/** ****************************************************************************** * @addtogroup PIOS PIOS Core hardware abstraction layer * @{ * @addtogroup PIOS_MPU6050 MPU6050 Functions * @brief Deals with the hardware interface to the 3-axis gyro * @{ * * @file pios_mpu050.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2011. * @brief MPU6050 3-axis gyor functions from INS * @see The GNU Public License (GPL) Version 3 * ****************************************************************************** */ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Project Includes */ #include "pios.h" #if defined(PIOS_INCLUDE_MPU6050) /* Global Variables */ /* Local Variables */ #define DEG_TO_RAD (M_PI / 180.0) static void PIOS_MPU6050_Config(struct pios_mpu6050_cfg const * cfg); static int32_t PIOS_MPU6050_Read(uint8_t address, uint8_t * buffer, uint8_t len); static int32_t PIOS_MPU6050_Write(uint8_t address, uint8_t buffer); #define PIOS_MPU6050_MAX_DOWNSAMPLE 10 static int16_t pios_mpu6050_buffer[PIOS_MPU6050_MAX_DOWNSAMPLE * sizeof(struct pios_mpu6050_data)]; static t_fifo_buffer pios_mpu6050_fifo; volatile bool mpu6050_first_read = true; volatile bool mpu6050_configured = false; volatile bool mpu6050_cb_ready = true; static struct pios_mpu6050_cfg const * cfg; /** * @brief Initialize the MPU6050 3-axis gyro sensor. * @return none */ void PIOS_MPU6050_Init(const struct pios_mpu6050_cfg * new_cfg) { cfg = new_cfg; fifoBuf_init(&pios_mpu6050_fifo, (uint8_t *) pios_mpu6050_buffer, sizeof(pios_mpu6050_buffer)); /* Configure EOC pin as input floating */ GPIO_Init(cfg->drdy.gpio, &cfg->drdy.init); /* Configure the End Of Conversion (EOC) interrupt */ SYSCFG_EXTILineConfig(cfg->eoc_exti.port_source, cfg->eoc_exti.pin_source); EXTI_Init(&cfg->eoc_exti.init); /* Enable and set EOC EXTI Interrupt to the lowest priority */ NVIC_Init(&cfg->eoc_irq.init); /* Configure the MPU6050 Sensor */ PIOS_MPU6050_Config(cfg); } /** * @brief Initialize the MPU6050 3-axis gyro sensor * \return none * \param[in] PIOS_MPU6050_ConfigTypeDef struct to be used to configure sensor. * */ static void PIOS_MPU6050_Config(struct pios_mpu6050_cfg const * cfg) { mpu6050_first_read = true; mpu6050_cb_ready = true; // Reset chip and fifo while (PIOS_MPU6050_Write(PIOS_MPU6050_USER_CTRL_REG, 0x01 | 0x02 | 0x04) != 0); PIOS_DELAY_WaituS(20); // FIFO storage while (PIOS_MPU6050_Write(PIOS_MPU6050_FIFO_EN_REG, cfg->Fifo_store) != 0); // Sample rate divider while (PIOS_MPU6050_Write(PIOS_MPU6050_SMPLRT_DIV_REG, cfg->Smpl_rate_div) != 0) ; // Digital low-pass filter and scale while (PIOS_MPU6050_Write(PIOS_MPU6050_DLPF_CFG_REG, cfg->filter) != 0) ; // Digital low-pass filter and scale while (PIOS_MPU6050_Write(PIOS_MPU6050_GYRO_CFG_REG, cfg->gyro_range) != 0) ; // Interrupt configuration while (PIOS_MPU6050_Write(PIOS_MPU6050_USER_CTRL_REG, cfg->User_ctl) != 0) ; // Interrupt configuration while (PIOS_MPU6050_Write(PIOS_MPU6050_PWR_MGMT_REG, cfg->Pwr_mgmt_clk) != 0) ; // Interrupt configuration while (PIOS_MPU6050_Write(PIOS_MPU6050_INT_CFG_REG, cfg->interrupt_cfg) != 0) ; // Interrupt configuration while (PIOS_MPU6050_Write(PIOS_MPU6050_INT_EN_REG, cfg->interrupt_en) != 0) ; mpu6050_configured = true; } /** * @brief Read current X, Z, Y values (in that order) * \param[out] int16_t array of size 3 to store X, Z, and Y magnetometer readings * \returns The number of samples remaining in the fifo */ int32_t PIOS_MPU6050_ReadGyros(struct pios_mpu6050_data * data) { uint8_t buf[6]; if(PIOS_MPU6050_Read(PIOS_MPU6050_GYRO_X_OUT_MSB, (uint8_t *) buf, sizeof(buf)) < 0) return -1; data->gyro_x = buf[0] << 8 | buf[1]; data->gyro_y = buf[2] << 8 | buf[3]; data->gyro_z = buf[4] << 8 | buf[5]; return 0; } /** * @brief Read the identification bytes from the MPU6050 sensor * \return ID read from MPU6050 or -1 if failure */ int32_t PIOS_MPU6050_ReadID() { uint8_t mpu6050_id; if(PIOS_MPU6050_Read(PIOS_MPU6050_WHOAMI, (uint8_t *) &mpu6050_id, 1) != 0) return -1; return mpu6050_id; } /** * \brief Reads the data from the MPU6050 FIFO * \param[out] buffer destination buffer * \param[in] len maximum number of bytes which should be read * \note This returns the data as X, Y, Z the temperature * \return number of bytes transferred if operation was successful * \return -1 if error during I2C transfer */ int32_t PIOS_MPU6050_ReadFifo(struct pios_mpu6050_data * buffer) { if(fifoBuf_getUsed(&pios_mpu6050_fifo) < sizeof(*buffer)) return -1; fifoBuf_getData(&pios_mpu6050_fifo, (uint8_t *) buffer, sizeof(*buffer)); return 0; } /** * @brief Reads one or more bytes from MPU6050 into a buffer * \param[in] address MPU6050 register address (depends on size) * \param[out] buffer destination buffer * \param[in] len number of bytes which should be read * \return 0 if operation was successful * \return -1 if error during I2C transfer * \return -2 if unable to claim i2c device */ static int32_t PIOS_MPU6050_Read(uint8_t address, uint8_t * buffer, uint8_t len) { uint8_t addr_buffer[] = { address, }; const struct pios_i2c_txn txn_list[] = { { .info = __func__, .addr = PIOS_MPU6050_I2C_ADDR, .rw = PIOS_I2C_TXN_WRITE, .len = sizeof(addr_buffer), .buf = addr_buffer, } , { .info = __func__, .addr = PIOS_MPU6050_I2C_ADDR, .rw = PIOS_I2C_TXN_READ, .len = len, .buf = buffer, } }; return PIOS_I2C_Transfer(PIOS_I2C_GYRO_ADAPTER, txn_list, NELEMENTS(txn_list)); } // Must allocate on stack to be persistent static uint8_t cb_addr_buffer[] = { 0, }; static struct pios_i2c_txn cb_txn_list[] = { { .addr = PIOS_MPU6050_I2C_ADDR, .rw = PIOS_I2C_TXN_WRITE, .len = sizeof(cb_addr_buffer), .buf = cb_addr_buffer, } , { .addr = PIOS_MPU6050_I2C_ADDR, .rw = PIOS_I2C_TXN_READ, .len = 0, .buf = 0, } }; static int32_t PIOS_MPU6050_Read_Callback(uint8_t address, uint8_t * buffer, uint8_t len, void *callback) { cb_addr_buffer[0] = address; cb_txn_list[0].info = __func__, cb_txn_list[1].info = __func__; cb_txn_list[1].len = len; cb_txn_list[1].buf = buffer; return PIOS_I2C_Transfer_Callback(PIOS_I2C_GYRO_ADAPTER, cb_txn_list, NELEMENTS(cb_txn_list), callback); } /** * @brief Writes one or more bytes to the MPU6050 * \param[in] address Register address * \param[in] buffer source buffer * \return 0 if operation was successful * \return -1 if error during I2C transfer * \return -2 if unable to claim i2c device */ static int32_t PIOS_MPU6050_Write(uint8_t address, uint8_t buffer) { uint8_t data[] = { address, buffer, }; const struct pios_i2c_txn txn_list[] = { { .info = __func__, .addr = PIOS_MPU6050_I2C_ADDR, .rw = PIOS_I2C_TXN_WRITE, .len = sizeof(data), .buf = data, } , }; return PIOS_I2C_Transfer(PIOS_I2C_GYRO_ADAPTER, txn_list, NELEMENTS(txn_list)); } float PIOS_MPU6050_GetScale() { switch (cfg->gyro_range) { case PIOS_MPU6050_SCALE_250_DEG: return 1.0f / 131.0f; case PIOS_MPU6050_SCALE_500_DEG: return 1.0f / 65.5f; case PIOS_MPU6050_SCALE_1000_DEG: return 1.0f / 32.8f; case PIOS_MPU6050_SCALE_2000_DEG: return 1.0f / 16.4f; } return 0; } /** * @brief Run self-test operation. * \return 0 if test succeeded * \return non-zero value if test succeeded */ uint8_t PIOS_MPU6050_Test(void) { /* Verify that ID matches (MPU6050 ID is 0x69) */ int32_t mpu6050_id = PIOS_MPU6050_ReadID(); if(mpu6050_id < 0) return -1; if(mpu6050_id != PIOS_MPU6050_I2C_ADDR & 0xFE) return -2; return 0; } static uint8_t mpu6050_read_buffer[sizeof(struct pios_mpu6050_data)]; // Right now using ,Y,Z,fifo_footer static void MPU6050_callback() { struct pios_mpu6050_data data; if(fifoBuf_getFree(&pios_mpu6050_fifo) < sizeof(data)) goto out; data.temperature = mpu6050_read_buffer[0] << 8 | mpu6050_read_buffer[1]; data.gyro_x = mpu6050_read_buffer[2] << 8 | mpu6050_read_buffer[3]; data.gyro_y = mpu6050_read_buffer[4] << 8 | mpu6050_read_buffer[5]; data.gyro_z = mpu6050_read_buffer[6] << 8 | mpu6050_read_buffer[7]; fifoBuf_putData(&pios_mpu6050_fifo, (uint8_t *) &data, sizeof(data)); out: mpu6050_cb_ready = true; } /** * @brief IRQ Handler */ uint32_t mpu6050_irq = 0; uint16_t fifo_level; uint8_t fifo_level_data[2]; uint32_t cb_not_ready = 0; void PIOS_MPU6050_IRQHandler(void) { mpu6050_irq++; if(!mpu6050_configured) return; //PIOS_Assert(MPU6050_cb_ready); if(!mpu6050_cb_ready) { PIOS_LED_Toggle(LED2); cb_not_ready++; return; } // Leave footer in buffer PIOS_MPU6050_Read_Callback(PIOS_MPU6050_FIFO_REG, mpu6050_read_buffer, sizeof(mpu6050_read_buffer), MPU6050_callback); } #if defined(PIOS_INCLUDE_MPU6050) /** * The physical IRQ handler * Soon this will be generic in pios_exti and the BMA180 will register * against it. Right now this is crap! */ void EXTI1_IRQHandler(void) { if (EXTI_GetITStatus(EXTI_Line1) != RESET) { PIOS_MPU6050_IRQHandler(); EXTI_ClearITPendingBit(EXTI_Line1); } } #endif #endif /** * @} * @} */