/** ****************************************************************************** * @addtogroup OpenPilot Math Utilities * @{ * @addtogroup Sine and cosine methods that use a cached lookup table * @{ * * @file pid.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief Methods to work with PID structure * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "openpilot.h" #include "pid.h" #define F_PI ((float) M_PI) //! Private method static float bound(float val, float range); //! Store the shared time constant for the derivative cutoff. static float deriv_tau = 7.9577e-3f; //! Store the setpoint weight to apply for the derivative term static float deriv_gamma = 1.0; /** * Update the PID computation * @param[in] pid The PID struture which stores temporary information * @param[in] err The error term * @param[in] dT The time step * @returns Output the computed controller value */ float pid_apply(struct pid *pid, const float err, float dT) { // Scale up accumulator by 1000 while computing to avoid losing precision pid->iAccumulator += err * (pid->i * dT * 1000.0f); pid->iAccumulator = bound(pid->iAccumulator, pid->iLim * 1000.0f); // Calculate DT1 term float diff = (err - pid->lastErr); float dterm = 0; pid->lastErr = err; if(pid->d && dT) { dterm = pid->lastDer + dT / ( dT + deriv_tau) * ((diff * pid->d / dT) - pid->lastDer); pid->lastDer = dterm; // ^ set constant to 1/(2*pi*f_cutoff) } // 7.9577e-3 means 20 Hz f_cutoff return ((err * pid->p) + pid->iAccumulator / 1000.0f + dterm); } /** * Update the PID computation with setpoint weighting on the derivative * @param[in] pid The PID struture which stores temporary information * @param[in] setpoint The setpoint to use * @param[in] measured The measured value of output * @param[in] dT The time step * @returns Output the computed controller value * * This version of apply uses setpoint weighting for the derivative component so the gain * on the gyro derivative can be different than the gain on the setpoint derivative */ float pid_apply_setpoint(struct pid *pid, const float setpoint, const float measured, float dT) { float err = setpoint - measured; // Scale up accumulator by 1000 while computing to avoid losing precision pid->iAccumulator += err * (pid->i * dT * 1000.0f); pid->iAccumulator = bound(pid->iAccumulator, pid->iLim * 1000.0f); // Calculate DT1 term, float dterm = 0; float diff = ((deriv_gamma * setpoint - measured) - pid->lastErr); pid->lastErr = (deriv_gamma * setpoint - measured); if(pid->d && dT) { dterm = pid->lastDer + dT / ( dT + deriv_tau) * ((diff * pid->d / dT) - pid->lastDer); pid->lastDer = dterm; // ^ set constant to 1/(2*pi*f_cutoff) } // 7.9577e-3 means 20 Hz f_cutoff return ((err * pid->p) + pid->iAccumulator / 1000.0f + dterm); } /** * Reset a bit * @param[in] pid The pid to reset */ void pid_zero(struct pid *pid) { if (!pid) return; pid->iAccumulator = 0; pid->lastErr = 0; pid->lastDer = 0; } /** * @brief Configure the common terms that alter ther derivative * @param[in] cutoff The cutoff frequency (in Hz) * @param[in] gamma The gamma term for setpoint shaping (unsused now) */ void pid_configure_derivative(float cutoff, float g) { deriv_tau = 1.0f / (2 * F_PI * cutoff); deriv_gamma = g; } /** * Configure the settings for a pid structure * @param[out] pid The PID structure to configure * @param[in] p The proportional term * @param[in] i The integral term * @param[in] d The derivative term */ void pid_configure(struct pid *pid, float p, float i, float d, float iLim) { if (!pid) return; pid->p = p; pid->i = i; pid->d = d; pid->iLim = iLim; } /** * Bound input value between limits */ static float bound(float val, float range) { if(val < -range) { val = -range; } else if(val > range) { val = range; } return val; }