/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup CameraStab Camera Stabilization Module * @brief Camera stabilization module * Updates accessory outputs with values appropriate for camera stabilization * @{ * * @file camerastab.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Stabilize camera against the roll pitch and yaw of aircraft * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /** * Output object: Accessory * * This module will periodically calculate the output values for stabilizing the camera * * UAVObjects are automatically generated by the UAVObjectGenerator from * the object definition XML file. * * Modules have no API, all communication to other modules is done through UAVObjects. * However modules may use the API exposed by shared libraries. * See the OpenPilot wiki for more details. * http://www.openpilot.org/OpenPilot_Application_Architecture * */ #include "openpilot.h" #include "accessorydesired.h" #include "attitudestate.h" #include "mixersettings.h" #include "actuatorcommand.h" #include "camerastabsettings.h" #include "cameradesired.h" #include "hwsettings.h" // // Configuration // #define SAMPLE_PERIOD_MS 10 // Private types // Private variables static bool gimbalOutputEnabled = false; static struct CameraStab_data { portTickType lastSysTime; float inputs[CAMERASTABSETTINGS_INPUT_NUMELEM]; #ifdef USE_GIMBAL_LPF float attitudeFiltered[CAMERASTABSETTINGS_INPUT_NUMELEM]; #endif #ifdef USE_GIMBAL_FF float ffLastAttitude[CAMERASTABSETTINGS_INPUT_NUMELEM]; float ffLastAttitudeFiltered[CAMERASTABSETTINGS_INPUT_NUMELEM]; float ffFilterAccumulator[CAMERASTABSETTINGS_INPUT_NUMELEM]; #endif } *csd; // Private functions static void attitudeUpdated(UAVObjEvent *ev); #ifdef USE_GIMBAL_FF static void applyFeedForward(uint8_t index, float dT, float *attitude, CameraStabSettingsData *cameraStab); #endif // this structure is equivalent to the UAVObjects for one mixer. typedef struct { uint8_t type; int8_t matrix[5]; } __attribute__((packed)) Mixer_t; /** * Initialise the module, called on startup * \returns 0 on success or -1 if initialisation failed */ int32_t CameraStabInitialize(void) { bool cameraStabEnabled; HwSettingsOptionalModulesData optionalModules; HwSettingsOptionalModulesGet(&optionalModules); #ifdef MODULE_CAMERASTAB_BUILTIN cameraStabEnabled = true; optionalModules.CameraStab = HWSETTINGS_OPTIONALMODULES_ENABLED; HwSettingsOptionalModulesSet(&optionalModules); #else if (optionalModules.CameraStab == HWSETTINGS_OPTIONALMODULES_ENABLED) { cameraStabEnabled = true; } else { cameraStabEnabled = false; } #endif if (cameraStabEnabled) { // allocate and initialize the static data storage only if module is enabled csd = (struct CameraStab_data *)pios_malloc(sizeof(struct CameraStab_data)); if (!csd) { return -1; } // initialize camera state variables memset(csd, 0, sizeof(struct CameraStab_data)); csd->lastSysTime = xTaskGetTickCount(); AttitudeStateInitialize(); CameraDesiredInitialize(); UAVObjEvent ev = { .obj = AttitudeStateHandle(), .instId = 0, .event = 0, .lowPriority = false, }; EventPeriodicCallbackCreate(&ev, attitudeUpdated, SAMPLE_PERIOD_MS / portTICK_RATE_MS); return 0; } return -1; } /* stub: module has no module thread */ int32_t CameraStabStart(void) { return 0; } MODULE_INITCALL(CameraStabInitialize, CameraStabStart); static void attitudeUpdated(UAVObjEvent *ev) { if (ev->obj != AttitudeStateHandle()) { return; } if (!gimbalOutputEnabled) { MixerSettingsData