/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup StabilizationModule Stabilization Module * @brief Stabilization PID loops in an airframe type independent manner * @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the * PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeActual "Attitude Actual" * @{ * * @file stabilization.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Attitude stabilization module. * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "openpilot.h" #include "stabilization.h" #include "stabilizationsettings.h" #include "actuatordesired.h" #include "ratedesired.h" #include "stabilizationdesired.h" #include "attitudeactual.h" #include "attituderaw.h" #include "flightstatus.h" #include "systemsettings.h" #include "ahrssettings.h" #include "manualcontrol.h" // Just to get a macro #include "CoordinateConversions.h" // Private constants #define MAX_QUEUE_SIZE 1 #if defined(PIOS_STABILIZATION_STACK_SIZE) #define STACK_SIZE_BYTES PIOS_STABILIZATION_STACK_SIZE #else #define STACK_SIZE_BYTES 724 #endif #define TASK_PRIORITY (tskIDLE_PRIORITY+4) #define FAILSAFE_TIMEOUT_MS 30 enum {PID_RATE_ROLL, PID_RATE_PITCH, PID_RATE_YAW, PID_ROLL, PID_PITCH, PID_YAW, PID_MAX}; enum {ROLL,PITCH,YAW,MAX_AXES}; // Private types typedef struct { float p; float i; float d; float iLim; float iAccumulator; float lastErr; } pid_type; // Private variables static xTaskHandle taskHandle; static StabilizationSettingsData settings; static xQueueHandle queue; float dT = 1; pid_type pids[PID_MAX]; // Private functions static void stabilizationTask(void* parameters); static float ApplyPid(pid_type * pid, const float err); static float bound(float val); static void ZeroPids(void); static void SettingsUpdatedCb(UAVObjEvent * ev); /** * Module initialization */ int32_t StabilizationStart() { // Initialize variables // Start main task xTaskCreate(stabilizationTask, (signed char*)"Stabilization", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &taskHandle); TaskMonitorAdd(TASKINFO_RUNNING_STABILIZATION, taskHandle); PIOS_WDG_RegisterFlag(PIOS_WDG_STABILIZATION); return 0; } /** * Module initialization */ int32_t StabilizationInitialize() { // Initialize variables // Create object queue queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent)); // Listen for updates. // AttitudeActualConnectQueue(queue); AttitudeRawConnectQueue(queue); StabilizationSettingsConnectCallback(SettingsUpdatedCb); SettingsUpdatedCb(StabilizationSettingsHandle()); // Start main task return 0; } module_initcall(StabilizationInitialize, 0, StabilizationStart, 0, MODULE_EXEC_NOORDER_FLAG); /** * Module task */ static void stabilizationTask(void* parameters) { portTickType lastSysTime; portTickType thisSysTime; UAVObjEvent ev; ActuatorDesiredData actuatorDesired; StabilizationDesiredData stabDesired; RateDesiredData rateDesired; AttitudeActualData attitudeActual; AttitudeRawData attitudeRaw; SystemSettingsData systemSettings; FlightStatusData flightStatus; SettingsUpdatedCb((UAVObjEvent *) NULL); // Main task loop lastSysTime = xTaskGetTickCount(); ZeroPids(); while(1) { PIOS_WDG_UpdateFlag(PIOS_WDG_STABILIZATION); // Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe if ( xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE ) { AlarmsSet(SYSTEMALARMS_ALARM_STABILIZATION,SYSTEMALARMS_ALARM_WARNING); continue; } // Check how long since last update thisSysTime = xTaskGetTickCount(); if(thisSysTime > lastSysTime) // reuse dt in case of wraparound dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f; lastSysTime = thisSysTime; FlightStatusGet(&flightStatus); StabilizationDesiredGet(&stabDesired); AttitudeActualGet(&attitudeActual); AttitudeRawGet(&attitudeRaw); RateDesiredGet(&rateDesired); SystemSettingsGet(&systemSettings); #if defined(PIOS_QUATERNION_STABILIZATION) // Quaternion calculation of error in each axis. Uses more memory. float rpy_desired[3]; float q_desired[4]; float q_error[4]; float local_error[3]; // Essentially zero errors for