask. * * This allows for many pixels to be set in one write. * * @param buff buffer to write in * @param word word to write (16 bits) * @param addr address of first word * @param xoff x offset (0-15) * * This is identical to calling write_word_misaligned with a mode of 0 but * it doesn't go through a lot of switch logic which slows down text writing * a lot. */ void write_word_misaligned_NAND(uint8_t *buff, uint16_t word, unsigned int addr, unsigned int xoff) { uint16_t firstmask = word >> xoff; uint16_t lastmask = word << (16 - xoff); WRITE_WORD_NAND(buff, addr+1, firstmask & 0x00ff); WRITE_WORD_NAND(buff, addr, (firstmask & 0xff00) >> 8); if(xoff > 0) WRITE_WORD_NAND(buff, addr+2, (lastmask & 0xff00) >> 8); } /** * write_word_misaligned_OR: Write a misaligned word across two addresses * with an x offset, using an OR mask. * * This allows for many pixels to be set in one write. * * @param buff buffer to write in * @param word word to write (16 bits) * @param addr address of first word * @param xoff x offset (0-15) * * This is identical to calling write_word_misaligned with a mode of 1 but * it doesn't go through a lot of switch logic which slows down text writing * a lot. */ void write_word_misaligned_OR(uint8_t *buff, uint16_t word, unsigned int addr, unsigned int xoff) { uint16_t firstmask = word >> xoff; uint16_t lastmask = word << (16 - xoff); WRITE_WORD_OR(buff, addr+1, firstmask & 0x00ff); WRITE_WORD_OR(buff, addr, (firstmask & 0xff00) >> 8); if(xoff > 0) WRITE_WORD_OR(buff, addr + 2, (lastmask & 0xff00) >> 8); } /** * write_word_misaligned_lm: Write a misaligned word across two * words, in both level and mask buffers. This is core to the text * writing routines. * * @param buff buffer to write in * @param word word to write (16 bits) * @param addr address of first word * @param xoff x offset (0-15) * @param lmode 0 = clear, 1 = set, 2 = toggle * @param mmode 0 = clear, 1 = set, 2 = toggle */ void write_word_misaligned_lm(uint16_t wordl, uint16_t wordm, unsigned int addr, unsigned int xoff, int lmode, int mmode) { write_word_misaligned(draw_buffer_level, wordl, addr, xoff, lmode); write_word_misaligned(draw_buffer_mask, wordm, addr, xoff, mmode); } /** * fetch_font_info: Fetch font info structs. * * @param ch character * @param font font id */ int fetch_font_info(char ch, int font, struct FontEntry *font_info, char *lookup) { // First locate the font struct. if(font > SIZEOF_ARRAY(fonts)) return 0; // font does not exist, exit.*/ // Load the font info; IDs are always sequential. *font_info = fonts[font]; // Locate character in font lookup table. (If required.) if(lookup != NULL) { *lookup = font_info->lookup[ch]; if(*lookup == 0xff) return 0; // character doesn't exist, don't bother writing it. } return 1; } /** * write_char16: Draw a character on the current draw buffer. * Currently supports outlined characters and characters with * a width of up to 8 pixels. * * @param ch character to write * @param x x coordinate (left) * @param y y coordinate (top) * @param flags flags to write with (see gfx.h) * @param font font to use */ void write_char16(char ch, unsigned int x, unsigned int y, int font) { int yy, addr_temp, row, row_temp, xshift; uint16_t and_mask, or_mask, level_bits; struct FontEntry font_info; char lookup = 0; fetch_font_info(0, font, &font_info, NULL); // Compute starting address (for x,y) of character. int addr = CALC_BUFF_ADDR(x, y); int wbit = CALC_BIT_IN_WORD(x); // If font only supports lowercase or uppercase, make the letter // lowercase or uppercase. // How big is the character? We handle characters up to 8 pixels // wide for now. Support for large characters may be added in future. { // Ensure we don't overflow. if(x + wbit > GRAPHICS_WIDTH_REAL) return; // Load data pointer. row = ch * font_info.height; row_temp = row; addr_temp = addr; xshift = 16 - font_info.width; // We can write mask words easily. for(yy = y; yy < y + font_info.height; yy++) { if(font==3) write_word_misaligned_OR(draw_buffer_mask, font_mask12x18[row] << xshift, addr, wbit); else write_word_misaligned_OR(draw_buffer_mask, font_mask8x10[row] << xshift, addr, wbit); addr += GRAPHICS_WIDTH_REAL / 8; row++; } // Level bits are more complicated. We need to set or clear // level bits, but only where the mask bit is set; otherwise, // we need to leave them alone. To do this, for each word, we // construct an AND mask and an OR mask, and apply each individually. row = row_temp; addr = addr_temp; for(yy = y; yy < y + font_info.height; yy++) { if(font==3) { level_bits = font_frame12x18[row]; //if(!(flags & FONT_INVERT)) // data is normally inverted level_bits = ~level_bits; or_mask = font_mask12x18[row] << xshift; and_mask = (font_mask12x18[row] & level_bits) << xshift; } else { level_bits = font_frame8x10[row]; //if(!