/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup Attitude Copter Control Attitude Estimation * @brief Acquires sensor data and computes attitude estimate * Specifically updates the the @ref AttitudeActual "AttitudeActual" and @ref AttitudeRaw "AttitudeRaw" settings objects * @{ * * @file attitude.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Module to handle all comms to the AHRS on a periodic basis. * * @see The GNU Public License (GPL) Version 3 * ******************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /** * Input objects: None, takes sensor data via pios * Output objects: @ref AttitudeRaw @ref AttitudeActual * * This module computes an attitude estimate from the sensor data * * The module executes in its own thread. * * UAVObjects are automatically generated by the UAVObjectGenerator from * the object definition XML file. * * Modules have no API, all communication to other modules is done through UAVObjects. * However modules may use the API exposed by shared libraries. * See the OpenPilot wiki for more details. * http://www.openpilot.org/OpenPilot_Application_Architecture * */ #include "pios.h" #include "attitude.h" #include "magnetometer.h" #include "accels.h" #include "gyros.h" #include "gyrosbias.h" #include "attitudeactual.h" #include "attitudesettings.h" #include "positionactual.h" #include "velocityactual.h" #include "gpsposition.h" #include "baroaltitude.h" #include "flightstatus.h" #include "homelocation.h" #include "CoordinateConversions.h" // Private constants #define STACK_SIZE_BYTES 5540 #define TASK_PRIORITY (tskIDLE_PRIORITY+3) #define FAILSAFE_TIMEOUT_MS 10 #define F_PI 3.14159265358979323846f #define PI_MOD(x) (fmod(x + F_PI, F_PI * 2) - F_PI) // Private types // Private variables static xTaskHandle sensorTaskHandle; static xTaskHandle attitudeTaskHandle; static xQueueHandle gyroQueue; static xQueueHandle accelQueue; static xQueueHandle magQueue; static xQueueHandle baroQueue; static xQueueHandle gpsQueue; const uint32_t SENSOR_QUEUE_SIZE = 10; // Private functions static void SensorTask(void *parameters); static void AttitudeTask(void *parameters); static int32_t updateSensors(); static int32_t updateAttitudeComplimentary(bool first_run); static int32_t updateAttitudeINSGPS(bool first_run); static void settingsUpdatedCb(UAVObjEvent * objEv); static float accelKi = 0; static float accelKp = 0; static float yawBiasRate = 0; static float gyroGain = 0.42; static int16_t accelbias[3]; static float R[3][3]; static int8_t rotate = 0; static bool zero_during_arming = false; /** * API for sensor fusion algorithms: * Configure(xQueueHandle gyro, xQueueHandle accel, xQueueHandle mag, xQueueHandle baro) * Stores all the queues the algorithm will pull data from * FinalizeSensors() -- before saving the sensors modifies them based on internal state (gyro bias) * Update() -- queries queues and updates the attitude estiamte */ /** * Initialise the module. Called before the start function * \returns 0 on success or -1 if initialisation failed */ int32_t AttitudeInitialize(void) { AttitudeActualInitialize(); AttitudeSettingsInitialize(); PositionActualInitialize(); VelocityActualInitialize(); // Initialize this here while we aren't setting the homelocation in GPS HomeLocationInitialize(); // Initialize quaternion AttitudeActualData attitude; AttitudeActualGet(&attitude); attitude.q1 = 1; attitude.q2 = 0; attitude.q3 = 