/** ****************************************************************************** * * @file CoordinateConversions.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief General conversions with different coordinate systems. * - all angles in deg * - distances in meters * - altitude above WGS-84 elipsoid * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include "CoordinateConversions.h" #define MIN_ALLOWABLE_MAGNITUDE 1e-30f // ****** convert Lat,Lon,Alt to ECEF ************ void LLA2ECEF(float LLA[3], double ECEF[3]) { const double a = 6378137.0d; // Equatorial Radius const double e = 8.1819190842622e-2d; // Eccentricity double sinLat, sinLon, cosLat, cosLon; double N; sinLat = sin(DEG2RAD(LLA[0])); sinLon = sin(DEG2RAD(LLA[1])); cosLat = cos(DEG2RAD(LLA[0])); cosLon = cos(DEG2RAD(LLA[1])); N = a / sqrt(1.0d - e * e * sinLat * sinLat); // prime vertical radius of curvature ECEF[0] = (N + (double)LLA[2]) * cosLat * cosLon; ECEF[1] = (N + (double)LLA[2]) * cosLat * sinLon; ECEF[2] = ((1 - e * e) * N + (double)LLA[2]) * sinLat; } // ****** convert ECEF to Lat,Lon,Alt (ITERATIVE!) ********* uint16_t ECEF2LLA(double ECEF[3], float LLA[3]) { /** * LLA parameter is used to prime the iteration. * A position within 1 meter of the specified LLA * will be calculated within at most 3 iterations. * If unknown: Call with any valid LLA coordinate * will compute within at most 5 iterations. * Suggestion: [0,0,0] **/ const double a = 6378137.0f; // Equatorial Radius const double e = 8.1819190842622e-2f; // Eccentricity double x = ECEF[0], y = ECEF[1], z = ECEF[2]; double Lat, N, NplusH, delta, esLat; uint16_t iter; #define MAX_ITER 10 // should not take more than 5 for valid coordinates #define ACCURACY 1.0e-11d // used to be e-14, but we don't need sub micrometer exact calculations LLA[1] = (float)RAD2DEG_D(atan2(y, x)); Lat = DEG2RAD_D((double)LLA[0]); esLat = e * sin(Lat); N = a / sqrt(1 - esLat * esLat); NplusH = N + (double)LLA[2]; delta = 1; iter = 0; while (((delta > ACCURACY) || (delta < -ACCURACY)) && (iter < MAX_ITER)) { delta = Lat - atan(z / (sqrt(x * x + y * y) * (1 - (N * e * e / NplusH)))); Lat = Lat - delta; esLat = e * sin(Lat); N = a / sqrt(1 - esLat * esLat); NplusH = sqrt(x * x + y * y) / cos(Lat); iter += 1; } LLA[0] = RAD2DEG_D(Lat); LLA[2] = NplusH - N; return iter < MAX_ITER; } // ****** find ECEF to NED rotation matrix ******** void RneFromLLA(float LLA[3], double Rne[3][3]) { double sinLat, sinLon, cosLat, cosLon; sinLat = sin(DEG2RAD(LLA[0])); sinLon = sin(DEG2RAD(LLA[1])); cosLat = cos(DEG2RAD(LLA[0])); cosLon = cos(DEG2RAD(LLA[1])); Rne[0][0] = -sinLat * cosLon; Rne[0][1] = -sinLat * sinLon; Rne[0][2] = cosLat; Rne[1][0] = -sinLon; Rne[1][1] = cosLon; Rne[1][2] = 