/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup AirspeedModule Airspeed Module * @brief Use attitude and velocity data to estimate airspeed * @{ * * @file imu_airspeed.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief IMU based airspeed calculation * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "openpilot.h" #include "velocitystate.h" #include "attitudestate.h" #include "airspeedsensor.h" #include "airspeedsettings.h" #include "imu_airspeed.h" #include "CoordinateConversions.h" #include "butterworth.h" #include // Private constants #define EPS 1e-6f #define EPS_REORIENTATION 1e-10f #define EPS_VELOCITY 1.f // Private types // structure with smoothed fuselage orientation, ground speed, wind vector and their changes in time struct IMUGlobals { // Butterworth filters struct ButterWorthDF2Filter filter; struct ButterWorthDF2Filter prefilter; float ff, ffV; // storage variables for Butterworth filter float pn1, pn2; float yn1, yn2; float v1n1, v1n2; float v2n1, v2n2; float v3n1, v3n2; float Vw1n1, Vw1n2; float Vw2n1, Vw2n2; float Vw3n1, Vw3n2; float Vw1, Vw2, Vw3; // storage variables for derivative calculation float pOld, yOld; float v1Old, v2Old, v3Old; }; // Private variables static struct IMUGlobals *imu; // Private functions // a simple square inline function based on multiplication faster than powf(x,2.0f) static inline float Sq(float x) { return x * x; } // ****** find pitch, yaw from quaternion ******** static void Quaternion2PY(const float q0, const float q1, const float q2, const float q3, float *pPtr, float *yPtr, bool principalArg) { float R13, R11, R12; const float q0s = q0 * q0; const float q1s = q1 * q1; const float q2s = q2 * q2; const float q3s = q3 * q3; R13 = 2.0f * (q1 * q3 - q0 * q2); R11 = q0s + q1s - q2s - q3s; R12 = 2.0f * (q1 * q2 + q0 * q3); *pPtr = asinf(-R13); // pitch always between -pi/2 to pi/2 const float y_ = atan2f(R12, R11); // use old yaw contained in y to add multiples of 2pi to have a continuous yaw if user does not want the principal argument // else simply copy atan2 result into result if (principalArg) { *yPtr = y_; } else { // calculate needed mutliples of 2pi to avoid jumps // number of cycles accumulated in old yaw const int32_t cycles = (int32_t)(*yPtr / M_2PI_F); // look for a jump by substracting the modulus, i.e. there is maximally one jump. // take slightly less than 2pi, because the jump will always be lower than 2pi const int32_t mod = (int32_t)((y_ - (*yPtr - cycles * M_2PI_F)) / (M_2PI_F * 0.8f)); *yPtr = y_ + M_2PI_F * (cycles - mod); } } static void PY2xB(const float p, const float y, float x[3]) { const float cosp = cosf(p); x[0] = cosp * cosf(y); x[1] = cosp * sinf(y); x[2] = -sinf(p); } static void PY2DeltaxB(const float p, const float y, const float xB[3], float x[3]) { const float cosp = cosf(p); x[0] = xB[0] - cosp * cosf(y); x[1] = xB[1] - cosp * sinf(y); x[2] = xB[2] - -sinf(p); } /* * Initialize function loads first data sets, and allocates memory for structure. */ void imu_airspeedInitialize(const AirspeedSettingsData *airspeedSettings) { // pre-filter frequency rate const float ff = (float)(airspeedSettings->SamplePeriod) / 1000.0f / airspeedSettings->IMUBasedEstimationLowPassPeriod1; // filter frequency rate const float ffV = (float)(airspeedSettings->SamplePeriod) / 1000.0f / airspeedSettings->IMUBasedEstimationLowPassPeriod2; // This method saves memory in case we don't use the module. imu = (struct IMUGlobals *)pios_malloc(sizeof(struct IMUGlobals)); // airspeed calculation variables