0; attitude.q4 = 0; AttitudeActualSet(&attitude); // Cannot trust the values to init right above if BL runs GyrosBiasData gyrosBias; GyrosBiasGet(&gyrosBias); gyrosBias.x = 0; gyrosBias.y = 0; gyrosBias.z = 0; GyrosBiasSet(&gyrosBias); for(uint8_t i = 0; i < 3; i++) for(uint8_t j = 0; j < 3; j++) R[i][j] = 0; AttitudeSettingsConnectCallback(&settingsUpdatedCb); return 0; } /** * Start the task. Expects all objects to be initialized by this point. * \returns 0 on success or -1 if initialisation failed */ int32_t AttitudeStart(void) { // Create the queues for the sensors gyroQueue = xQueueCreate(1, sizeof(UAVObjEvent)); accelQueue = xQueueCreate(1, sizeof(UAVObjEvent)); magQueue = xQueueCreate(1, sizeof(UAVObjEvent)); baroQueue = xQueueCreate(1, sizeof(UAVObjEvent)); gpsQueue = xQueueCreate(1, sizeof(UAVObjEvent)); // Start main task xTaskCreate(AttitudeTask, (signed char *)"Attitude", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &attitudeTaskHandle); TaskMonitorAdd(TASKINFO_RUNNING_ATTITUDE, attitudeTaskHandle); PIOS_WDG_RegisterFlag(PIOS_WDG_ATTITUDE); GyrosConnectQueue(gyroQueue); AccelsConnectQueue(accelQueue); MagnetometerConnectQueue(magQueue); BaroAltitudeConnectQueue(baroQueue); GPSPositionConnectQueue(gpsQueue); return 0; } MODULE_INITCALL(AttitudeInitialize, AttitudeStart) /** * Module thread, should not return. */ static void AttitudeTask(void *parameters) { AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE); // Force settings update to make sure rotation loaded settingsUpdatedCb(AttitudeSettingsHandle()); bool first_run = true; // Wait for all the sensors be to read vTaskDelay(100); // Main task loop while (1) { // This function blocks on data queue if(1) updateAttitudeComplimentary(first_run); else updateAttitudeINSGPS(first_run); if (first_run) first_run = false; PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE); } } float accel_mag; float qmag; float attitudeDt; float mag_err[3]; float magKi = 0.000001f; float magKp = 0.0001f; static int32_t updateAttitudeComplimentary(bool first_run) { UAVObjEvent ev; GyrosData gyrosData; AccelsData accelsData; static int32_t timeval; float dT; static uint8_t init = 0; // Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe if ( xQueueReceive(gyroQueue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE ) { AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING); return -1; } if ( xQueueReceive(accelQueue, &ev, 0) != pdTRUE ) { // When one of these is updated so should the other AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING); return -1; } // During initialization and FlightStatusData flightStatus; FlightStatusGet(&flightStatus); if(first_run) init = 0; if((init == 0 && xTaskGetTickCount() < 7000) && (xTaskGetTickCount() > 1000)) { // For first 7 seconds use accels to get gyro bias accelKp = 1; accelKi = 0.9; yawBiasRate = 0.23; } else if (zero_during_arming && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) { accelKp = 1; accelKi = 0.9; yawBiasRate = 0.23; init = 0; } else if (init == 0) { // Reload settings (all the rates) AttitudeSettingsAccelKiGet(&accelKi); AttitudeSettingsAccelKpGet(&accelKp); AttitudeSettingsYawBiasRateGet(&yawBiasRate); init = 1; } GyrosGet(&gyrosData); AccelsGet(&accelsData); // Compute the dT using the cpu clock dT = PIOS_DELAY_DiffuS(timeval) / 1000000.0f; timeval = PIOS_DELAY_GetRaw(); float q[4]; AttitudeActualData