0; Rne[2][0] = -cosLat * cosLon; Rne[2][1] = -cosLat * sinLon; Rne[2][2] = -sinLat; } // ****** find roll, pitch, yaw from quaternion ******** void Quaternion2RPY(const float q[4], float rpy[3]) { float R13, R11, R12, R23, R33; float q0s = q[0] * q[0]; float q1s = q[1] * q[1]; float q2s = q[2] * q[2]; float q3s = q[3] * q[3]; R13 = 2.0f * (q[1] * q[3] - q[0] * q[2]); R11 = q0s + q1s - q2s - q3s; R12 = 2.0f * (q[1] * q[2] + q[0] * q[3]); R23 = 2.0f * (q[2] * q[3] + q[0] * q[1]); R33 = q0s - q1s - q2s + q3s; rpy[1] = RAD2DEG(asinf(-R13)); // pitch always between -pi/2 to pi/2 rpy[2] = RAD2DEG(atan2f(R12, R11)); rpy[0] = RAD2DEG(atan2f(R23, R33)); // TODO: consider the cases where |R13| ~= 1, |pitch| ~= pi/2 } // ****** find quaternion from roll, pitch, yaw ******** void RPY2Quaternion(const float rpy[3], float q[4]) { float phi, theta, psi; float cphi, sphi, ctheta, stheta, cpsi, spsi; phi = DEG2RAD(rpy[0] / 2); theta = DEG2RAD(rpy[1] / 2); psi = DEG2RAD(rpy[2] / 2); cphi = cosf(phi); sphi = sinf(phi); ctheta = cosf(theta); stheta = sinf(theta); cpsi = cosf(psi); spsi = sinf(psi); q[0] = cphi * ctheta * cpsi + sphi * stheta * spsi; q[1] = sphi * ctheta * cpsi - cphi * stheta * spsi; q[2] = cphi * stheta * cpsi + sphi * ctheta * spsi; q[3] = cphi * ctheta * spsi - sphi * stheta * cpsi; if (q[0] < 0) { // q0 always positive for uniqueness q[0] = -q[0]; q[1] = -q[1]; q[2] = -q[2]; q[3] = -q[3]; } } // ** Find Rbe, that rotates a vector from earth fixed to body frame, from quaternion ** void Quaternion2R(float q[4], float Rbe[3][3]) { float q0s = q[0] * q[0], q1s = q[1] * q[1], q2s = q[2] * q[2], q3s = q[3] * q[3]; Rbe[0][0] = q0s + q1s - q2s - q3s; Rbe[0][1] = 2 * (q[1] * q[2] + q[0] * q[3]); Rbe[0][2] = 2 * (q[1] * q[3] - q[0] * q[2]); Rbe[1][0] = 2 * (q[1] * q[2] - q[0] * q[3]); Rbe[1][1] = q0s - q1s + q2s - q3s; Rbe[1][2] = 2 * (q[2] * q[3] + q[0] * q[1]); Rbe[2][0] = 2 * (q[1] * q[3] + q[0] * q[2]); Rbe[2][1] = 2 * (q[2] * q[3] - q[0] * q[1]); Rbe[2][2] = q0s - q1s - q2s + q3s; } // ****** Express LLA in a local NED Base Frame ******** void LLA2Base(float LLA[3], double BaseECEF[3], double Rne[3][3], float NED[3]) { double ECEF[3]; double diff[3]; LLA2ECEF(LLA, ECEF); diff[0] = (ECEF[0] - BaseECEF[0]); diff[1] = (ECEF[1] - BaseECEF[1]); diff[2] = (ECEF[2] - BaseECEF[2]); NED[0] = Rne[0][0] * diff[0] + Rne[0][1] * diff[1] + Rne[0][2] * diff[2]; NED[1] = Rne[1][0] * diff[0] + Rne[1][1] * diff[1] + Rne[1][2] * diff[2]; NED[2] = Rne[2][0] * diff[0] + Rne[2][1] * diff[1] + Rne[2][2] * diff[2]; } // ****** Express ECEF in a local NED Base Frame ******** void ECEF2Base(double ECEF[3], double BaseECEF[3], double Rne[3][3], float NED[3]) { double