/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup AirspeedModule Airspeed Module * @brief Use GPS data to estimate airspeed * @{ * * @file gps_airspeed.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief Airspeed module, handles temperature and pressure readings from BMP085 * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "openpilot.h" #include "velocitystate.h" #include "attitudestate.h" #include "airspeedsensor.h" #include "airspeedsettings.h" #include "gps_airspeed.h" #include "CoordinateConversions.h" #include // Private constants #define GPS_AIRSPEED_BIAS_KP 0.1f // Needs to be settable in a UAVO #define GPS_AIRSPEED_BIAS_KI 0.1f // Needs to be settable in a UAVO #define SAMPLING_DELAY_MS_GPS 100 // Needs to be settable in a UAVO #define GPS_AIRSPEED_TIME_CONSTANT_MS 500.0f // Needs to be settable in a UAVO // Private types struct GPSGlobals { float RbeCol1_old[3]; float gpsVelOld_N; float gpsVelOld_E; float gpsVelOld_D; float oldAirspeed; }; // Private variables static struct GPSGlobals *gps; // Private functions /* * Initialize function loads first data sets, and allocates memory for structure. */ void gps_airspeedInitialize() { // This method saves memory in case we don't use the GPS module. gps = (struct GPSGlobals *)pvPortMalloc(sizeof(struct GPSGlobals)); // GPS airspeed calculation variables VelocityStateInitialize(); VelocityStateData gpsVelData; VelocityStateGet(&gpsVelData); gps->gpsVelOld_N = gpsVelData.North; gps->gpsVelOld_E = gpsVelData.East; gps->gpsVelOld_D = gpsVelData.Down; gps->oldAirspeed = 0.0f; AttitudeStateData attData; AttitudeStateGet(&attData); float Rbe[3][3]; float q[4] = { attData.q1, attData.q2, attData.q3, attData.q4 }; // Calculate rotation matrix Quaternion2R(q, Rbe); gps->RbeCol1_old[0] = Rbe[0][0]; gps->RbeCol1_old[1] = Rbe[0][1]; gps->RbeCol1_old[2] = Rbe[0][2]; } /* * Calculate airspeed as a function of GPS groundspeed and vehicle attitude. * From "IMU Wind Estimation (Theory)", by William Premerlani. * The idea is that V_gps=V_air+V_wind. If we assume wind constant, => * V_gps_2-V_gps_1 = (V_air_2+V_wind_2) -(V_air_1+V_wind_1) = V_air_2 - V_air_1. * If we assume airspeed constant, => V_gps_2-V_gps_1 = |V|*(f_2 - f1), * where "f" is the fuselage vector in earth coordinates. * We then solve for |V| = |V_gps_2-V_gps_1|/ |f_2 - f1|. */ void gps_airspeedGet(AirspeedSensorData *airspeedData, AirspeedSettingsData *airspeedSettings) { float Rbe[3][3]; { // Scoping to save memory. We really just need Rbe. AttitudeStateData attData; AttitudeStateGet(&attData); float q[4] = { attData.q1, attData.q2, attData.q3, attData.q4 }; // Calculate rotation matrix Quaternion2R(q, Rbe); } // Calculate the cos(angle) between the two fuselage basis vectors float cosDiff = (Rbe[0][0] * gps->RbeCol1_old[0]) + (Rbe[0][1] * gps->RbeCol1_old[1]) + (Rbe[0][2] * gps->RbeCol1_old[2]); // If there's more than a 5 degree difference between two fuselage measurements, then we have sufficient delta to continue. if (fabsf(cosDiff) < cosf(DEG2RAD(5.0f))) { VelocityStateData gpsVelData; VelocityStateGet(&gpsVelData); if (gpsVelData.North * gpsVelData.North + gpsVelData.East * gpsVelData.East + gpsVelData.Down * gpsVelData.Down < 1.0f) { airspeedData->CalibratedAirspeed = 0; airspeedData->SensorConnected = AIRSPEEDSENSOR_SENSORCONNECTED_FALSE; return; // do not calculate if gps velocity is insufficient... } // Calculate the norm^2 of the difference between the two GPS vectors float normDiffGPS2 = powf(gpsVelData.North - gps->gpsVelOld_N, 2.0f) + powf(gpsVelData.East - gps->gpsVelOld_E, 2.0f) + powf(gpsVelData.Down - gps->gpsVelOld_D, 2.0f); // Calculate the norm^2 of the difference between the two fuselage vectors float normDiffAttitude2 = powf(Rbe[0][0] - gps->RbeCol1_old[0], 2.0f) + powf(Rbe[0][1] - gps->RbeCol1_old[1], 2.0f) + powf(Rbe[0][2] - gps->RbeCol1_old[2], 2.0f); // Airspeed magnitude is the ratio between the two difference norms float airspeed = sqrtf(normDiffGPS2 / normDiffAttitude2); if (!IS_REAL(airspeedData->CalibratedAirspeed)) { airspeedData->CalibratedAirspeed = 0; airspeedData->SensorConnected = AIRSPEEDSENSOR_SENSORCONNECTED_FALSE; } else { // need a low pass filter to filter out spikes in non coordinated maneuvers airspeedData->CalibratedAirspeed = (1.0f - airspeedSettings->GroundSpeedBasedEstimationLowPassAlpha) * gps->oldAirspeed + airspeedSettings->GroundSpeedBasedEstimationLowPassAlpha * airspeed; gps->oldAirspeed = airspeedData->CalibratedAirspeed; airspeedData->SensorConnected = AIRSPEEDSENSOR_SENSORCONNECTED_TRUE; } // Save old variables for next pass gps->gpsVelOld_N = gpsVelData.North; gps->gpsVelOld_E = gpsVelData.East; gps->gpsVelOld_D = gpsVelData.Down; gps->RbeCol1_old[0] = Rbe[0][0]; gps->RbeCol1_old[1] = Rbe[0][1]; gps->RbeCol1_old[2] = Rbe[0][2]; } } /** * @} * @} */