/** ****************************************************************************** * @addtogroup OpenPilotModules OpenPilot Modules * @{ * @addtogroup ActuatorModule Actuator Module * @brief Compute servo/motor settings based on @ref ActuatorDesired "desired actuator positions" and aircraft type. * This is where all the mixing of channels is computed. * @{ * * @file actuator.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010. * @brief Actuator module. Drives the actuators (servos, motors etc). * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "openpilot.h" #include "accessorydesired.h" #include "actuator.h" #include "actuatorsettings.h" #include "systemsettings.h" #include "actuatordesired.h" #include "actuatorcommand.h" #include "flightstatus.h" #include "mixersettings.h" #include "mixerstatus.h" // Private constants #define MAX_QUEUE_SIZE 2 #if defined(PIOS_ACTUATOR_STACK_SIZE) #define STACK_SIZE_BYTES PIOS_ACTUATOR_STACK_SIZE #else #define STACK_SIZE_BYTES 1312 #endif #define TASK_PRIORITY (tskIDLE_PRIORITY+4) #define FAILSAFE_TIMEOUT_MS 100 #define MAX_MIX_ACTUATORS ACTUATORCOMMAND_CHANNEL_NUMELEM // Private types // Private variables static xQueueHandle queue; static xTaskHandle taskHandle; static float lastResult[MAX_MIX_ACTUATORS]={0,0,0,0,0,0,0,0}; static float lastFilteredResult[MAX_MIX_ACTUATORS]={0,0,0,0,0,0,0,0}; static float filterAccumulator[MAX_MIX_ACTUATORS]={0,0,0,0,0,0,0,0}; // Private functions static void actuatorTask(void* parameters); static void actuator_update_rate(UAVObjEvent *); static int16_t scaleChannel(float value, int16_t max, int16_t min, int16_t neutral); static void setFailsafe(); static float MixerCurve(const float throttle, const float* curve); static bool set_channel(uint8_t mixer_channel, uint16_t value); float ProcessMixer(const int index, const float curve1, const float curve2, MixerSettingsData* mixerSettings, ActuatorDesiredData* desired, const float period); //this structure is equivalent to the UAVObjects for one mixer. typedef struct { uint8_t type; int8_t matrix[5]; } __attribute__((packed)) Mixer_t; /** * @brief Module initialization * @return 0 */ int32_t ActuatorStart() { // Start main task xTaskCreate(actuatorTask, (signed char*)"Actuator", STACK_SIZE_BYTES/4, NULL, TASK_PRIORITY, &taskHandle); TaskMonitorAdd(TASKINFO_RUNNING_ACTUATOR, taskHandle); PIOS_WDG_RegisterFlag(PIOS_WDG_ACTUATOR); return 0; } /** * @brief Module initialization * @return 0 */ int32_t ActuatorInitialize() { // Create object queue queue = xQueueCreate(MAX_QUEUE_SIZE, sizeof(UAVObjEvent)); // Listen for ExampleObject1 updates ActuatorDesiredConnectQueue(queue); // If settings change, update the output rate ActuatorSettingsConnectCallback(actuator_update_rate); return 0; } module_initcall(ActuatorInitialize, 0, ActuatorStart, 0, MODULE_EXEC_NOORDER_FLAG); /** * @brief Main Actuator module task * * Universal matrix based mixer for VTOL, helis and fixed wing. * Converts desired roll,pitch,yaw and throttle to servo/ESC outputs. * * Because of how the Throttle ranges from 0 to 1, the motors should too! * * Note this code depends on the UAVObjects for the mixers being all being the same * and in sequence. If you change the object definition, make sure you check the code! * * @return -1 if error, 0 if success */ static void actuatorTask(void* parameters) { UAVObjEvent ev; portTickType lastSysTime; portTickType thisSysTime; float dT = 0.0f; ActuatorCommandData command; MixerSettingsData mixerSettings; ActuatorDesiredData desired; MixerStatusData mixerStatus; FlightStatusData flightStatus; uint8_t MotorsSpinWhileArmed; int16_t ChannelMax[ACTUATORCOMMAND_CHANNEL_NUMELEM]; int16_t ChannelMin[ACTUATORCOMMAND_CHANNEL_NUMELEM]; int16_t ChannelNeutral[ACTUATORCOMMAND_CHANNEL_NUMELEM]; uint16_t ChannelUpdateFreq[ACTUATORSETTINGS_CHANNELUPDATEFREQ_NUMELEM]; ActuatorSettingsChannelUpdateFreqGet(ChannelUpdateFreq); PIOS_Servo_SetHz(&ChannelUpdateFreq[0], ACTUATORSETTINGS_CHANNELUPDATEFREQ_NUMELEM); float * status = (float *)&mixerStatus; //access status objects as an array of floats // Go to the neutral (failsafe) values until an ActuatorDesired update is received setFailsafe(); // Main task loop lastSysTime = xTaskGetTickCount(); while (1) { PIOS_WDG_UpdateFlag(PIOS_WDG_ACTUATOR); // Wait until the ActuatorDesired object is updated, if a timeout then go to failsafe if ( xQueueReceive(queue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE ) { setFailsafe(); continue; } // Check how long since last update thisSysTime = xTaskGetTickCount(); if(thisSysTime > lastSysTime) // reuse dt in case of wraparound dT = (thisSysTime - lastSysTime) / portTICK_RATE_MS / 1000.0f; lastSysTime = thisSysTime; FlightStatusGet(&flightStatus); MixerStatusGet(&mixerStatus); MixerSettingsGet (&mixerSettings); ActuatorDesiredGet(&desired); ActuatorCommandGet(&command); ActuatorSettingsMotorsSpinWhileArmedGet(&MotorsSpinWhileArmed); ActuatorSettingsChannelMaxGet(ChannelMax); ActuatorSettingsChannelMinGet(ChannelMin); ActuatorSettingsChannelNeutralGet(ChannelNeutral); int nMixers = 0; Mixer_t * mixers = (Mixer_t *)&mixerSettings.Mixer1Type; for(int ct=0; ct < MAX_MIX_ACTUATORS; ct++) { if(mixers[ct].type != MIXERSETTINGS_MIXER1TYPE_DISABLED) { nMixers ++; } } if((nMixers < 2) && !ActuatorCommandReadOnly(dummy)) //Nothing can fly with less than two mixers. { setFailsafe(); // So that channels like PWM buzzer keep working continue; } AlarmsClear(SYSTEMALARMS_ALARM_ACTUATOR); bool armed = flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED; bool positiveThrottle = desired.Throttle >= 0.00; bool spinWhileArmed = MotorsSpinWhileArmed == ACTUATORSETTINGS_MOTORSSPINWHILEARMED_TRUE; float curve1 = MixerCurve(desired.Throttle,mixerSettings.ThrottleCurve1); //The source for the secondary curve is selectable float curve2 = 0; AccessoryDesiredData accessory; switch(mixerSettings.Curve2Source) { case MIXERSETTINGS_CURVE2SOURCE_THROTTLE: curve2 = MixerCurve(desired.Throttle,mixerSettings.ThrottleCurve2); break; case MIXERSETTINGS_CURVE2SOURCE_ROLL: curve2 = MixerCurve(desired.Roll,mixerSettings.ThrottleCurve2); break; case MIXERSETTINGS_CURVE2SOURCE_PITCH: curve2 = MixerCurve(desired.Pitch,mixerSettings.ThrottleCurve2); break; case MIXERSETTINGS_CURVE2SOURCE_YAW: curve2 = MixerCurve(desired.Yaw,mixerSettings.ThrottleCurve2); break; case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY0: case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY1: case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY2: case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY3: case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY4: case MIXERSETTINGS_CURVE2SOURCE_ACCESSORY5: if(AccessoryDesiredInstGet(mixerSettings.Curve2Source - MIXERSETTINGS_CURVE2SOURCE_ACCESSORY0,&accessory) == 0) curve2 = MixerCurve(accessory.AccessoryVal,mixerSettings.ThrottleCurve2); else curve2 = 0; break; } for(int ct=0; ct < MAX_MIX_ACTUATORS; ct++) { if(mixers[ct].type == MIXERSETTINGS_MIXER1TYPE_DISABLED) { // Set to minimum if disabled. This is not the same as saying PWM pulse = 0 us status[ct] = -1; command.Channel[ct] = 0; continue; } status[ct] = ProcessMixer(ct, curve1, curve2, &mixerSettings, &desired, dT); // Motors have additional protection for when to be on if(mixers[ct].type == MIXERSETTINGS_MIXER1TYPE_MOTOR) { // If not armed or motors aren't meant to spin all the time if( !armed || (!spinWhileArmed && !positiveThrottle)) { filterAccumulator[ct] = 0; lastResult[ct] = 0; status[ct] = -1; //force min throttle } // If armed meant to keep spinning, else if ((spinWhileArmed && !positiveThrottle) || (status[ct] < 0) ) status[ct] = 0; } // If an accessory channel is selected for direct bypass mode // In this configuration the accessory channel is scaled and mapped // directly to output. Note: THERE IS NO