diff[3]; diff[0] = (ECEF[0] - BaseECEF[0]); diff[1] = (ECEF[1] - BaseECEF[1]); diff[2] = (ECEF[2] - BaseECEF[2]); NED[0] = Rne[0][0] * diff[0] + Rne[0][1] * diff[1] + Rne[0][2] * diff[2]; NED[1] = Rne[1][0] * diff[0] + Rne[1][1] * diff[1] + Rne[1][2] * diff[2]; NED[2] = Rne[2][0] * diff[0] + Rne[2][1] * diff[1] + Rne[2][2] * diff[2]; } // ****** convert Rotation Matrix to Quaternion ******** // ****** if R converts from e to b, q is rotation from e to b **** void R2Quaternion(float R[3][3], float q[4]) { float m[4], mag; uint8_t index, i; m[0] = 1 + R[0][0] + R[1][1] + R[2][2]; m[1] = 1 + R[0][0] - R[1][1] - R[2][2]; m[2] = 1 - R[0][0] + R[1][1] - R[2][2]; m[3] = 1 - R[0][0] - R[1][1] + R[2][2]; // find maximum divisor index = 0; mag = m[0]; for (i = 1; i < 4; i++) { if (m[i] > mag) { mag = m[i]; index = i; } } mag = 2 * sqrtf(mag); if (index == 0) { q[0] = mag / 4; q[1] = (R[1][2] - R[2][1]) / mag; q[2] = (R[2][0] - R[0][2]) / mag; q[3] = (R[0][1] - R[1][0]) / mag; } else if (index == 1) { q[1] = mag / 4; q[0] = (R[1][2] - R[2][1]) / mag; q[2] = (R[0][1] + R[1][0]) / mag; q[3] = (R[0][2] + R[2][0]) / mag; } else if (index == 2) { q[2] = mag / 4; q[0] = (R[2][0] - R[0][2]) / mag; q[1] = (R[0][1] + R[1][0]) / mag; q[3] = (R[1][2] + R[2][1]) / mag; } else { q[3] = mag / 4; q[0] = (R[0][1] - R[1][0]) / mag; q[1] = (R[0][2] + R[2][0]) / mag; q[2] = (R[1][2] + R[2][1]) / mag; } // q0 positive, i.e. angle between pi and -pi if (q[0] < 0) { q[0] = -q[0]; q[1] = -q[1]; q[2] = -q[2]; q[3] = -q[3]; } } // ****** Rotation Matrix from Two Vector Directions ******** // ****** given two vector directions (v1 and v2) known in two frames (b and e) find Rbe *** // ****** solution is approximate if can't be exact *** uint8_t RotFrom2Vectors(const float v1b[3], const float v1e[3], const float v2b[3], const float v2e[3], float Rbe[3][3]) { float Rib[3][3], Rie[3][3]; float mag; uint8_t i, j, k; // identity rotation in case of error for (i = 0; i < 3; i++) { for (j = 0; j < 3; j++) { Rbe[i][j] = 0; } Rbe[i][i] = 1; } // The first rows of rot matrices chosen in direction of v1 mag = VectorMagnitude(v1b); if (fabsf(mag) < MIN_ALLOWABLE_MAGNITUDE) { return -1; } for (i = 0; i < 3; i++) { Rib[0][i] = v1b[i] / mag; } mag = VectorMagnitude(v1e); if (fabsf(mag) < MIN_ALLOWABLE_MAGNITUDE) { return -1; } for (i = 0; i < 3; i++) { Rie[0][i] = v1e[i] / mag; } // The second rows of rot matrices chosen in direction of v1xv2 CrossProduct(v1b, v2b, &Rib[1][0]); mag = VectorMagnitude(&Rib[1][0]); if (fabsf(mag) < MIN_ALLOWABLE_MAGNITUDE) { return -1; } for (i = 0; i < 3; i++) { Rib[1][i] = Rib[1][i] / mag; } CrossProduct(v1e, v2e, &Rie[1][0]); mag = VectorMagnitude(&Rie[1][0]); if (fabsf(mag) < MIN_ALLOWABLE_MAGNITUDE) { return -1; } for (i = 0; i < 3; i++) { Rie[1][i] = Rie[1][i] / mag; } // The