(flags & FONT_INVERT)) // data is normally inverted level_bits = ~level_bits; or_mask = font_mask8x10[row] << xshift; and_mask = (font_mask8x10[row] & level_bits) << xshift; } write_word_misaligned_OR(draw_buffer_level, or_mask, addr, wbit); // If we're not bold write the AND mask. //if(!(flags & FONT_BOLD)) write_word_misaligned_NAND(draw_buffer_level, and_mask, addr, wbit); addr += GRAPHICS_WIDTH_REAL / 8; row++; } } } /** * write_char: Draw a character on the current draw buffer. * Currently supports outlined characters and characters with * a width of up to 8 pixels. * * @param ch character to write * @param x x coordinate (left) * @param y y coordinate (top) * @param flags flags to write with (see gfx.h) * @param font font to use */ void write_char(char ch, unsigned int x, unsigned int y, int flags, int font) { int yy, addr_temp, row, row_temp, xshift; uint16_t and_mask, or_mask, level_bits; struct FontEntry font_info; char lookup = 0; fetch_font_info(ch, font, &font_info, &lookup); // Compute starting address (for x,y) of character. int addr = CALC_BUFF_ADDR(x, y); int wbit = CALC_BIT_IN_WORD(x); // If font only supports lowercase or uppercase, make the letter // lowercase or uppercase. if(font_info.flags & FONT_LOWERCASE_ONLY) ch = tolower(ch); if(font_info.flags & FONT_UPPERCASE_ONLY) ch = toupper(ch); fetch_font_info(ch, font, &font_info, &lookup); // How big is the character? We handle characters up to 8 pixels // wide for now. Support for large characters may be added in future. if(font_info.width <= 8) { // Ensure we don't overflow. if(x + wbit > GRAPHICS_WIDTH_REAL) return; // Load data pointer. row = lookup * font_info.height * 2; row_temp = row; addr_temp = addr; xshift = 16 - font_info.width; // We can write mask words easily. for(yy = y; yy < y + font_info.height; yy++) { write_word_misaligned_OR(draw_buffer_mask, font_info.data[row] << xshift, addr, wbit); addr += GRAPHICS_WIDTH_REAL / 8; row++; } // Level bits are more complicated. We need to set or clear // level bits, but only where the mask bit is set; otherwise, // we need to leave them alone. To do this, for each word, we // construct an AND mask and an OR mask, and apply each individually. row = row_temp; addr = addr_temp; for(yy = y; yy < y + font_info.height; yy++) { level_bits = font_info.data[row + font_info.height]; if(!(flags & FONT_INVERT)) // data is normally inverted level_bits = ~level_bits; or_mask = font_info.data[row] << xshift; and_mask = (font_info.data[row] & level_bits) << xshift; write_word_misaligned_OR(draw_buffer_level, or_mask, addr, wbit); // If we're not bold write the AND mask. //if(!(flags & FONT_BOLD)) write_word_misaligned_NAND(draw_buffer_level, and_mask, addr, wbit); addr += GRAPHICS_WIDTH_REAL / 8; row++; } } } /** * calc_text_dimensions: Calculate the dimensions of a * string in a given font. Supports new lines and * carriage returns in text. * * @param str string to calculate dimensions of * @param font_info font info structure * @param xs horizontal spacing * @param ys vertical spacing * @param dim return result: struct FontDimensions */ void calc_text_dimensions(char *str, struct FontEntry font, int xs, int ys, struct FontDimensions *dim) { int max_length = 0, line_length = 0, lines = 1; while(*str != 0) { line_length++; if(*str == '\n' || *str == '\r') { if(line_length > max_length) max_length = line_length; line_length = 0; lines++; } str++; } if(line_length > max_length) max_length = line_length; dim->width = max_length * (font.width + xs); dim->height = lines * (font.height + ys); } /** * write_string: Draw a string on the screen with certain * alignment parameters. * * @param str string to write * @param x x coordinate * @param y y coordinate * @param xs horizontal spacing * @param ys horizontal spacing * @param va vertical align * @param ha horizontal align * @param flags flags (passed to write_char) * @param font font */ void write_string(char *str, unsigned int x, unsigned int y, unsigned int xs, unsigned int ys, int va, int ha, int flags, int font) { int xx = 0, yy = 0, xx_original = 0; struct FontEntry font_info; struct FontDimensions dim; // Determine font info and dimensions/position of the string. fetch_font_info(0, font, &font_info, NULL); calc_text_dimensions(str, font_info, xs, ys, &dim); switch(va) { case TEXT_VA_TOP: yy = y; break; case TEXT_VA_MIDDLE: yy = y - (dim.height / 2); break; case TEXT_VA_BOTTOM: yy = y - dim.height; break; } switch(ha) { case TEXT_HA_LEFT: xx = x; break; case TEXT_HA_CENTER: xx = x - (dim.width / 2); break; case TEXT_HA_RIGHT: xx = x - dim.width; break; } // Then write each character. xx_original = xx; while(*str != 0) { if(*str == '\n' || *str == '\r') { yy += ys + font_info.height; xx = xx_original; } else { if(xx >= 0 && xx < GRAPHICS_WIDTH_REAL) { if(font_info.id<2) write_char(*str, xx, yy, flags, font); else write_char16(*str, xx, yy, font); } xx += font_info.width + xs; } str++; } } /** * write_string_formatted: Draw a string with format escape * sequences in it. Allows for complex text effects. * * @param str string to write (with format data) * @param x x coordinate * @param y y coordinate * @param xs default horizontal spacing * @param ys default horizontal spacing * @param va vertical align * @param ha horizontal align * @param flags flags (passed to write_char) */ void write_string_formatted(char *str, unsigned int x, unsigned int y, unsigned int xs, unsigned int ys, int va, int ha, int flags) { int fcode = 0, fptr = 0, font = 0, fwidth = 0, fheight = 0, xx = x, yy = y, max_xx = 0, max_height = 0; struct FontEntry font_info; // Retrieve sizes of the fonts: bigfont and smallfont. fetch_font_info(0, 0, &font_info, NULL); int smallfontwidth = font_info.width, smallfontheight = font_info.height; fetch_font_info(0, 1, &font_info, NULL); int bigfontwidth = font_info.width, bigfontheight = font_info.height; // 11 byte stack with last byte as NUL. char fstack[11]; fstack[10] = '\0'; // First, we need to parse the string for format characters and // work out a bounding box. We'll parse again for the final output. // This is a simple state machine parser. char *ostr = str; while(*str) { if(*str == '<' && fcode == 1) // escape code: skip fcode = 0; if(*str == '<' && fcode == 0) // begin format code? { fcode = 1; fptr = 0; } if(*str == '>' && fcode == 1) { fcode = 0; if(strcmp(fstack, "B")) // switch to "big" font (font #1) { fwidth = bigfontwidth; fheight = bigfontheight; } else if(strcmp(fstack, "S")) // switch to "small" font (font #0) { fwidth = smallfontwidth; fheight = smallfontheight; } if(fheight > max_height) max_height = fheight; // Skip over this byte. Go to next byte. str++; continue; } if(*str != '<' && *str != '>' && fcode == 1) { // Add to the format stack (up to 10 bytes.) if(fptr > 10) // stop adding bytes { str++; // go to next byte continue; } fstack[fptr++] = *str; fstack[fptr] = '\0'; // clear next byte (ready for next char or to terminate string.) } if(fcode == 0) { // Not a format code, raw text. xx += fwidth + xs; if(*str == '\n') { if(xx > max_xx) max_xx = xx; xx = x; yy += fheight + ys; } } str++; } // Reset string pointer. str = ostr; // Now we've parsed it and got a bbox, we need to work out the dimensions of it // and how to align it. int width = max_xx - x; int height = yy - y; int ay, ax; switch(va) { case TEXT_VA_TOP: ay = yy; break; case TEXT_VA_MIDDLE: ay = yy - (height / 2); break; case TEXT_VA_BOTTOM: ay = yy - height; break; } switch(ha) { case TEXT_HA_LEFT: ax = x; break; case TEXT_HA_CENTER: ax = x - (width / 2); break; case TEXT_HA_RIGHT: ax = x - width; break; } // So ax,ay is our new text origin. Parse the text format again and paint // the text on the display. fcode = 0; fptr = 0; font = 0; xx = 0; yy = 0; while(*str) { if(*str == '<' && fcode == 1) // escape code: skip fcode = 0; if(*str == '<' && fcode == 0) // begin format code? { fcode = 1; fptr = 0; } if(*str == '>' && fcode == 1) { fcode = 0; if(strcmp(fstack, "B")) // switch to "big" font (font #1) { fwidth = bigfontwidth; fheight = bigfontheight; font = 1; } else if(strcmp(fstack, "S")) // switch to "small" font (font #0) { fwidth = smallfontwidth; fheight = smallfontheight; font = 0; } // Skip over this byte. Go to next byte. str++; continue; } if(*str != '<' && *str != '>' && fcode == 1) { // Add to the format stack (up to 10 bytes.) if(fptr > 10) // stop adding bytes { str++; // go to next byte continue; } fstack[fptr++] = *str; fstack[fptr] = '\0'; // clear next byte (ready for next char or to terminate string.) } if(fcode == 0) { // Not a format code, raw text. So we draw it. // TODO - different font sizes. write_char(*str, xx, yy + (max_height - fheight), flags, font); xx += fwidth + xs; if(*str == '\n') { if(xx > max_xx) max_xx = xx; xx = x; yy += fheight + ys; } } str++; } } //SUPEROSD- // graphics void drawAttitude(uint16_t x, uint16_t y, int16_t pitch, int16_t roll, uint16_t size) { int16_t a = mySin(roll+360); int16_t b = myCos(roll+360); int16_t c = mySin(roll+90+360)*5/100; int16_t d = myCos(roll+90+360)*5/100; int16_t k; int16_t l; int16_t indi30x1=myCos(30)*(size/2+1) / 100; int16_t indi30y1=mySin(30)*(size/2+1) / 100; int16_t indi30x2=myCos(30)*(size/2+4) / 100; int16_t indi30y2=mySin(30)*(size/2+4) / 100; int16_t indi60x1=myCos(60)*(size/2+1) / 100; int16_t indi60y1=mySin(60)*(size/2+1) / 100; int16_t indi60x2=myCos(60)*(size/2+4) / 100; int16_t indi60y2=mySin(60)*(size/2+4) / 100; pitch=pitch%90; if(pitch>90) { pitch=pitch-90; } if(pitch<-90) { pitch=pitch+90; } a = (a * (size/2)) / 100; b = (b * (size/2)) / 100; if(roll<-90 || roll>90) pitch=pitch*-1; k = a*pitch/90; l = b*pitch/90; // scale //0 //drawLine((x)-1-(size/2+4), (y)-1, (x)-1 - (size/2+1), (y)-1); //drawLine((x)-1+(size/2+4), (y)-1, (x)-1 + (size/2+1), (y)-1); write_line_outlined((x)-1-(size/2+4), (y)-1, (x)-1 - (size/2+1), (y)-1,0,0,0,1); write_line_outlined((x)-1+(size/2+4), (y)-1, (x)-1 + (size/2+1), (y)-1,0,0,0,1); //30 //drawLine((x)-1+indi30x1, (y)-1-indi30y1, (x)-1 + indi30x2, (y)-1 - indi30y2); //drawLine((x)-1-indi30x1, (y)-1-indi30y1, (x)-1 - indi30x2, (y)-1 - indi30y2); write_line_outlined((x)-1+indi30x1, (y)-1-indi30y1, (x)-1 + indi30x2, (y)-1 - indi30y2,0,0,0,1); write_line_outlined((x)-1-indi30x1, (y)-1-indi30y1, (x)-1 - indi30x2, (y)-1 - indi30y2,0,0,0,1); //60 //drawLine((x)-1+indi60x1, (y)-1-indi60y1, (x)-1 + indi60x2, (y)-1 - indi60y2); //drawLine((x)-1-indi60x1, (y)-1-indi60y1, (x)-1 - indi60x2, (y)-1 - indi60y2); write_line_outlined((x)-1+indi60x1, (y)-1-indi60y1, (x)-1 + indi60x2, (y)-1 - indi60y2,0,0,0,1); write_line_outlined((x)-1-indi60x1, (y)-1-indi60y1, (x)-1 - indi60x2, (y)-1 - indi60y2,0,0,0,1); //90 //drawLine((x)-1, (y)-1-(size/2+4), (x)-1, (y)-1 - (size/2+1)); write_line_outlined((x)-1, (y)-1-(size/2+4), (x)-1, (y)-1 - (size/2+1),0,0,0,1); //roll //drawLine((x)-1 - b, (y)-1 + a, (x)-1 + b, (y)-1 - a); //Direction line write_line_outlined((x)-1 - b, (y)-1 + a, (x)-1 + b, (y)-1 - a,0,0,0,1); //Direction line //"wingtips" //drawLine((x)-1 - b, (y)-1 + a, (x)-1 - b + d, (y)-1 + a - c); //drawLine((x)-1 + b + d, (y)-1 - a - c, (x)-1 + b, (y)-1 - a); write_line_outlined((x)-1 - b, (y)-1 + a, (x)-1 - b + d, (y)-1 + a - c,0,0,0,1); write_line_outlined((x)-1 + b + d, (y)-1 - a - c, (x)-1 + b, (y)-1 - a,0,0,0,1); //pitch //drawLine((x)-1, (y)-1, (x)-1 - k, (y)-1 - l); write_line_outlined((x)-1, (y)-1, (x)-1 - k, (y)-1 - l,0,0,0,1); //drawCircle(x-1, y-1, 5); //write_circle_outlined(x-1, y-1, 5,0,0,0,1); //drawCircle(x-1, y-1, size/2+4); //write_circle_outlined(x-1, y-1, size/2+4,0,0,0,1); } void drawBattery(uint16_t x, uint16_t y, uint8_t battery, uint16_t size) { int i=0; int batteryLines; //top /*drawLine((x)-1+(size/2-size/4), (y)-1, (x)-1 + (size/2+size/4), (y)-1); drawLine((x)-1+(size/2-size/4), (y)-1+1, (x)-1 + (size/2+size/4), (y)-1+1); drawLine((x)-1, (y)-1+2, (x)-1 + size, (y)-1+2); //bottom drawLine((x)-1, (y)-1+size*3, (x)-1 + size, (y)-1+size*3); //left drawLine((x)-1, (y)-1+2, (x)-1, (y)-1+size*3); //right drawLine((x)-1+size, (y)-1+2, (x)-1+size, (y)-1+size*3);*/ write_rectangle_outlined((x)-1, (y)-1+2,size,size*3,0,1); write_vline_lm((x)-1+(size/2+size/4)+1,(y)-2,(y)-1+1,0,1); write_vline_lm((x)-1+(size/2-size/4)-1,(y)-2,(y)-1+1,0,1); write_hline_lm((x)-1+(size/2-size/4),(x)-1 + (size/2+size/4),(y)-2,0,1); write_hline_lm((x)-1+(size/2-size/4),(x)-1 + (size/2+size/4),(y)-1,1,1); write_hline_lm((x)-1+(size/2-size/4),(x)-1 + (size/2+size/4),(y)-1+1,1,1); batteryLines = battery*(size*3-2)/100; for(i=0;i= -1 && halign <= 1); // Compute the position of the elements. int majtick_start = 0, majtick_end = 0, mintick_start = 0, mintick_end = 0, boundtick_start = 0, boundtick_end = 0; if(halign == -1) { majtick_start = x; majtick_end = x + majtick_len; mintick_start = x; mintick_end = x + mintick_len; boundtick_start = x; boundtick_end = x + boundtick_len; } else if(halign == +1) { majtick_start = GRAPHICS_WIDTH_REAL - x - 1; majtick_end = GRAPHICS_WIDTH_REAL - x - majtick_len - 1; mintick_start = GRAPHICS_WIDTH_REAL - x - 1; mintick_end = GRAPHICS_WIDTH_REAL - x - mintick_len - 1; boundtick_start = GRAPHICS_WIDTH_REAL - x - 1; boundtick_end = GRAPHICS_WIDTH_REAL - x - boundtick_len - 1; } // Retrieve width of large font (font #0); from this calculate the x spacing. fetch_font_info(0, 0, &font_info, NULL); int arrow_len = (font_info.height / 2) + 1; // FIXME, font info being loaded correctly?? int text_x_spacing = arrow_len; int max_text_y = 0, text_length = 0; int small_font_char_width = font_info.width + 1; // +1 for horizontal spacing = 1 // For -(range / 2) to +(range / 2), draw the scale. int range_2 = range / 2, height_2 = height / 2; int calc_ys = 0, r = 0, rr = 0, rv = 0, ys = 0, style = 0; // Iterate through each step. for(r = -range_2; r <= +range_2; r++) { style = 0; rr = r + range_2 - v; // normalise range for modulo, subtract value to move ticker tape rv = -rr + range_2; // for number display if(flags & HUD_VSCALE_FLAG_NO_NEGATIVE) rr += majtick_step / 2; if(rr % majtick_step == 0) style = 1; // major tick else if(rr % mintick_step == 0) style = 2; // minor tick else style = 0; if(flags & HUD_VSCALE_FLAG_NO_NEGATIVE && rv < 0) continue; if(style) { // Calculate y position. ys = ((long int)(r * height) / (long int)range) + y; //sprintf(temp, "ys=%d", ys); //con_puts(temp, 0); // Depending on style, draw a minor or a major tick. if(style == 1) { write_hline_outlined(majtick_start, majtick_end, ys, 2, 2, 0, 1); memset(temp, ' ', 10); //my_itoa(rv, temp); sprintf(temp,"%d",rv); text_length = (strlen(temp) + 1) * small_font_char_width; // add 1 for margin if(text_length > max_text_y) max_text_y = text_length; if(halign == -1) write_string(temp, majtick_end + text_x_spacing, ys, 1, 0, TEXT_VA_MIDDLE, TEXT_HA_LEFT, 0, 1); else