VelocityStateInitialize(); VelocityStateData velData; VelocityStateGet(&velData); AttitudeStateData attData; AttitudeStateGet(&attData); // initialize filters for given ff and ffV InitButterWorthDF2Filter(ffV, &(imu->filter)); InitButterWorthDF2Filter(ff, &(imu->prefilter)); imu->ffV = ffV; imu->ff = ff; // get pitch and yaw from quarternion; principal argument for yaw Quaternion2PY(attData.q1, attData.q2, attData.q3, attData.q4, &(imu->pOld), &(imu->yOld), true); InitButterWorthDF2Values(imu->pOld, &(imu->prefilter), &(imu->pn1), &(imu->pn2)); InitButterWorthDF2Values(imu->yOld, &(imu->prefilter), &(imu->yn1), &(imu->yn2)); // use current NED speed as vOld vector and as initial value for filter imu->v1Old = velData.North; imu->v2Old = velData.East; imu->v3Old = velData.Down; InitButterWorthDF2Values(imu->v1Old, &(imu->prefilter), &(imu->v1n1), &(imu->v1n2)); InitButterWorthDF2Values(imu->v2Old, &(imu->prefilter), &(imu->v2n1), &(imu->v2n2)); InitButterWorthDF2Values(imu->v3Old, &(imu->prefilter), &(imu->v3n1), &(imu->v3n2)); // initial guess for windspeed is zero imu->Vw3 = imu->Vw2 = imu->Vw1 = 0.0f; InitButterWorthDF2Values(0.0f, &(imu->filter), &(imu->Vw1n1), &(imu->Vw1n2)); imu->Vw3n1 = imu->Vw2n1 = imu->Vw1n1; imu->Vw3n2 = imu->Vw2n2 = imu->Vw1n2; } /* * Calculate airspeed as a function of groundspeed and vehicle attitude. * Adapted from "IMU Wind Estimation (Theory)", by William Premerlani. * The idea is that V_gps=V_air+V_wind. If we assume wind constant, => * V_gps_2-V_gps_1 = (V_air_2+V_wind_2) -(V_air_1+V_wind_1) = V_air_2 - V_air_1. * If we assume airspeed constant, => V_gps_2-V_gps_1 = |V|*(f_2 - f1), * where "f" is the fuselage vector in earth coordinates. * We then solve for |V| = |V_gps_2-V_gps_1|/ |f_2 - f1|. * Adapted to: |V| = (V_gps_2-V_gps_1) dot (f2_-f_1) / |f_2 - f1|^2. * * See OP-1317 imu_wind_estimation.pdf for details on the adaptation * Need a low pass filter to filter out spikes in non coordinated maneuvers * A two step Butterworth second order filter is used. In the first step fuselage vector xB * and ground speed vector Vel are filtered. The fuselage vector is filtered through its pitch * and yaw to keep a unit length. After building the differenced dxB and dVel are produced and * the airspeed calculated. The calculated airspeed is filtered again with a Butterworth filter */ void imu_airspeedGet(AirspeedSensorData *airspeedData, const AirspeedSettingsData *airspeedSettings) { // pre-filter frequency rate const float ff = (float)(airspeedSettings->SamplePeriod) / 1000.0f / airspeedSettings->IMUBasedEstimationLowPassPeriod1; // filter frequency rate const float ffV = (float)(airspeedSettings->SamplePeriod) / 1000.0f / airspeedSettings->IMUBasedEstimationLowPassPeriod2; // check for a change in filter frequency rate. if yes, then actualize filter constants and intermediate values if (fabsf(ffV - imu->ffV) > EPS) { InitButterWorthDF2Filter(ffV, &(imu->filter)); InitButterWorthDF2Values(imu->Vw1, &(imu->filter), &(imu->Vw1n1), &(imu->Vw1n2)); InitButterWorthDF2Values(imu->Vw2, &(imu->filter), &(imu->Vw2n1), &(imu->Vw2n2)); InitButterWorthDF2Values(imu->Vw3, &(imu->filter), &(imu->Vw3n1), &(imu->Vw3n2)); } if (fabsf(ff - imu->ff) > EPS) { InitButterWorthDF2Filter(ff, &(imu->prefilter)); InitButterWorthDF2Values(imu->pOld, &(imu->prefilter), &(imu->pn1), &(imu->pn2)); InitButterWorthDF2Values(imu->yOld, &(imu->prefilter), &(imu->yn1), &(imu->yn2)); InitButterWorthDF2Values(imu->v1Old, &(imu->prefilter), &(imu->v1n1), &(imu->v1n2)); InitButterWorthDF2Values(imu->v2Old, &(imu->prefilter), &(imu->v2n1), &(imu->v2n2)); InitButterWorthDF2Values(imu->v3Old, &(imu->prefilter), &(imu->v3n1), &(imu->v3n2)); } float