/** ****************************************************************************** * * @file CoordinateConversions.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief General conversions with different coordinate systems. * - all angles in deg * - distances in meters * - altitude above WGS-84 elipsoid * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include "CoordinateConversions.h" #define RAD2DEG (180.0/M_PI) #define DEG2RAD (M_PI/180.0) // ****** convert Lat,Lon,Alt to ECEF ************ void LLA2ECEF(double LLA[3], double ECEF[3]){ const double a = 6378137.0; // Equatorial Radius const double e = 8.1819190842622e-2; // Eccentricity double sinLat, sinLon, cosLat, cosLon; double N; sinLat=sin(DEG2RAD*LLA[0]); sinLon=sin(DEG2RAD*LLA[1]); cosLat=cos(DEG2RAD*LLA[0]); cosLon=cos(DEG2RAD*LLA[1]); N = a / sqrt(1.0 - e*e*sinLat*sinLat); //prime vertical radius of curvature ECEF[0] = (N+LLA[2])*cosLat*cosLon; ECEF[1] = (N+LLA[2])*cosLat*sinLon; ECEF[2] = ((1-e*e)*N + LLA[2]) * sinLat; } // ****** convert ECEF to Lat,Lon,Alt (ITERATIVE!) ********* uint16_t ECEF2LLA(double ECEF[3], double LLA[3]) { const double a = 6378137.0; // Equatorial Radius const double e = 8.1819190842622e-2; // Eccentricity double x=ECEF[0], y=ECEF[1], z=ECEF[2]; double Lat, N, NplusH, delta, esLat; uint16_t iter; LLA[1] = RAD2DEG*atan2(y,x); N = a; NplusH = N; delta = 1; Lat = 1; iter=0; while (((delta > 1.0e-14)||(delta < -1.0e-14)) && (iter < 100)) { delta = Lat - atan(z / (sqrt(x*x + y*y)*(1-(N*e*e/NplusH)))); Lat = Lat-delta; esLat = e*sin(Lat); N = a / sqrt(1 - esLat*esLat); NplusH = sqrt(x*x + y*y)/cos(Lat); iter += 1; } LLA[0] = RAD2DEG*Lat; LLA[2] = NplusH - N; if (iter==500) return (0); else return (1); } // ****** find ECEF to NED rotation matrix ******** void RneFromLLA(double LLA[3], float Rne[3][3]){ float sinLat, sinLon, cosLat, cosLon; sinLat=(float)sin(DEG2RAD*LLA[0]); sinLon=(float)sin(DEG2RAD*LLA[1]); cosLat=(float)cos(DEG2RAD*LLA[0]); cosLon=(float)cos(DEG2RAD*LLA[1]); Rne[0][0] = -sinLat*cosLon; Rne[0][1] = -sinLat*sinLon; Rne[0][2] = cosLat; Rne[1][0] = -sinLon; Rne[1][1] = cosLon; Rne[1][2] = 0; Rne[2][0] = -cosLat*cosLon; Rne[2][1] = -cosLat*sinLon; Rne[2][2] = -sinLat; } // ****** find roll, pitch, yaw from quaternion ******** void Quaternion2RPY(float q[4], float rpy[3]){ float R13, R11, R12, R23, R33; float q0s=q[0]*q[0]; float q1s=q[1]*q[1]; float q2s=q[2]*q[2]; float q3s=q[3]*q[3]; R13 = 2*(q[1]*q[3]-q[0]*q[2]); R11 = q0s+q1s-q2s-q3s; R12 = 2*(q[1]*q[2]+q[0]*q[3]); R23 = 2*(q[2]*q[3]+q[0]*q[1]); R33 = q0s-q1s-q2s+q3s; rpy[1]=RAD2DEG*asinf(-R13); // pitch always between -pi/2 to pi/2 rpy[2]=RAD2DEG*atan2f(R12,R11); rpy[0]=RAD2DEG*atan2f(R23,R33); } // ****** find quaternion from roll, pitch, yaw ******** void RPY2Quaternion(float rpy[3], float q[4]){ float phi, theta, psi; float cphi, sphi, ctheta, stheta, cpsi, spsi; phi=DEG2RAD*rpy[0]/2; theta=DEG2RAD*rpy[1]/2; psi=DEG2RAD*rpy[2]/2; cphi=cosf(phi); sphi=sinf(phi); ctheta=cosf(theta); stheta=sinf(theta); cpsi=cosf(psi); spsi=sinf(psi); q[0] = cphi*ctheta*cpsi + sphi*stheta*spsi; q[1] = sphi*ctheta*cpsi - cphi*stheta*spsi; q[2] = cphi*stheta*cpsi + sphi*ctheta*spsi; q[3] = cphi*ctheta*spsi - sphi*stheta*cpsi; if (q[0] < 0){ // q0 always positive for uniqueness q[0]=-q[0]; q[1]=-q[1]; q[2]=-q[2]; q[3]=-q[3]; } } //** Find Rbe, that rotates a vector from earth fixed to body frame, from quaternion ** void Quaternion2R(float q[4], float Rbe[3][3]){ float q0s=q[0]*q[0], q1s=q[1]*q[1], q2s=q[2]*q[2], q3s=q[3]*q[3]; Rbe[0][0]=q0s+q1s-q2s-q3s; Rbe[0][1]=2*(q[1]*q[2]+q[0]*q[3]); Rbe[0][2]=2*(q[1]*q[3]-q[0]*q[2]); Rbe[1][0]=2*(q[1]*q[2]-q[0]*q[3]); Rbe[1][1]=q0s-q1s+q2s-q3s; Rbe[1][2]=2*(q[2]*q[3]+q[0]*q[1]); Rbe[2][0]=2*(q[1]*q[3]+q[0]*q[2]); Rbe[2][1]=2*(q[2]*q[3]-q[0]*q[1]); Rbe[2][2]=q0s-q1s-q2s+q3s; } // ****** Express LLA in a local NED Base Frame ******** void LLA2Base(double LLA[3], double BaseECEF[3], float Rne[3][3], float NED[3]){ double ECEF[3]; float diff[3]; LLA2ECEF(LLA,ECEF); diff[0]=(float)(ECEF[0]-BaseECEF[0]); diff[1]=(float)(ECEF[1]-BaseECEF[1]); diff[2]=(float)(ECEF[2]-BaseECEF[2]); NED[0]= Rne[0][0]*diff[0]+Rne[0][1]*diff[1]+Rne[0][2]*diff[2]; NED[1]= Rne[1][0]*diff[0]+Rne[1][1]*diff[1]+Rne[1][2]*diff[2]; NED[2]= Rne[2][0]*diff[0]+Rne[2][1]*diff[1]+Rne[2][2]*diff[2]; } // ****** Express ECEF in a local NED Base Frame ******** void ECEF2Base(double ECEF[3], double BaseECEF[3], float Rne[3][3], float NED[3]){ float diff[3]; diff[0]=(float)(ECEF[0]-BaseECEF[0]); diff[1]=(float)(ECEF[1]-BaseECEF[1]); diff[2]=(float)(ECEF[2]-BaseECEF[2]); NED[0]= Rne[0][0]*diff[0]+Rne[0][1]*diff[1]+Rne[0][2]*diff[2]; NED[1]= Rne[1][0]*diff[0]+Rne[1][1]*diff[1]+Rne[1][2]*diff[2]; NED[2]= Rne[2][0]*diff[0]+Rne[2][1]*diff[1]+Rne[2][2]*diff[2]; }