write_string(temp, majtick_end - text_x_spacing + 1, ys, 1, 0, TEXT_VA_MIDDLE, TEXT_HA_RIGHT, 0, 1); } else if(style == 2) write_hline_outlined(mintick_start, mintick_end, ys, 2, 2, 0, 1); } } // Generate the string for the value, as well as calculating its dimensions. memset(temp, ' ', 10); //my_itoa(v, temp); sprintf(temp,"%d",v); // TODO: add auto-sizing. calc_text_dimensions(temp, font_info, 1, 0, &dim); int xx = 0, i = 0; if(halign == -1) xx = majtick_end + text_x_spacing; else xx = majtick_end - text_x_spacing; // Draw an arrow from the number to the point. for(i = 0; i < arrow_len; i++) { if(halign == -1) { write_pixel_lm(xx - arrow_len + i, y - i - 1, 1, 1); write_pixel_lm(xx - arrow_len + i, y + i - 1, 1, 1); write_hline_lm(xx + dim.width - 1, xx - arrow_len + i + 1, y - i - 1, 0, 1); write_hline_lm(xx + dim.width - 1, xx - arrow_len + i + 1, y + i - 1, 0, 1); } else { write_pixel_lm(xx + arrow_len - i, y - i - 1, 1, 1); write_pixel_lm(xx + arrow_len - i, y + i - 1, 1, 1); write_hline_lm(xx - dim.width - 1, xx + arrow_len - i - 1, y - i - 1, 0, 1); write_hline_lm(xx - dim.width - 1, xx + arrow_len - i - 1, y + i - 1, 0, 1); } // FIXME // write_hline_lm(xx - dim.width - 1, xx + (arrow_len - i), y - i - 1, 1, 1); // write_hline_lm(xx - dim.width - 1, xx + (arrow_len - i), y + i - 1, 1, 1); } if(halign == -1) { write_hline_lm(xx, xx + dim.width - 1, y - arrow_len, 1, 1); write_hline_lm(xx, xx + dim.width - 1, y + arrow_len - 2, 1, 1); write_vline_lm(xx + dim.width - 1, y - arrow_len, y + arrow_len - 2, 1, 1); } else { write_hline_lm(xx, xx - dim.width - 1, y - arrow_len, 1, 1); write_hline_lm(xx, xx - dim.width - 1, y + arrow_len - 2, 1, 1); write_vline_lm(xx - dim.width - 1, y - arrow_len, y + arrow_len - 2, 1, 1); } // Draw the text. if(halign == -1) write_string(temp, xx, y, 1, 0, TEXT_VA_MIDDLE, TEXT_HA_LEFT, 0, 0); else write_string(temp, xx, y, 1, 0, TEXT_VA_MIDDLE, TEXT_HA_RIGHT, 0, 0); // Then, add a slow cut off on the edges, so the text doesn't sharply // disappear. We simply clear the areas above and below the ticker, and we // use little markers on the edges. if(halign == -1) { write_filled_rectangle_lm(majtick_end + text_x_spacing, y + (height / 2) - (font_info.height / 2), max_text_y - boundtick_start, font_info.height, 0, 0); write_filled_rectangle_lm(majtick_end + text_x_spacing, y - (height / 2) - (font_info.height / 2), max_text_y - boundtick_start, font_info.height, 0, 0); } else { write_filled_rectangle_lm(majtick_end - text_x_spacing - max_text_y, y + (height / 2) - (font_info.height / 2), max_text_y, font_info.height, 0, 0); write_filled_rectangle_lm(majtick_end - text_x_spacing - max_text_y, y - (height / 2) - (font_info.height / 2), max_text_y, font_info.height, 0, 0); } write_hline_outlined(boundtick_start, boundtick_end, y + (height / 2), 2, 2, 0, 1); write_hline_outlined(boundtick_start, boundtick_end, y - (height / 2), 2, 2, 0, 1); } /** * hud_draw_compass: Draw a compass. * * @param v value for the compass * @param range range about value to display (+/- range/2 each direction) * @param width length in pixels * @param x x displacement (typ. half display width) * @param y y displacement (typ. bottom of display) * @param mintick_step how often a minor tick is shown * @param majtick_step how often a major tick (heading "xx") is shown * @param mintick_len minor tick length * @param majtick_len major tick length * @param flags special flags (see hud.h.) */ void hud_draw_linear_compass(int v, int range, int width, int x, int y, int mintick_step, int majtick_step, int mintick_len, int majtick_len, int flags) { v %= 360; // wrap, just in case. struct FontEntry font_info; int majtick_start = 0, majtick_end = 0, mintick_start = 0, mintick_end = 0, textoffset = 0; char headingstr[4]; majtick_start = y; majtick_end = y - majtick_len; mintick_start = y; mintick_end = y - mintick_len; textoffset = 8; int r, style, rr, rv, xs; int range_2 = range / 2; for(r = -range_2; r <= +range_2; r++) { style = 0; rr = (v + r + 360) % 360; // normalise range for modulo, add to move compass track rv = -rr + range_2; // for number display if(rr % majtick_step == 0) style = 1; // major tick else if(rr % mintick_step == 0) style = 2; // minor tick if(style) { // Calculate x position. xs = ((long int)(r * width) / (long int)range) + x; // Draw it. if(style == 1) { write_vline_outlined(xs, majtick_start, majtick_end, 2, 2, 0, 1); // Draw heading above this tick. // If it's not one of north, south, east, west, draw the heading. // Otherwise, draw one of the identifiers. if(rr % 90 != 0) { // We abbreviate heading to two digits. This has the side effect of being easy to compute. headingstr[0] = '0' + (rr / 100); headingstr[1] = '0' + ((rr / 10) % 10); headingstr[2] = 0; headingstr[3] = 0; // nul to terminate } else { switch(rr) { case 0: headingstr[0] = 'N'; break; case 90: headingstr[0] = 'E'; break; case 180: headingstr[0] = 