normVel2; float normDiffAttitude2; float dvdtDotdfdt; float xB[3]; // get values and conduct smoothing of ground speed and orientation independently of the calculation of airspeed { // Scoping to save memory AttitudeStateData attData; AttitudeStateGet(&attData); VelocityStateData velData; VelocityStateGet(&velData); float p = imu->pOld, y = imu->yOld; float dxB[3]; // get pitch and roll Euler angles from quaternion // do not calculate the principlal argument of yaw, i.e. use old yaw to add multiples of 2pi to have a continuous yaw Quaternion2PY(attData.q1, attData.q2, attData.q3, attData.q4, &p, &y, false); // filter pitch and roll Euler angles instead of fuselage vector to guarantee a unit length at all times p = FilterButterWorthDF2(p, &(imu->prefilter), &(imu->pn1), &(imu->pn2)); y = FilterButterWorthDF2(y, &(imu->prefilter), &(imu->yn1), &(imu->yn2)); // transform pitch and yaw into fuselage vector xB and xBold PY2xB(p, y, xB); // calculate change in fuselage vector by substraction of old value PY2DeltaxB(imu->pOld, imu->yOld, xB, dxB); // filter ground speed from VelocityState const float fv1n = FilterButterWorthDF2(velData.North, &(imu->prefilter), &(imu->v1n1), &(imu->v1n2)); const float fv2n = FilterButterWorthDF2(velData.East, &(imu->prefilter), &(imu->v2n1), &(imu->v2n2)); const float fv3n = FilterButterWorthDF2(velData.Down, &(imu->prefilter), &(imu->v3n1), &(imu->v3n2)); // calculate norm of ground speed normVel2 = Sq(fv1n) + Sq(fv2n) + Sq(fv3n); // calculate norm of orientation change normDiffAttitude2 = Sq(dxB[0]) + Sq(dxB[1]) + Sq(dxB[2]); // cauclate scalar product between groundspeed change and orientation change dvdtDotdfdt = (fv1n - imu->v1Old) * dxB[0] + (fv2n - imu->v2Old) * dxB[1] + (fv3n - imu->v3Old) * dxB[2]; // actualise old values imu->pOld = p; imu->yOld = y; imu->v1Old = fv1n; imu->v2Old = fv2n; imu->v3Old = fv3n; } // Some reorientation needed to be able to calculate airspeed, calculate only for sufficient velocity // a negative scalar product is a clear sign that we are not really able to calculate the airspeed // NOTE: normVel2 check against EPS_VELOCITY might make problems during hovering maneuvers in fixed wings if (normDiffAttitude2 > EPS_REORIENTATION && normVel2 > EPS_VELOCITY && dvdtDotdfdt > 0.f) { // Airspeed modulus: |v| = dv/dt * dxB/dt / |dxB/dt|^2 // airspeed is always REAL because normDiffAttitude2 > EPS_REORIENTATION > 0 and REAL dvdtDotdfdt const float airspeed = dvdtDotdfdt / normDiffAttitude2; // groundspeed = airspeed + wind ---> wind = groundspeed - airspeed const float wind[3] = { imu->v1Old - xB[0] * airspeed, imu->v2Old - xB[1] * airspeed, imu->v3Old - xB[2] * airspeed }; // filter raw wind imu->Vw1 = FilterButterWorthDF2(wind[0], &(imu->filter), &(imu->Vw1n1), &(imu->Vw1n2)); imu->Vw2 = FilterButterWorthDF2(wind[1], &(imu->filter), &(imu->Vw2n1), &(imu->Vw2n2)); imu->Vw3 = FilterButterWorthDF2(wind[2], &(imu->filter), &(imu->Vw3n1), &(imu->Vw3n2)); } // else leave wind estimation unchanged { // Scoping to save memory // airspeed = groundspeed - wind const float Vair[3] = { imu->v1Old - imu->Vw1, imu->v2Old - imu->Vw2, imu->v3Old - imu->Vw3 }; // project airspeed into fuselage vector airspeedData->CalibratedAirspeed = Vair[0] * xB[0] + Vair[1] * xB[1] + Vair[2] * xB[2]; } airspeedData->SensorConnected = AIRSPEEDSENSOR_SENSORCONNECTED_TRUE; AlarmsClear(SYSTEMALARMS_ALARM_AIRSPEED); } /** * @} * @} */