anything in rate or none if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_ROLL] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) rpy_desired[0] = stabDesired.Roll; else rpy_desired[0] = attitudeActual.Roll; if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_PITCH] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) rpy_desired[1] = stabDesired.Pitch; else rpy_desired[1] = attitudeActual.Pitch; if(stabDesired.StabilizationMode[STABILIZATIONDESIRED_STABILIZATIONMODE_YAW] == STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE) rpy_desired[2] = stabDesired.Yaw; else rpy_desired[2] = attitudeActual.Yaw; RPY2Quaternion(rpy_desired, q_desired); quat_inverse(q_desired); quat_mult(q_desired, &attitudeActual.q1, q_error); quat_inverse(q_error); Quaternion2RPY(q_error, local_error); #else // Simpler algorithm for CC, less memory float local_error[3] = {stabDesired.Roll - attitudeActual.Roll, stabDesired.Pitch - attitudeActual.Pitch, stabDesired.Yaw - attitudeActual.Yaw}; local_error[2] = fmod(local_error[2] + 180, 360) - 180; #endif float *attitudeDesiredAxis = &stabDesired.Roll; float *actuatorDesiredAxis = &actuatorDesired.Roll; float *rateDesiredAxis = &rateDesired.Roll; //Calculate desired rate for(int8_t ct=0; ct< MAX_AXES; ct++) { switch(stabDesired.StabilizationMode[ct]) { case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE: rateDesiredAxis[ct] = attitudeDesiredAxis[ct]; break; case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE: rateDesiredAxis[ct] = ApplyPid(&pids[PID_ROLL + ct], local_error[ct]); break; } } uint8_t shouldUpdate = 1; RateDesiredSet(&rateDesired); ActuatorDesiredGet(&actuatorDesired); //Calculate desired command for(int8_t ct=0; ct< MAX_AXES; ct++) { if(fabs(rateDesiredAxis[ct]) > settings.MaximumRate[ct]) { if(rateDesiredAxis[ct] > 0) { rateDesiredAxis[ct] = settings.MaximumRate[ct]; }else { rateDesiredAxis[ct] = -settings.MaximumRate[ct]; } } switch(stabDesired.StabilizationMode[ct]) { case STABILIZATIONDESIRED_STABILIZATIONMODE_RATE: case STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE: { float command = ApplyPid(&pids[PID_RATE_ROLL + ct], rateDesiredAxis[ct]-attitudeRaw.gyros[ct]); actuatorDesiredAxis[ct] = bound(command); break; } case STABILIZATIONDESIRED_STABILIZATIONMODE_NONE: switch (ct) { case ROLL: actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]); shouldUpdate = 1; break; case PITCH: actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]); shouldUpdate = 1; break; case YAW: actuatorDesiredAxis[ct] = bound(attitudeDesiredAxis[ct]); shouldUpdate = 1; break; } break; } } // Save dT actuatorDesired.UpdateTime = dT * 1000; if(PARSE_FLIGHT_MODE(flightStatus.FlightMode) == FLIGHTMODE_MANUAL) shouldUpdate = 0; if(shouldUpdate) { actuatorDesired.Throttle = stabDesired.Throttle; if(dT > 15) actuatorDesired.NumLongUpdates++; ActuatorDesiredSet(&actuatorDesired); } if(flightStatus.Armed != FLIGHTSTATUS_ARMED_ARMED || !shouldUpdate || (stabDesired.Throttle < 0)) { ZeroPids(); } // Clear alarms AlarmsClear(SYSTEMALARMS_ALARM_STABILIZATION); } } float ApplyPid(pid_type * pid, const float err) { float diff = (err - pid->lastErr); pid->lastErr = err; pid->iAccumulator += err * pid->i * dT; if(fabs(pid->iAccumulator) > pid->iLim) { if(pid->iAccumulator >0) { pid->iAccumulator = pid->iLim; } else { pid->iAccumulator = -pid->iLim; } } return ((err * pid->p) + pid->iAccumulator + (diff * pid->d / dT)); } static void ZeroPids(void) { for(int8_t ct = 0; ct < PID_MAX; ct++) { pids[ct].iAccumulator = 0; pids[ct].lastErr = 0; } } /** * Bound input value between limits */ static float bound(float val) { if(val < -1) { val = -1; } else if(val > 1) { val = 1; } return val; } static void SettingsUpdatedCb(UAVObjEvent * ev) { memset(pids,0,sizeof (pid_type) * PID_MAX); StabilizationSettingsGet(&settings); float * data = settings.RollRatePI; for(int8_t pid=0; pid < PID_MAX; pid++) { pids[pid].p = *data++; pids[pid].i = *data++; pids[pid].iLim = *data++; } } /** * @} * @} */