'S'; break; case 270: headingstr[0] = 'W'; break; } headingstr[1] = 0; headingstr[2] = 0; headingstr[3] = 0; } // +1 fudge...! write_string(headingstr, xs + 1, majtick_start + textoffset, 1, 0, TEXT_VA_MIDDLE, TEXT_HA_CENTER, 0, 1); } else if(style == 2) write_vline_outlined(xs, mintick_start, mintick_end, 2, 2, 0, 1); } } // Then, draw a rectangle with the present heading in it. // We want to cover up any other markers on the bottom. // First compute font size. fetch_font_info(0, 3, &font_info, NULL); int text_width = (font_info.width + 1) * 3; int rect_width = text_width + 2; write_filled_rectangle_lm(x - (rect_width / 2), majtick_start + 2, rect_width, font_info.height + 2, 0, 1); write_rectangle_outlined(x - (rect_width / 2), majtick_start + 2, rect_width, font_info.height + 2, 0, 1); headingstr[0] = '0' + (v / 100); headingstr[1] = '0' + ((v / 10) % 10); headingstr[2] = '0' + (v % 10); headingstr[3] = 0; write_string(headingstr, x + 1, majtick_start + textoffset+2, 0, 0, TEXT_VA_MIDDLE, TEXT_HA_CENTER, 1, 3); } // CORE draw routines end here void setAttitudeOsd(int16_t pitch, int16_t roll, int16_t yaw) { m_pitch=pitch; m_roll=roll; m_yaw=yaw; } void setGpsOsd(uint8_t status, int32_t lat, int32_t lon, float alt, float spd) { m_gpsStatus=status; m_gpsLat=lat; m_gpsLon=lon; m_gpsAlt=alt; m_gpsSpd=spd; } void introText(){ write_string("ver 0.2", APPLY_HDEADBAND((GRAPHICS_RIGHT/2)),APPLY_VDEADBAND(GRAPHICS_BOTTOM-10), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_CENTER, 0, 3); } void introGraphics() { /* logo */ int image=0; struct splashEntry splash_info; splash_info = splash[image]; copyimage(APPLY_HDEADBAND(GRAPHICS_RIGHT/2-(splash_info.width)/2), APPLY_VDEADBAND(GRAPHICS_BOTTOM/2-(splash_info.height)/2),image); /* frame */ drawBox(APPLY_HDEADBAND(0),APPLY_VDEADBAND(0),APPLY_HDEADBAND(GRAPHICS_RIGHT-8),APPLY_VDEADBAND(GRAPHICS_BOTTOM)); // Must mask out last half-word because SPI keeps clocking it out otherwise for (uint32_t i = 0; i < 8; i++) { write_vline( draw_buffer_level,GRAPHICS_WIDTH_REAL-i-1,0,GRAPHICS_HEIGHT_REAL-1,0); write_vline( draw_buffer_mask,GRAPHICS_WIDTH_REAL-i-1,0,GRAPHICS_HEIGHT_REAL-1,0); } } void calcHomeArrow(void) { HomeLocationData home; HomeLocationGet (&home); GPSPositionData gpsData; GPSPositionGet (&gpsData); /** http://www.movable-type.co.uk/scripts/latlong.html **/ float lat1, lat2, lon1, lon2, a, c, d, x, y, brng, u2g; float elevation; float gcsAlt=home.Altitude; // Home MSL altitude float uavAlt=gpsData.Altitude; // UAV MSL altitude float dAlt=uavAlt-gcsAlt; // Altitude difference // Convert to radians lat1 = DEG2RAD(home.Latitude)/10000000.0f; // Home lat lon1 = DEG2RAD(home.Longitude)/10000000.0f; // Home lon lat2 = DEG2RAD(gpsData.Latitude)/10000000.0f; // UAV lat lon2 = DEG2RAD(gpsData.Longitude)/10000000.0f; // UAV lon // Bearing /** var y = Math.sin(dLon) * Math.cos(lat2); var x = Math.cos(lat1)*Math.sin(lat2) - Math.sin(lat1)*Math.cos(lat2)*Math.cos(dLon); var brng = Math.atan2(y, x).toDeg(); **/ y = sinf(lon2-lon1) * cosf(lat2); x = cosf(lat1) * sinf(lat2) - sinf(lat1) * cosf(lat2) * cosf(lon2-lon1); brng = RAD2DEG(atan2f((sinf(lon2-lon1)*cosf(lat2)),(cosf(lat1)*sinf(lat2)-sinf(lat1)*cosf(lat2)*cosf(lon2-lon1)))); if(brng<0) brng+=360; // yaw corrected bearing, needs compass u2g=brng-180-m_yaw; if(u2g<0) u2g+=360; // Haversine formula for distance /** var R = 6371; // km var dLat = (lat2-lat1).toRad(); var dLon = (lon2-lon1).toRad(); var a = Math.sin(dLat/2) * Math.sin(dLat/2) + Math.cos(lat1.toRad()) * Math.cos(lat2.toRad()) * Math.sin(dLon/2) * Math.sin(dLon/2); var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)); var d = R * c; **/ a = sinf((lat2-lat1)/2) * sinf((lat2-lat1)/2) + cosf(lat1) * cosf(lat2) * sinf((lon2-lon1)/2) * sinf((lon2-lon1)/2); c = 2 * atan2f(sqrtf(a), sqrtf(1-a)); d = 6371 * 1000 * c; // Elevation v depends servo direction if(d!=0) elevation = 90-RAD2DEG(atanf(dAlt/d)); else elevation = 0; //! TODO: sanity check char temp[50]={0}; sprintf(temp,"hea:%d",(int)brng); write_string(temp, APPLY_HDEADBAND(GRAPHICS_RIGHT/2-30), APPLY_VDEADBAND(30), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); sprintf(temp,"ele:%d",(int)elevation); write_string(temp, APPLY_HDEADBAND(GRAPHICS_RIGHT/2-30), APPLY_VDEADBAND(30+10), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); sprintf(temp,"dis:%d",(int)d); write_string(temp, APPLY_HDEADBAND(GRAPHICS_RIGHT/2-30), APPLY_VDEADBAND(30+10+10), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); sprintf(temp,"u2g:%d",(int)u2g); write_string(temp, APPLY_HDEADBAND(GRAPHICS_RIGHT/2-30), APPLY_VDEADBAND(30+10+10+10), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); sprintf(temp,"%c%c",(int)(u2g/22.5f)*2+0x90,(int)(u2g/22.5f)*2+0x91); write_string(temp, APPLY_HDEADBAND(250), APPLY_VDEADBAND(40+10+10), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 3); } int lama=10; int