/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_ADC ADC Functions * @brief STM32 ADC PIOS interface * @{ * * @file pios_adc.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief Analog to Digital converstion routines * @see The GNU Public License (GPL) Version 3 *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "pios.h" #ifdef PIOS_INCLUDE_ADC #include // Private types enum pios_adc_dev_magic { PIOS_ADC_DEV_MAGIC = 0x58375124, }; struct pios_adc_dev { const struct pios_adc_cfg *cfg; ADCCallback callback_function; #if defined(PIOS_INCLUDE_FREERTOS) xQueueHandle data_queue; #endif volatile int16_t *valid_data_buffer; volatile uint8_t adc_oversample; uint8_t dma_block_size; uint16_t dma_half_buffer_size; #if defined(PIOS_INCLUDE_ADC) int16_t fir_coeffs[PIOS_ADC_MAX_SAMPLES + 1] __attribute__((aligned(4))); volatile int16_t raw_data_buffer[PIOS_ADC_MAX_SAMPLES] __attribute__((aligned(4))); // Double buffer that DMA just used float downsampled_buffer[PIOS_ADC_NUM_CHANNELS] __attribute__((aligned(4))); uint8_t downsampleStep; // allows to reduce the downsampling buffer by operating in two steps #endif enum pios_adc_dev_magic magic; }; float PIOS_ADC_PinGetVolt(uint32_t pin) { return ((float)PIOS_ADC_PinGet(pin)) * PIOS_ADC_VOLTAGE_SCALE; } #if defined(PIOS_INCLUDE_FREERTOS) struct pios_adc_dev *pios_adc_dev; #endif // Private functions void PIOS_ADC_downsample_data(); static struct pios_adc_dev *PIOS_ADC_Allocate(); static bool PIOS_ADC_validate(struct pios_adc_dev *); /* Local Variables */ static GPIO_TypeDef *ADC_GPIO_PORT[PIOS_ADC_NUM_PINS] = PIOS_ADC_PORTS; static const uint32_t ADC_GPIO_PIN[PIOS_ADC_NUM_PINS] = PIOS_ADC_PINS; static const uint32_t ADC_CHANNEL[PIOS_ADC_NUM_PINS] = PIOS_ADC_CHANNELS; static ADC_TypeDef *ADC_MAPPING[PIOS_ADC_NUM_PINS] = PIOS_ADC_MAPPING; static const uint32_t ADC_CHANNEL_MAPPING[PIOS_ADC_NUM_PINS] = PIOS_ADC_CHANNEL_MAPPING; static bool PIOS_ADC_validate(struct pios_adc_dev *dev) { if (dev == NULL) { return false; } return dev->magic == PIOS_ADC_DEV_MAGIC; } #if defined(PIOS_INCLUDE_FREERTOS) static struct pios_adc_dev *PIOS_ADC_Allocate() { struct pios_adc_dev *adc_dev; adc_dev = (struct pios_adc_dev *)pvPortMalloc(sizeof(*adc_dev)); if (!adc_dev) { return NULL; } adc_dev->magic = PIOS_ADC_DEV_MAGIC; return adc_dev; } #else #error Not implemented #endif /** * @brief Initialise the ADC Peripheral, configure to run at the max oversampling */ int32_t PIOS_ADC_Init(const struct pios_adc_cfg *cfg) { pios_adc_dev = PIOS_ADC_Allocate(); if (pios_adc_dev == NULL) { return -1; } pios_adc_dev->cfg = cfg; pios_adc_dev->callback_function = NULL; #if defined(PIOS_INCLUDE_FREERTOS) pios_adc_dev->data_queue = NULL; #endif /* Setup analog pins */ GPIO_InitTypeDef GPIO_InitStructure; GPIO_StructInit(&GPIO_InitStructure); GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; /* Enable each ADC pin in the array */ for (int32_t i = 0; i < PIOS_ADC_NUM_PINS; i++) { GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN[i]; GPIO_Init(ADC_GPIO_PORT[i], &GPIO_InitStructure); } PIOS_ADC_Config(PIOS_ADC_MAX_OVERSAMPLING); return 0; } /** * @brief Configure the ADC to run at a fixed oversampling * @param[in] oversampling the amount of oversampling to run at */ void PIOS_ADC_Config(uint32_t oversampling) { pios_adc_dev->adc_oversample = (oversampling > PIOS_ADC_MAX_OVERSAMPLING) ? PIOS_ADC_MAX_OVERSAMPLING : oversampling; ADC_DeInit(ADC1); ADC_DeInit(ADC2); /* Disable interrupts */ DMA_ITConfig(pios_adc_dev->cfg->dma.rx.channel, pios_adc_dev->cfg->dma.irq.flags, DISABLE); /* Enable ADC clocks */ PIOS_ADC_CLOCK_FUNCTION; /* Map channels to conversion slots depending on the channel selection mask */ for (int32_t i = 0; i < PIOS_ADC_NUM_PINS; i++) { ADC_RegularChannelConfig(ADC_MAPPING[i], ADC_CHANNEL[i], ADC_CHANNEL_MAPPING[i], PIOS_ADC_SAMPLE_TIME); } #if (PIOS_ADC_USE_TEMP_SENSOR) ADC_TempSensorVrefintCmd(ENABLE); ADC_RegularChannelConfig(PIOS_ADC_TEMP_SENSOR_ADC, ADC_Channel_16, PIOS_ADC_TEMP_SENSOR_ADC_CHANNEL, PIOS_ADC_SAMPLE_TIME); #endif // return /* Configure ADCs */ ADC_InitTypeDef ADC_InitStructure; ADC_StructInit(&ADC_InitStructure); ADC_InitStructure.ADC_Mode = ADC_Mode_RegSimult; ADC_InitStructure.ADC_ScanConvMode = ENABLE; ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = ((PIOS_ADC_NUM_CHANNELS + 1) >> 1); ADC_Init(ADC1, &ADC_InitStructure); #if (PIOS_ADC_USE_ADC2) ADC_Init(ADC2, &ADC_InitStructure); /* Enable ADC2 external trigger conversion (to synch with ADC1) */ ADC_ExternalTrigConvCmd(ADC2, ENABLE); #endif RCC_ADCCLKConfig(PIOS_ADC_ADCCLK); /* Enable ADC1->DMA request */ ADC_DMACmd(ADC1, ENABLE); /* ADC1 calibration */ ADC_Cmd(ADC1, ENABLE); ADC_ResetCalibration(ADC1); while (ADC_GetResetCalibrationStatus(ADC1)) { ; } ADC_StartCalibration(ADC1); while (ADC_GetCalibrationStatus(ADC1)) { ; } #if (PIOS_ADC_USE_ADC2) /* ADC2 calibration */ ADC_Cmd(ADC2, ENABLE); ADC_ResetCalibration(ADC2); while (ADC_GetResetCalibrationStatus(ADC2)) { ; } ADC_StartCalibration(ADC2); while (ADC_GetCalibrationStatus(ADC2)) { ; } #endif /* This makes sure we have an even number of transfers if using ADC2 */ pios_adc_dev->dma_block_size = ((PIOS_ADC_NUM_CHANNELS + PIOS_ADC_USE_ADC2) >> PIOS_ADC_USE_ADC2) << PIOS_ADC_USE_ADC2; pios_adc_dev->dma_half_buffer_size = pios_adc_dev->dma_block_size * pios_adc_dev->adc_oversample / 2; /* Configure DMA channel */ DMA_InitTypeDef dma_init = pios_adc_dev->cfg->dma.rx.init; dma_init.DMA_MemoryBaseAddr = (uint32_t)&pios_adc_dev->raw_data_buffer[0]; dma_init.DMA_MemoryInc = DMA_MemoryInc_Enable; dma_init.DMA_BufferSize = pios_adc_dev->dma_half_buffer_size; /* x2 for double buffer /2 for 32-bit xfr */ DMA_Init(pios_adc_dev->cfg->dma.rx.channel, &dma_init); DMA_Cmd(pios_adc_dev->cfg->dma.rx.channel, ENABLE); /* Trigger interrupt when for half conversions too to indicate double buffer */ DMA_ITConfig(pios_adc_dev->cfg->dma.rx.channel, DMA_IT_TC, ENABLE); DMA_ITConfig(pios_adc_dev->cfg->dma.rx.channel, DMA_IT_HT, ENABLE); /* Configure DMA interrupt */ NVIC_Init(&pios_adc_dev->cfg->dma.irq.init); /* Finally start initial conversion */ ADC_SoftwareStartConvCmd(ADC1, ENABLE); /* Use simple averaging filter for now */ for (int32_t i = 0; i < pios_adc_dev->adc_oversample; i++) { pios_adc_dev->fir_coeffs[i] = 1; } pios_adc_dev->fir_coeffs[pios_adc_dev->adc_oversample] = pios_adc_dev->adc_oversample; /* Enable DMA1 clock */ RCC_AHBPeriphClockCmd(pios_adc_dev->cfg->dma.ahb_clk, ENABLE); } /** * Returns value of an ADC Pin * \param[in] pin number * \return ADC pin value - resolution depends on the selected oversampling rate * \return -1 if pin doesn't exist */ int32_t PIOS_ADC_PinGet(uint32_t pin) { /* Check if pin exists */ if (pin >= PIOS_ADC_NUM_CHANNELS) { return -1; } /* Return last conversion result */ return pios_adc_dev->downsampled_buffer[pin]; } /** * @brief Set a callback function that is executed whenever * the ADC double buffer swaps */ void PIOS_ADC_SetCallback(ADCCallback new_function) { pios_adc_dev->callback_function = new_function; } #if defined(PIOS_INCLUDE_FREERTOS) /** * @brief Register a queue to add data to when downsampled */ void PIOS_ADC_SetQueue(xQueueHandle data_queue) { pios_adc_dev->data_queue = data_queue; } #endif /** * @brief Return the address of the downsampled data buffer */ float *PIOS_ADC_GetBuffer(void) { return pios_adc_dev->downsampled_buffer; } /** * @brief Return the address of the raw data data buffer */ int16_t *PIOS_ADC_GetRawBuffer(void) { return (int16_t *)pios_adc_dev->valid_data_buffer; } /** * @brief Return the amount of over sampling */ uint8_t PIOS_ADC_GetOverSampling(void) { return pios_adc_dev->adc_oversample; } /** * @brief Set the fir coefficients. Takes as many samples as the * current filter order plus one (normalization) * * @param new_filter Array of adc_oversampling floats plus one for the * filter coefficients */ void PIOS_ADC_SetFIRCoefficients(float *new_filter) { // Less than or equal to get normalization constant for (int i = 0; i <= pios_adc_dev->adc_oversample; i++) { pios_adc_dev->fir_coeffs[i] = new_filter[i]; } } /** * @brief Downsample the data for each of the channels then call * callback function if installed */ __attribute__((optimize("O3"))) void PIOS_ADC_downsample_data() { uint16_t chan; uint16_t sample; float *downsampled_buffer = &pios_adc_dev->downsampled_buffer[0]; static int32_t sum[PIOS_ADC_NUM_CHANNELS] = { 0 }; if (pios_adc_dev->downsampleStep == 0) { for (uint8_t i = 0; i < PIOS_ADC_NUM_CHANNELS; i++) { sum[i] = 0; } } for (sample = 0; sample < pios_adc_dev->adc_oversample / 2; sample++) { const uint16_t *buffer = (const uint16_t *)&pios_adc_dev->valid_data_buffer[sample * pios_adc_dev->dma_block_size]; const uint16_t firCoeff = pios_adc_dev->fir_coeffs[sample + PIOS_ADC_NUM_CHANNELS * pios_adc_dev->downsampleStep]; #if (PIOS_ADC_USE_TEMP_SENSOR) for (chan = 1; chan < PIOS_ADC_NUM_CHANNELS; chan++) { #else for (chan = 0; chan < PIOS_ADC_NUM_CHANNELS; chan++) { #endif sum[chan] += buffer[chan] * firCoeff; } } // Full downsampling + fir filter is a little bit overwhelming for temp sensor. if (pios_adc_dev->downsampleStep == 0) { // first part of downsampling done. wait until the second block of samples is acquired pios_adc_dev->downsampleStep = 1; return; } pios_adc_dev->downsampleStep = 0; #if (PIOS_ADC_USE_TEMP_SENSOR) for (chan = 1; chan < PIOS_ADC_NUM_CHANNELS; chan++) { #else for (chan = 0; chan < PIOS_ADC_NUM_CHANNELS; chan++) { #endif downsampled_buffer[chan] = (float)sum[chan] / (pios_adc_dev->fir_coeffs[pios_adc_dev->adc_oversample]); } #if (PIOS_ADC_USE_TEMP_SENSOR) downsampled_buffer[0] = pios_adc_dev->valid_data_buffer[0]; #endif #if defined(PIOS_INCLUDE_FREERTOS) if (pios_adc_dev->data_queue) { static portBASE_TYPE xHigherPriorityTaskWoken; xQueueSendFromISR(pios_adc_dev->data_queue, pios_adc_dev->downsampled_buffer, &xHigherPriorityTaskWoken); portEND_SWITCHING_ISR(xHigherPriorityTaskWoken); } #endif if (pios_adc_dev->callback_function) { pios_adc_dev->callback_function(pios_adc_dev->downsampled_buffer); } } /** * @brief Interrupt for half and full buffer transfer * * This interrupt handler swaps between the two halfs of the double buffer to make * sure the ahrs uses the most recent data. Only swaps data when AHRS is idle, but * really this is a pretense of a sanity check since the DMA engine is consantly * running in the background. Keep an eye on the ekf_too_slow variable to make sure * it's keeping up. */ void PIOS_ADC_DMA_Handler(void) { if (!PIOS_ADC_validate(pios_adc_dev)) { return; } if (DMA_GetFlagStatus(pios_adc_dev->cfg->full_flag /*DMA1_IT_TC1*/)) { // whole double buffer filled pios_adc_dev->valid_data_buffer = &pios_adc_dev->raw_data_buffer[pios_adc_dev->dma_half_buffer_size]; DMA_ClearFlag(pios_adc_dev->cfg->full_flag); PIOS_ADC_downsample_data(); } else if (DMA_GetFlagStatus(pios_adc_dev->cfg->half_flag /*DMA1_IT_HT1*/)) { pios_adc_dev->valid_data_buffer = &pios_adc_dev->raw_data_buffer[0]; DMA_ClearFlag(pios_adc_dev->cfg->half_flag); PIOS_ADC_downsample_data(); } else { // This should not happen, probably due to transfer errors DMA_ClearFlag(pios_adc_dev->cfg->dma.irq.flags /*DMA1_FLAG_GL1*/); } } #endif /* PIOS_INCLUDE_ADC */ /** * @} * @} */