attitudeActual; AttitudeActualGet(&attitudeActual); float grot[3]; float accel_err[3]; // Get the current attitude estimate quat_copy(&attitudeActual.q1, q); // Rotate gravity to body frame and cross with accels grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2])); grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1])); grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]); CrossProduct((const float *) &accelsData.x, (const float *) grot, accel_err); // Account for accel magnitude accel_mag = accelsData.x*accelsData.x + accelsData.y*accelsData.y + accelsData.z*accelsData.z; accel_mag = sqrtf(accel_mag); accel_err[0] /= accel_mag; accel_err[1] /= accel_mag; accel_err[2] /= accel_mag; if ( xQueueReceive(magQueue, &ev, 0) != pdTRUE ) { // Rotate gravity to body frame and cross with accels float brot[3]; float Rbe[3][3]; MagnetometerData mag; HomeLocationData home; Quaternion2R(q, Rbe); MagnetometerGet(&mag); HomeLocationGet(&home); rot_mult(Rbe, home.Be, brot); float mag_len = sqrtf(mag.x * mag.x + mag.y * mag.y + mag.z * mag.z); mag.x /= mag_len; mag.y /= mag_len; mag.z /= mag_len; float bmag = sqrtf(brot[0] * brot[0] + brot[1] * brot[1] + brot[2] * brot[2]); brot[0] /= bmag; brot[1] /= bmag; brot[2] /= bmag; // Only compute if neither vector is null if (bmag < 1 || mag_len < 1) mag_err[0] = mag_err[1] = mag_err[2] = 0; else CrossProduct((const float *) &mag.x, (const float *) brot, mag_err); } else { mag_err[0] = mag_err[1] = mag_err[2] = 0; } // Accumulate integral of error. Scale here so that units are (deg/s) but Ki has units of s GyrosBiasData gyrosBias; GyrosBiasGet(&gyrosBias); gyrosBias.x += accel_err[0] * accelKi; gyrosBias.y += accel_err[1] * accelKi; gyrosBias.z += mag_err[2] * magKi; GyrosBiasSet(&gyrosBias); // Correct rates based on error, integral component dealt with in updateSensors gyrosData.x += accel_err[0] * accelKp / dT; gyrosData.y += accel_err[1] * accelKp / dT; gyrosData.z += accel_err[2] * accelKp / dT + mag_err[2] * magKp / dT; // Work out time derivative from INSAlgo writeup // Also accounts for the fact that gyros are in deg/s float qdot[4]; qdot[0] = (-q[1] * gyrosData.x - q[2] * gyrosData.y - q[3] * gyrosData.z) * dT * F_PI / 180 / 2; qdot[1] = (q[0] * gyrosData.x - q[3] * gyrosData.y + q[2] * gyrosData.z) * dT * F_PI / 180 / 2; qdot[2] = (q[3] * gyrosData.x + q[0] * gyrosData.y - q[1] * gyrosData.z) * dT * F_PI / 180 / 2; qdot[3] = (-q[2] * gyrosData.x + q[1] * gyrosData.y + q[0] * gyrosData.z) * dT * F_PI / 180 / 2; // Take a time step q[0] = q[0] + qdot[0]; q[1] = q[1] + qdot[1]; q[2] = q[2] + qdot[2]; q[3] = q[3] + qdot[3]; if(q[0] < 0) { q[0] = -q[0]; q[1] = -q[1]; q[2] = -q[2]; q[3] = -q[3]; } // Renomalize qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]); q[0] = q[0] / qmag; q[1] = q[1] / qmag; q[2] = q[2] / qmag; q[3] = q[3] / qmag; // If quaternion has become inappropriately short or is nan reinit. // THIS SHOULD NEVER ACTUALLY HAPPEN if((fabs(qmag) < 1.0e-3f) || (qmag != qmag)) { q[0] = 1; q[1] = 0; q[2] = 0; q[3] = 0; } quat_copy(q, &attitudeActual.q1); // Convert into eueler degrees (makes assumptions about RPY order) Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll); AttitudeActualSet(&attitudeActual); // Flush these queues for avoid errors if ( xQueueReceive(baroQueue, &ev, 0) != pdTRUE ) { } if ( xQueueReceive(gpsQueue, &ev, 0) != pdTRUE ) { } AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE); return 