third rows of rot matrices are XxY (Row1xRow2) CrossProduct(&Rib[0][0], &Rib[1][0], &Rib[2][0]); CrossProduct(&Rie[0][0], &Rie[1][0], &Rie[2][0]); // Rbe = Rbi*Rie = Rib'*Rie for (i = 0; i < 3; i++) { for (j = 0; j < 3; j++) { Rbe[i][j] = 0; for (k = 0; k < 3; k++) { Rbe[i][j] += Rib[k][i] * Rie[k][j]; } } } return 1; } void Rv2Rot(float Rv[3], float R[3][3]) { // Compute rotation matrix from a rotation vector // To save .text space, uses Quaternion2R() float q[4]; float angle = VectorMagnitude(Rv); if (angle <= 0.00048828125f) { // angle < sqrt(2*machine_epsilon(float)), so flush cos(x) to 1.0f q[0] = 1.0f; // and flush sin(x/2)/x to 0.5 q[1] = 0.5f * Rv[0]; q[2] = 0.5f * Rv[1]; q[3] = 0.5f * Rv[2]; // This prevents division by zero, while retaining full accuracy } else { q[0] = cosf(angle * 0.5f); float scale = sinf(angle * 0.5f) / angle; q[1] = scale * Rv[0]; q[2] = scale * Rv[1]; q[3] = scale * Rv[2]; } Quaternion2R(q, R); } // ****** Vector Cross Product ******** void CrossProduct(const float v1[3], const float v2[3], float result[3]) { result[0] = v1[1] * v2[2] - v2[1] * v1[2]; result[1] = v2[0] * v1[2] - v1[0] * v2[2]; result[2] = v1[0] * v2[1] - v2[0] * v1[1]; } // ****** Vector Magnitude ******** float VectorMagnitude(const float v[3]) { return sqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); } /** * @brief Compute the inverse of a quaternion * @param [in][out] q The matrix to invert */ void quat_inverse(float q[4]) { q[1] = -q[1]; q[2] = -q[2]; q[3] = -q[3]; } /** * @brief Duplicate a quaternion * @param[in] q quaternion in * @param[out] qnew quaternion to copy to */ void quat_copy(const float q[4], float qnew[4]) { qnew[0] = q[0]; qnew[1] = q[1]; qnew[2] = q[2]; qnew[3] = q[3]; } /** * @brief Multiply two quaternions into a third * @param[in] q1 First quaternion * @param[in] q2 Second quaternion * @param[out] qout Output quaternion */ void quat_mult(const float q1[4], const float q2[4], float qout[4]) { qout[0] = q1[0] * q2[0] - q1[1] * q2[1] - q1[2] * q2[2] - q1[3] * q2[3]; qout[1] = q1[0] * q2[1] + q1[1] * q2[0] + q1[2] * q2[3] - q1[3] * q2[2]; qout[2] = q1[0] * q2[2] - q1[1] * q2[3] + q1[2] * q2[0] + q1[3] * q2[1]; qout[3] = q1[0] * q2[3] + q1[1] * q2[2] - q1[2] * q2[1] + q1[3] * q2[0]; } /** * @brief Rotate a vector by a rotation matrix * @param[in] R a three by three rotation matrix (first index is row) * @param[in] vec the source vector * @param[out] vec_out the output vector */ void rot_mult(float R[3][3], const float vec[3], float vec_out[3]) { vec_out[0] = R[0][0] * vec[0] + R[0][1] * vec[1] + R[0][2] * vec[2]; vec_out[1] = R[1][0] * vec[0] + R[1][1] * vec[1] + R[1][2] * vec[2]; vec_out[2] = R[2][0] * vec[0] + R[2][1] * vec[1] + R[2][2] * vec[2]; }