lama_loc[2][30]; void lamas(void) { char temp[10]={0}; lama++; if(lama%10==0) { for(int z=0; z<30;z++) { lama_loc[0][z]=rand()%(GRAPHICS_RIGHT-10); lama_loc[1][z]=rand()%(GRAPHICS_BOTTOM-10); } } for(int z=0; z<30;z++) { sprintf(temp,"%c",0xe8+(lama_loc[0][z]%2)); write_string(temp,APPLY_HDEADBAND(lama_loc[0][z]),APPLY_VDEADBAND(lama_loc[1][z]), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); } } //main draw function void updateGraphics() { OsdSettingsData OsdSettings; OsdSettingsGet (&OsdSettings); AttitudeActualData attitude; AttitudeActualGet(&attitude); GPSPositionData gpsData; GPSPositionGet(&gpsData); HomeLocationData home; HomeLocationGet(&home); switch (OsdSettings.Screen) { case 0: // Dave simple { if(home.Set == HOMELOCATION_SET_FALSE) { char temps[20]={0}; sprintf(temps,"HOME NOT SET"); //printTextFB(x,y,temp); write_string(temps, APPLY_HDEADBAND(GRAPHICS_RIGHT/2), (GRAPHICS_BOTTOM/2), 0, 0, TEXT_VA_TOP, TEXT_HA_CENTER, 0, 3); } if(gpsData.Heading>180) setAttitudeOsd(0,0,(int16_t)(gpsData.Heading-360)); else setAttitudeOsd(0,0,(int16_t)(gpsData.Heading)); char temp[50]={0}; memset(temp, ' ', 40); sprintf(temp,"Lat:%11.7f",gpsData.Latitude/10000000.0f); write_string(temp, APPLY_HDEADBAND(20), APPLY_VDEADBAND(GRAPHICS_BOTTOM-30), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_LEFT, 0, 3); sprintf(temp,"Lon:%11.7f",gpsData.Longitude/10000000.0f); write_string(temp, APPLY_HDEADBAND(20), APPLY_VDEADBAND(GRAPHICS_BOTTOM-10), 0, 0, TEXT_VA_BOTTOM, TEXT_HA_LEFT, 0, 3); sprintf(temp,"Sat:%d",(int)gpsData.Satellites); write_string(temp, APPLY_HDEADBAND(GRAPHICS_RIGHT-40), APPLY_VDEADBAND(30), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2); /* Print ADC voltage FLIGHT*/ sprintf(temp,"V:%5.2fV",(PIOS_ADC_PinGet(2)*3*6.1f/4096)); write_string(temp, APPLY_HDEADBAND(20), APPLY_VDEADBAND(20), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 3); calcHomeArrow(); } break; case 1: { // GPS HACK if(gpsData.Heading>180) setAttitudeOsd(0,0,(int16_t)(gpsData.Heading-360)); else setAttitudeOsd(0,0,(int16_t)(gpsData.Heading)); /*drawBox(2,2,GRAPHICS_WIDTH_REAL-4,GRAPHICS_HEIGHT_REAL-4); write_filled_rectangle(draw_buffer_mask,0,0,GRAPHICS_WIDTH_REAL-2,GRAPHICS_HEIGHT_REAL-2,0); write_filled_rectangle(draw_buffer_mask,2,2,GRAPHICS_WIDTH_REAL-4-2,GRAPHICS_HEIGHT_REAL-4-2,2); write_filled_rectangle(draw_buffer_mask,3,3,GRAPHICS_WIDTH_REAL-4-1,GRAPHICS_HEIGHT_REAL-4-1,0);*/ //write_filled_rectangle(draw_buffer_mask,5,5,GRAPHICS_WIDTH_REAL-4-5,GRAPHICS_HEIGHT_REAL-4-5,0); //write_rectangle_outlined(10,10,GRAPHICS_WIDTH_REAL-20,GRAPHICS_HEIGHT_REAL-20,0,0); //drawLine(GRAPHICS_WIDTH_REAL-1, GRAPHICS_HEIGHT_REAL-1,(GRAPHICS_WIDTH_REAL/2)-1, GRAPHICS_HEIGHT_REAL-1 ); //drawCircle((GRAPHICS_WIDTH_REAL/2)-1, (GRAPHICS_HEIGHT_REAL/2)-1, (GRAPHICS_HEIGHT_REAL/2)-1); //drawCircle((GRAPHICS_SIZE/2)-1, (GRAPHICS_SIZE/2)-1, (GRAPHICS_SIZE/2)-2); //drawLine(0, (GRAPHICS_SIZE/2)-1, GRAPHICS_SIZE-1, (GRAPHICS_SIZE/2)-1); //drawLine((GRAPHICS_SIZE/2)-1, 0, (GRAPHICS_SIZE/2)-1, GRAPHICS_SIZE-1); angleA++; if(angleB<=-90) { sum=2; } if(angleB>=90) { sum=-2; } angleB+=sum; angleC+=2; calcHomeArrow(); /* Draw Attitude Indicator */ if(OsdSettings.Attitude == OSDSETTINGS_ATTITUDE_ENABLED) { drawAttitude(APPLY_HDEADBAND(OsdSettings.AttitudeSetup[OSDSETTINGS_ATTITUDESETUP_X]),APPLY_VDEADBAND(OsdSettings.AttitudeSetup[OSDSETTINGS_ATTITUDESETUP_Y]),attitude.Pitch,attitude.Roll,96); } //write_string("Hello OP-OSD", 60, 12, 1, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 0); //printText16( 60, 12,"Hello OP-OSD"); char temp[50]={0}; memset(temp, ' ', 40); sprintf(temp,"Lat:%11.7f",gpsData.Latitude/10000000.0f); write_string(temp, APPLY_HDEADBAND(5), APPLY_VDEADBAND(5), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); sprintf(temp,"Lon:%11.7f",gpsData.Longitude/10000000.0f); write_string(temp, APPLY_HDEADBAND(5), APPLY_VDEADBAND(15), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); sprintf(temp,"Fix:%d",(int)gpsData.Status); write_string(temp, APPLY_HDEADBAND(5), APPLY_VDEADBAND(25), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); sprintf(temp,"Sat:%d",(int)gpsData.Satellites); write_string(temp, APPLY_HDEADBAND(5), APPLY_VDEADBAND(35), 0, 0, TEXT_VA_TOP, TEXT_HA_LEFT, 0, 2); /* Print RTC time */ if(OsdSettings.Time == OSDSETTINGS_TIME_ENABLED) { printTime(APPLY_HDEADBAND(OsdSettings.TimeSetup[OSDSETTINGS_TIMESETUP_X]),APPLY_VDEADBAND(OsdSettings.TimeSetup[OSDSETTINGS_TIMESETUP_Y])); } /* Print Number of detected video Lines */ sprintf(temp,"Lines:%4d",PIOS_Video_GetOSDLines()); write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 2)),APPLY_VDEADBAND(5), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2); /* Print ADC voltage */ //sprintf(temp,"Rssi:%4dV",(int)(PIOS_ADC_PinGet(4)*3000/4096)); //write_string(temp, (GRAPHICS_WIDTH_REAL - 2),15, 