0; } #include "insgps.h" int32_t ins_failed = 0; extern struct NavStruct Nav; static int32_t updateAttitudeINSGPS(bool first_run) { UAVObjEvent ev; GyrosData gyrosData; AccelsData accelsData; MagnetometerData magData; BaroAltitudeData baroData; static uint32_t ins_last_time = 0; static bool inited; if (first_run) inited = false; // Wait until the gyro and accel object is updated, if a timeout then go to failsafe if ( (xQueueReceive(gyroQueue, &ev, 10 / portTICK_RATE_MS) != pdTRUE) || (xQueueReceive(accelQueue, &ev, 10 / portTICK_RATE_MS) != pdTRUE) ) { AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING); return -1; } // Get most recent data // TODO: Acquire all data in a queue GyrosGet(&gyrosData); AccelsGet(&accelsData); MagnetometerGet(&magData); BaroAltitudeGet(&baroData); bool mag_updated; bool baro_updated; bool gps_updated; if (inited) { mag_updated = 0; baro_updated = 0; } mag_updated |= xQueueReceive(magQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE; baro_updated |= xQueueReceive(baroQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE; gps_updated |= xQueueReceive(gpsQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE; if (!inited && (!mag_updated || !baro_updated || !gps_updated)) { // Don't initialize until all sensors are read return -1; } else if (!inited ) { inited = true; float Rbe[3][3], q[4], accels[3], rpy[3], mag; float ge[3]={0.0f,0.0f,-9.81f}; float zeros[3]={0.0f,0.0f,0.0f}; float Pdiag[16]={25.0f,25.0f,25.0f,5.0f,5.0f,5.0f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-4f,1e-4f,1e-4f}; float vel[3], NED[3]; bool using_mags, using_gps; INSGPSInit(); HomeLocationData home; HomeLocationGet(&home); GPSPositionData gpsPosition; GPSPositionGet(&gpsPosition); vel[0] = gpsPosition.Groundspeed * cosf(gpsPosition.Heading * F_PI / 180.0f); vel[1] = gpsPosition.Groundspeed * sinf(gpsPosition.Heading * F_PI / 180.0f); vel[2] = 0; // convert from cm back to meters float LLA[3] = {(float) gpsPosition.Latitude / 1e7f, (float) gpsPosition.Longitude / 1e7f, (float) (gpsPosition.GeoidSeparation + gpsPosition.Altitude)}; // put in local NED frame float ECEF[3] = {(float) (home.ECEF[0] / 100.0f), (float) (home.ECEF[1] / 100.0f), (float) (home.ECEF[2] / 100.0f)}; LLA2Base(LLA, ECEF, (float (*)[3]) home.RNE, NED); RotFrom2Vectors(&accelsData.x, ge, &magData.x, home.Be, Rbe); R2Quaternion(Rbe,q); INSSetState(NED, vel, q, &gyrosData.x, zeros); INSSetGyroBias(&gyrosData.x); INSResetP(Pdiag); ins_last_time = PIOS_DELAY_GetRaw(); return 0; } // Perform the update static uint32_t updated_without_gps = 0; float zeros[3] = {0, 0, 0}; uint16_t sensors = 0; float dT; dT = PIOS_DELAY_DiffuS(ins_last_time) / 1.0e6f; ins_last_time = PIOS_DELAY_GetRaw(); // This should only happen at start up or at mode switches if(dT > 0.01f) dT = 0.01f; else if(dT <= 0.001f) dT = 0.001f; GyrosBiasData gyrosBias; GyrosBiasGet(&gyrosBias); float gyros[3] = {(gyrosData.x + gyrosBias.x) * F_PI / 180.0f, (gyrosData.y + gyrosBias.y) * F_PI / 180.0f, (gyrosData.z + gyrosBias.z) * F_PI / 180.0f}; // Advance the state estimate INSStatePrediction(gyros, &accelsData.x, dT); // Copy the attitude into the UAVO AttitudeActualData attitude; AttitudeActualGet(&attitude); attitude.q1 = Nav.q[0]; attitude.q2 = Nav.q[1]; attitude.q3 = Nav.q[2]; attitude.q4 = Nav.q[3]; Quaternion2RPY(&attitude.q1,&attitude.Roll); AttitudeActualSet(&attitude); // Copy the gyro