SAFETY CHECK HERE FOR ARMING // these also will not be updated in failsafe mode. I'm not sure what // the correct behavior is since it seems domain specific. I don't love // this code if( (mixers[ct].type >= MIXERSETTINGS_MIXER1TYPE_ACCESSORY0) && (mixers[ct].type <= MIXERSETTINGS_MIXER1TYPE_ACCESSORY2)) { if(AccessoryDesiredInstGet(mixers[ct].type - MIXERSETTINGS_MIXER1TYPE_ACCESSORY0,&accessory) == 0) status[ct] = accessory.AccessoryVal; else status[ct] = -1; } command.Channel[ct] = scaleChannel(status[ct], ChannelMax[ct], ChannelMin[ct], ChannelNeutral[ct]); } MixerStatusSet(&mixerStatus); // Store update time command.UpdateTime = 1000*dT; if(1000*dT > command.MaxUpdateTime) command.MaxUpdateTime = 1000*dT; // Update output object ActuatorCommandSet(&command); // Update in case read only (eg. during servo configuration) ActuatorCommandGet(&command); // Update servo outputs bool success = true; for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n) { success &= set_channel(n, command.Channel[n]); } if(!success) { command.NumFailedUpdates++; ActuatorCommandSet(&command); AlarmsSet(SYSTEMALARMS_ALARM_ACTUATOR, SYSTEMALARMS_ALARM_CRITICAL); } } } /** *Process mixing for one actuator */ float ProcessMixer(const int index, const float curve1, const float curve2, MixerSettingsData* mixerSettings, ActuatorDesiredData* desired, const float period) { Mixer_t * mixers = (Mixer_t *)&mixerSettings->Mixer1Type; //pointer to array of mixers in UAVObjects Mixer_t * mixer = &mixers[index]; float result = ((mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_THROTTLECURVE1] / 128.0f) * curve1) + ((mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_THROTTLECURVE2] / 128.0f) * curve2) + ((mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_ROLL] / 128.0f) * desired->Roll) + ((mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_PITCH] / 128.0f) * desired->Pitch) + ((mixer->matrix[MIXERSETTINGS_MIXER1VECTOR_YAW] / 128.0f) * desired->Yaw); if(mixer->type == MIXERSETTINGS_MIXER1TYPE_MOTOR) { if(result < 0) //idle throttle { result = 0; } //feed forward float accumulator = filterAccumulator[index]; accumulator += (result - lastResult[index]) * mixerSettings->FeedForward; lastResult[index] = result; result += accumulator; if(period !=0) { if(accumulator > 0) { float filter = mixerSettings->AccelTime / period; if(filter <1) { filter = 1; } accumulator -= accumulator / filter; }else { float filter = mixerSettings->DecelTime / period; if(filter <1) { filter = 1; } accumulator -= accumulator / filter; } } filterAccumulator[index] = accumulator; result += accumulator; //acceleration limit float dt = result - lastFilteredResult[index]; float maxDt = mixerSettings->MaxAccel * period; if(dt > maxDt) //we are accelerating too hard { result = lastFilteredResult[index] + maxDt; } lastFilteredResult[index] = result; } return(result); } /** *Interpolate a throttle curve. Throttle input should be in the range 0 to 1. *Output is in the range 0 to 1. */ #define MIXER_CURVE_ENTRIES 5 static float MixerCurve(const float throttle, const float* curve) { float scale = throttle * MIXER_CURVE_ENTRIES; int idx1 = scale; scale -= (float)idx1; //remainder if(curve[0] < -1) { return(throttle); } if (idx1 < 0) { idx1 = 0; //clamp to lowest entry in table scale = 0; } int idx2 = idx1 + 1; if(idx2 >= MIXER_CURVE_ENTRIES) { idx2 = MIXER_CURVE_ENTRIES -1; //clamp to highest entry in table if(idx1 >= MIXER_CURVE_ENTRIES) { idx1 = MIXER_CURVE_ENTRIES -1; } } return((curve[idx1] * (1 - scale)) + (curve[idx2] * scale)); } /** * Convert channel from -1/+1 to servo pulse duration in microseconds */ static int16_t scaleChannel(float value, int16_t max, int16_t min, int16_t neutral) { int16_t valueScaled; // Scale if ( value >= 0.0) { valueScaled = (int16_t)(value*((float)(max-neutral))) + neutral; } else { valueScaled = (int16_t)(value*((float)(neutral-min))) + neutral; } if (max>min) { if( valueScaled > max ) valueScaled = max; if( valueScaled < min ) valueScaled = min; } else { if( valueScaled < max ) valueScaled = max; if( valueScaled > min ) valueScaled = min; } return valueScaled; } /** * Set actuator output to the neutral values (failsafe) */ static void setFailsafe() { /* grab only the modules parts that we are going to use */ int16_t ChannelMin[ACTUATORCOMMAND_CHANNEL_NUMELEM]; ActuatorSettingsChannelMinGet(ChannelMin); int16_t ChannelNeutral[ACTUATORCOMMAND_CHANNEL_NUMELEM]; ActuatorSettingsChannelNeutralGet(ChannelNeutral); int16_t Channel[ACTUATORCOMMAND_CHANNEL_NUMELEM]; ActuatorCommandChannelGet(Channel); MixerSettingsData mixerSettings; MixerSettingsGet (&mixerSettings); Mixer_t * mixers = (Mixer_t *)&mixerSettings.Mixer1Type; //pointer to array of mixers in UAVObjects // Reset ActuatorCommand to safe values for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n) { if(mixers[n].type == MIXERSETTINGS_MIXER1TYPE_MOTOR) { Channel[n] = ChannelMin[n]; } else if(mixers[n].type == MIXERSETTINGS_MIXER1TYPE_SERVO) { Channel[n] = ChannelNeutral[n]; } else { Channel[n] = 0; } } // Set alarm AlarmsSet(SYSTEMALARMS_ALARM_ACTUATOR, SYSTEMALARMS_ALARM_CRITICAL); // Update servo outputs for (int n = 0; n < ACTUATORCOMMAND_CHANNEL_NUMELEM; ++n) { set_channel(n, Channel[n]); } // Update output object's parts that we changed ActuatorCommandChannelGet(Channel); } /** * @brief Update the servo update rate */ static void actuator_update_rate(UAVObjEvent * ev) { uint16_t ChannelUpdateFreq[ACTUATORSETTINGS_CHANNELUPDATEFREQ_NUMELEM]; if ( ev->obj == ActuatorSettingsHandle() ) { ActuatorSettingsChannelUpdateFreqGet(ChannelUpdateFreq); PIOS_Servo_SetHz(&ChannelUpdateFreq[0], ACTUATORSETTINGS_CHANNELUPDATEFREQ_NUMELEM); } } #if defined(ARCH_POSIX) || defined(ARCH_WIN32) static bool set_channel(uint8_t mixer_channel, uint16_t value) { return true; } #else static bool set_channel(uint8_t mixer_channel, uint16_t value) { ActuatorSettingsData settings; ActuatorSettingsGet(&settings); switch(settings.ChannelType[mixer_channel]) { case ACTUATORSETTINGS_CHANNELTYPE_PWMALARMBUZZER: { // This is for buzzers that take a PWM input static uint32_t currBuzzTune = 0; static uint32_t currBuzzTuneState; uint32_t bewBuzzTune; // Decide what tune to play if (AlarmsGet(SYSTEMALARMS_ALARM_BATTERY) > SYSTEMALARMS_ALARM_WARNING) { bewBuzzTune = 0b11110110110000; // pause, short, short, short, long } else if (AlarmsGet(SYSTEMALARMS_ALARM_GPS) >= SYSTEMALARMS_ALARM_WARNING) { bewBuzzTune = 0x80000000; // pause, short } else { bewBuzzTune = 0; } // Do we need to change tune? if (bewBuzzTune != currBuzzTune) { currBuzzTune = bewBuzzTune; currBuzzTuneState = currBuzzTune; } // Play tune bool buzzOn = false; static portTickType lastSysTime = 0; portTickType thisSysTime = xTaskGetTickCount(); portTickType dT = 0; // For now, only look at the battery alarm, because functions like AlarmsHasCritical() can block for some time; to be discussed if (currBuzzTune) { if(thisSysTime > lastSysTime) dT = thisSysTime - lastSysTime; buzzOn = (currBuzzTuneState&1); // Buzz when the LS bit is 1 if (dT > 80) { // Go to next bit in alarm_seq_state currBuzzTuneState >>= 1; if (currBuzzTuneState == 0) currBuzzTuneState = currBuzzTune; // All done, re-start the tune lastSysTime = thisSysTime; } } PIOS_Servo_Set( settings.ChannelAddr[mixer_channel], buzzOn?settings.ChannelMax[mixer_channel]:settings.ChannelMin[mixer_channel]); return true; } case ACTUATORSETTINGS_CHANNELTYPE_PWM: PIOS_Servo_Set(settings.ChannelAddr[mixer_channel], value); return true; #if defined(PIOS_INCLUDE_I2C_ESC) case ACTUATORSETTINGS_CHANNELTYPE_MK: return PIOS_SetMKSpeed(settings.ChannelAddr[mixer_channel],value); case ACTUATORSETTINGS_CHANNELTYPE_ASTEC4: return PIOS_SetAstec4Speed(settings.ChannelAddr[mixer_channel],value); break; #endif default: return false; } return false; } #endif /** * @} * @} */