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2); sprintf(temp,"Rssi:%4.2fV",(PIOS_ADC_PinGet(4)*3.0f/4096.0f)); write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 2)),APPLY_VDEADBAND(15), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2); /* Print CPU temperature */ sprintf(temp,"Temp:%4.2fC",(PIOS_ADC_PinGet(6)*0.29296875f-264)); write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 2)),APPLY_VDEADBAND(25), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2); /* Print ADC voltage FLIGHT*/ sprintf(temp,"FltV:%4.2fV",(PIOS_ADC_PinGet(2)*3.0f*6.1f/4096.0f)); write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 2)),APPLY_VDEADBAND(35), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2); /* Print ADC voltage VIDEO*/ sprintf(temp,"VidV:%4.2fV",(PIOS_ADC_PinGet(3)*3.0f*6.1f/4096.0f)); write_string(temp, APPLY_HDEADBAND((GRAPHICS_RIGHT - 2)),APPLY_VDEADBAND(45), 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2); /* Print ADC voltage RSSI */ //sprintf(temp,"Curr:%4dA",(int)(PIOS_ADC_PinGet(0)*300*61/4096)); //write_string(temp, (GRAPHICS_WIDTH_REAL - 2),60, 0, 0, TEXT_VA_TOP, TEXT_HA_RIGHT, 0, 2); /* Draw Battery Gauge */ m_batt++; uint8_t dir=3; if(m_batt==101) m_batt=0; if(m_pitch>0) { dir=0; m_alt+=m_pitch/2; } else if(m_pitch<0) { dir=1; m_alt+=m_pitch/2; } //if(OsdSettings.Battery == OSDSETTINGS_BATTERY_ENABLED) if(0) { drawBattery(APPLY_HDEADBAND(OsdSettings.BatterySetup[OSDSETTINGS_BATTERYSETUP_X]),APPLY_VDEADBAND(OsdSettings.BatterySetup[OSDSETTINGS_BATTERYSETUP_Y]),m_batt,16); } //drawAltitude(200,50,m_alt,dir); //drawArrow(96,GRAPHICS_HEIGHT_REAL/2,angleB,32); // Draw airspeed (left side.) if(OsdSettings.Speed == OSDSETTINGS_SPEED_ENABLED) { hud_draw_vertical_scale((int)m_gpsSpd, 100, -1, APPLY_HDEADBAND(OsdSettings.SpeedSetup[OSDSETTINGS_SPEEDSETUP_X]), APPLY_VDEADBAND(OsdSettings.SpeedSetup[OSDSETTINGS_SPEEDSETUP_Y]), 100, 10, 20, 7, 12, 15, 1000, HUD_VSCALE_FLAG_NO_NEGATIVE); } // Draw altimeter (right side.) if(OsdSettings.Altitude == OSDSETTINGS_ALTITUDE_ENABLED) { hud_draw_vertical_scale((int)m_gpsAlt, 200, +1, APPLY_HDEADBAND(OsdSettings.AltitudeSetup[OSDSETTINGS_ALTITUDESETUP_X]), APPLY_VDEADBAND(OsdSettings.AltitudeSetup[OSDSETTINGS_ALTITUDESETUP_Y]), 100, 20, 100, 7, 12, 15, 500, 0); } // Draw compass. if(OsdSettings.Heading == OSDSETTINGS_HEADING_ENABLED) { if(m_yaw<0) { hud_draw_linear_compass(360+m_yaw, 150, 120, APPLY_HDEADBAND(OsdSettings.HeadingSetup[OSDSETTINGS_HEADINGSETUP_X]), APPLY_VDEADBAND(OsdSettings.HeadingSetup[OSDSETTINGS_HEADINGSETUP_Y]), 15, 30, 7, 12, 0); } else { hud_draw_linear_compass(m_yaw, 150, 120, APPLY_HDEADBAND(OsdSettings.HeadingSetup[OSDSETTINGS_HEADINGSETUP_X]), APPLY_VDEADBAND(OsdSettings.HeadingSetup[OSDSETTINGS_HEADINGSETUP_Y]), 15, 30, 7, 12, 0); } } } break; case 3: { lamas(); } break; default: write_vline_lm( APPLY_HDEADBAND(GRAPHICS_RIGHT/2),APPLY_VDEADBAND(0),APPLY_VDEADBAND(GRAPHICS_BOTTOM),1,1); write_hline_lm( APPLY_HDEADBAND(0),APPLY_HDEADBAND(GRAPHICS_RIGHT),APPLY_VDEADBAND(GRAPHICS_BOTTOM/2),1,1); break; } // Must mask out last half-word because SPI keeps clocking it out otherwise for (uint32_t i = 0; i < 8; i++) { write_vline( draw_buffer_level,GRAPHICS_WIDTH_REAL-i-1,0,GRAPHICS_HEIGHT_REAL-1,0); write_vline( draw_buffer_mask,GRAPHICS_WIDTH_REAL-i-1,0,GRAPHICS_HEIGHT_REAL-1,0); } } void updateOnceEveryFrame() { clearGraphics(); updateGraphics(); } // **************** /** * Initialise the gps module * \return -1 if initialisation failed * \return 0 on success */ int32_t osdgenStart(void) { // Start gps task vSemaphoreCreateBinary( osdSemaphore); xTaskCreate(osdgenTask, (signed char *)"OSDGEN", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &osdgenTaskHandle); TaskMonitorAdd(TASKINFO_RUNNING_GPS, osdgenTaskHandle); return 0; } /** * Initialise the osd module * \return -1 if initialisation failed * \return 0 on success */ int32_t osdgenInitialize(void) { AttitudeActualInitialize(); #ifdef PIOS_INCLUDE_GPS GPSPositionInitialize(); #if !defined(PIOS_GPS_MINIMAL) GPSTimeInitialize(); GPSSatellitesInitialize(); #endif #ifdef PIOS_GPS_SETS_HOMELOCATION HomeLocationInitialize(); #endif #endif OsdSettingsInitialize(); return 0; } MODULE_INITCALL(osdgenInitialize, osdgenStart) // **************** /** * Main osd task. It does not return. */ static void osdgenTask(void *parameters) { portTickType lastSysTime; // Loop forever lastSysTime = xTaskGetTickCount(); // intro for(int i=0; i<125; i++) { if( xSemaphoreTake( osdSemaphore, LONG_TIME ) == pdTRUE ) { clearGraphics(); introGraphics(); } } for(int i=0; i<125; i++) { if( xSemaphoreTake( osdSemaphore, LONG_TIME ) == pdTRUE ) { clearGraphics(); introGraphics(); introText(); } } while (1) { if( xSemaphoreTake( osdSemaphore, LONG_TIME ) == pdTRUE ) { updateOnceEveryFrame(); } //xSemaphoreTake(osdSemaphore, portMAX_DELAY); //vTaskDelayUntil(&lastSysTime, 10 / portTICK_RATE_MS); } } // **************** /** * @} * @} */