bias into the UAVO gyrosBias.x = Nav.gyro_bias[0]; gyrosBias.y = Nav.gyro_bias[1]; gyrosBias.z = Nav.gyro_bias[2]; GyrosBiasSet(&gyrosBias); // Advance the covariance estimate INSCovariancePrediction(dT); if(mag_updated) sensors |= MAG_SENSORS; if(baro_updated) sensors |= BARO_SENSOR; float NED[3] = {0,0,0}; float vel[3] = {0,0,0}; if(gps_updated) { sensors = HORIZ_SENSORS | VERT_SENSORS; GPSPositionData gpsPosition; GPSPositionGet(&gpsPosition); vel[0] = gpsPosition.Groundspeed * cosf(gpsPosition.Heading * F_PI / 180.0f); vel[1] = gpsPosition.Groundspeed * sinf(gpsPosition.Heading * F_PI / 180.0f); vel[2] = 0; HomeLocationData home; HomeLocationGet(&home); // convert from cm back to meters float LLA[3] = {(float) gpsPosition.Latitude / 1e7f, (float) gpsPosition.Longitude / 1e7f, (float) (gpsPosition.GeoidSeparation + gpsPosition.Altitude)}; // put in local NED frame float ECEF[3] = {(float) (home.ECEF[0] / 100.0f), (float) (home.ECEF[1] / 100.0f), (float) (home.ECEF[2] / 100.0f)}; LLA2Base(LLA, ECEF, (float (*)[3]) home.RNE, NED); } /* * TODO: Need to add a general sanity check for all the inputs to make sure their kosher * although probably should occur within INS itself */ INSCorrection(&magData.x, NED, vel, baroData.Altitude, sensors); // Copy the position and velocity into the UAVO PositionActualData positionActual; PositionActualGet(&positionActual); positionActual.North = Nav.Pos[0]; positionActual.East = Nav.Pos[1]; positionActual.Down = Nav.Pos[2]; PositionActualSet(&positionActual); VelocityActualData velocityActual; VelocityActualGet(&velocityActual); velocityActual.North = Nav.Vel[0]; velocityActual.East = Nav.Vel[1]; velocityActual.Down = Nav.Vel[2]; VelocityActualSet(&velocityActual); if(fabs(Nav.gyro_bias[0]) > 0.1f || fabs(Nav.gyro_bias[1]) > 0.1f || fabs(Nav.gyro_bias[2]) > 0.1f) { float zeros[3] = {0.0f,0.0f,0.0f}; INSSetGyroBias(zeros); } } static void settingsUpdatedCb(UAVObjEvent * objEv) { AttitudeSettingsData attitudeSettings; AttitudeSettingsGet(&attitudeSettings); accelKp = attitudeSettings.AccelKp; accelKi = attitudeSettings.AccelKi; yawBiasRate = attitudeSettings.YawBiasRate; gyroGain = attitudeSettings.GyroGain; zero_during_arming = attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE; accelbias[0] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_X]; accelbias[1] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Y]; accelbias[2] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Z]; GyrosBiasData gyrosBias; GyrosBiasGet(&gyrosBias); gyrosBias.x = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_X] / 100.0f; gyrosBias.y = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Y] / 100.0f; gyrosBias.z = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Z] / 100.0f; GyrosBiasSet(&gyrosBias); // Indicates not to expend cycles on rotation if(attitudeSettings.BoardRotation[0] == 0 && attitudeSettings.BoardRotation[1] == 0 && attitudeSettings.BoardRotation[2] == 0) { rotate = 0; // Shouldn't be used but to be safe float rotationQuat[4] = {1,0,0,0}; Quaternion2R(rotationQuat, R); } else { float rotationQuat[4]; const float rpy[3] = {attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_ROLL], attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_PITCH], attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_YAW]}; RPY2Quaternion(rpy, rotationQuat); Quaternion2R(rotationQuat, R); rotate = 1; } } /** * @} * @} */