mixerSettings; MixerSettingsGet(&mixerSettings); Mixer_t *mixers = (Mixer_t *)&mixerSettings.Mixer1Type; for (int ct = 0; ct < ACTUATORCOMMAND_CHANNEL_NUMELEM; ct++) { uint8_t mixer_type = mixers[ct].type; if ((mixer_type >= MIXERSETTINGS_MIXER1TYPE_CAMERAROLLORSERVO1) && (mixer_type <= MIXERSETTINGS_MIXER1TYPE_CAMERAYAW)) { gimbalOutputEnabled = true; } } return; } AccessoryDesiredData accessory; CameraStabSettingsData cameraStab; CameraStabSettingsGet(&cameraStab); // check how long since last update, time delta between calls in ms portTickType thisSysTime = xTaskGetTickCount(); float dT_millis = (thisSysTime > csd->lastSysTime) ? (float)((thisSysTime - csd->lastSysTime) * portTICK_RATE_MS) : (float)SAMPLE_PERIOD_MS; csd->lastSysTime = thisSysTime; // storage for elevon roll component before the pitch component has been generated // we are guaranteed that the iteration order of i is roll pitch yaw // that guarnteees this won't be used uninited, but the compiler doesn't know that // so we init it or turn the warning/error off for each compiler float elevon_roll = 0.0f; // process axes for (uint8_t i = 0; i < CAMERASTABSETTINGS_INPUT_NUMELEM; i++) { // read and process control input if (CameraStabSettingsInputToArray(cameraStab.Input)[i] != CAMERASTABSETTINGS_INPUT_NONE) { if (AccessoryDesiredInstGet(CameraStabSettingsInputToArray(cameraStab.Input)[i] - CAMERASTABSETTINGS_INPUT_ACCESSORY0, &accessory) == 0) { float input_rate; switch (CameraStabSettingsStabilizationModeToArray(cameraStab.StabilizationMode)[i]) { case CAMERASTABSETTINGS_STABILIZATIONMODE_ATTITUDE: csd->inputs[i] = accessory.AccessoryVal * CameraStabSettingsInputRangeToArray(cameraStab.InputRange)[i]; break; case CAMERASTABSETTINGS_STABILIZATIONMODE_AXISLOCK: input_rate = accessory.AccessoryVal * CameraStabSettingsInputRateToArray(cameraStab.InputRate)[i]; if (fabsf(input_rate) > cameraStab.MaxAxisLockRate) { csd->inputs[i] = boundf(csd->inputs[i] + input_rate * 0.001f * dT_millis, -CameraStabSettingsInputRangeToArray(cameraStab.InputRange)[i], CameraStabSettingsInputRangeToArray(cameraStab.InputRange)[i]); } break; default: PIOS_Assert(0); } } } // calculate servo output float attitude; switch (i) { case CAMERASTABSETTINGS_INPUT_ROLL: AttitudeStateRollGet(&attitude); break; case CAMERASTABSETTINGS_INPUT_PITCH: AttitudeStatePitchGet(&attitude); break; case CAMERASTABSETTINGS_INPUT_YAW: AttitudeStateYawGet(&attitude); break; default: PIOS_Assert(0); } #ifdef USE_GIMBAL_LPF if (CameraStabSettingsResponseTimeToArray(cameraStab.ResponseTime)[i]) { float rt = (float)CameraStabSettingsResponseTimeToArray(cameraStab.ResponseTime)[i]; attitude = csd->attitudeFiltered[i] = ((rt * csd->attitudeFiltered[i]) + (dT_millis * attitude)) / (rt + dT_millis); } #endif #ifdef USE_GIMBAL_FF if (CameraStabSettingsFeedForwardToArray(cameraStab.FeedForward)[i]) { applyFeedForward(i, dT_millis, &attitude, &cameraStab); } #endif // bounding for elevon mixing occurs on the unmixed output // to limit the range of the mixed output you must limit the range // of both the unmixed pitch and unmixed roll float output = boundf((attitude + csd->inputs[i]) / CameraStabSettingsOutputRangeToArray(cameraStab.OutputRange)[i], -1.0f, 1.0f); // set output channels switch (i) { case CAMERASTABSETTINGS_INPUT_ROLL: // we are guaranteed that the iteration order of i is roll pitch yaw // for elevon mixing we simply grab the value for later use if (cameraStab.GimbalType == CAMERASTABSETTINGS_GIMBALTYPE_ROLLPITCHMIXED) { elevon_roll = output; } else { CameraDesiredRollOrServo1Set(&output); } break; case CAMERASTABSETTINGS_INPUT_PITCH: // we are guaranteed that the iteration order of i is roll pitch yaw // for elevon mixing we use the value we previously grabbed and set both s1 and s2 if (cameraStab.GimbalType == CAMERASTABSETTINGS_GIMBALTYPE_ROLLPITCHMIXED) { float elevon_pitch = output; // elevon reversing works like this: // first use the normal reversing facilities to get servo 1 roll working in the correct direction // then use the normal reversing facilities to get servo 2 roll working in the correct direction // then use these new reversing switches to reverse servo 1 and/or 2 pitch as needed // if servo 1 pitch is reversed if (cameraStab.Servo1PitchReverse == CAMERASTABSETTINGS_SERVO1PITCHREVERSE_TRUE) { // use (reversed pitch) + roll output = ((1.0f - elevon_pitch) + elevon_roll) / 2.0f; } else { // use pitch + roll output = (elevon_pitch + elevon_roll) / 2.0f; } CameraDesiredRollOrServo1Set(&output); // if servo 2 pitch is reversed if (cameraStab.Servo2PitchReverse == CAMERASTABSETTINGS_SERVO2PITCHREVERSE_TRUE) { // use (reversed pitch) - roll output = ((1.0f - elevon_pitch) - elevon_roll) / 2.0f; } else { // use pitch - roll output = (elevon_pitch - elevon_roll) / 2.0f; } CameraDesiredPitchOrServo2Set(&output); } else { CameraDesiredPitchOrServo2Set(&output); } break; case CAMERASTABSETTINGS_INPUT_YAW: CameraDesiredYawSet(&output); break; default: PIOS_Assert(0); } } } #ifdef USE_GIMBAL_FF void applyFeedForward(uint8_t index, float dT_millis, float *attitude, CameraStabSettingsData *cameraStab) { // compensate high feed forward values depending on gimbal type float gimbalTypeCorrection = 1.0f; switch (cameraStab->GimbalType) { case CAMERASTABSETTINGS_GIMBALTYPE_GENERIC: case CAMERASTABSETTINGS_GIMBALTYPE_ROLLPITCHMIXED: // no correction break; case CAMERASTABSETTINGS_GIMBALTYPE_YAWROLLPITCH: if (index == CAMERASTABSETTINGS_INPUT_ROLL) { float pitch; AttitudeStatePitchGet(&pitch); gimbalTypeCorrection = (cameraStab->OutputRange.Pitch - fabsf(pitch)) / cameraStab->OutputRange.Pitch; } break; case CAMERASTABSETTINGS_GIMBALTYPE_YAWPITCHROLL: if (index == CAMERASTABSETTINGS_INPUT_PITCH) { float roll; AttitudeStateRollGet(&roll); gimbalTypeCorrection = (cameraStab->OutputRange.Roll - fabsf(roll)) / cameraStab->OutputRange.Roll; } break; default: PIOS_Assert(0); } // apply feed forward float accumulator = csd->ffFilterAccumulator[index]; accumulator += (*attitude - csd->ffLastAttitude[index]) * (float)CameraStabSettingsFeedForwardToArray(cameraStab->FeedForward)[index] * gimbalTypeCorrection; csd->ffLastAttitude[index] = *attitude; *attitude += accumulator; float filter = (float)((accumulator > 0.0f) ? CameraStabSettingsAccelTimeToArray(cameraStab->AccelTime)[index] : CameraStabSettingsDecelTimeToArray(cameraStab->DecelTime)[index]) / dT_millis; if (filter < 1.0f) { filter = 1.0f; } accumulator -= accumulator / filter; csd->ffFilterAccumulator[index] = accumulator; *attitude += accumulator; // apply acceleration limit float delta = *attitude - csd->ffLastAttitudeFiltered[index]; float maxDelta = (float)cameraStab->MaxAccel * 0.001f * dT_millis; if (fabsf(delta) > maxDelta) { // we are accelerating too hard *attitude = csd->ffLastAttitudeFiltered[index] + ((delta > 0.0f) ? maxDelta : -maxDelta); } csd->ffLastAttitudeFiltered[index] = *attitude; } #endif // USE_GIMBAL_FF /** * @} */ /** * @} */