/** ****************************************************************************** * * @file paths.c * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012. * @brief Library path manipulation * * @see The GNU Public License (GPL) Version 3 * *****************************************************************************/ /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "pios.h" #include "paths.h" #include "uavobjectmanager.h" // <--. #include "pathdesired.h" //<-- needed only for correct ENUM macro usage with path modes (PATHDESIRED_MODE_xxx, // no direct UAVObject usage allowed in this file // private functions static void path_endpoint( float * start_point, float * end_point, float * cur_point, struct path_status * status); static void path_vector( float * start_point, float * end_point, float * cur_point, struct path_status * status); static void path_circle(float * start_point, float * end_point, float * cur_point, struct path_status * status, bool clockwise); /** * @brief Compute progress along path and deviation from it * @param[in] start_point Starting point * @param[in] end_point Ending point * @param[in] cur_point Current location * @param[in] mode Path following mode * @param[out] status Structure containing progress along path and deviation */ void path_progress(float * start_point, float * end_point, float * cur_point, struct path_status * status, uint8_t mode) { switch(mode) { case PATHDESIRED_MODE_FLYVECTOR: case PATHDESIRED_MODE_DRIVEVECTOR: return path_vector(start_point, end_point, cur_point, status); break; case PATHDESIRED_MODE_FLYCIRCLERIGHT: case PATHDESIRED_MODE_DRIVECIRCLERIGHT: return path_circle(start_point, end_point, cur_point, status, 1); break; case PATHDESIRED_MODE_FLYCIRCLELEFT: case PATHDESIRED_MODE_DRIVECIRCLELEFT: return path_circle(start_point, end_point, cur_point, status, 0); break; case PATHDESIRED_MODE_FLYENDPOINT: case PATHDESIRED_MODE_DRIVEENDPOINT: default: // use the endpoint as default failsafe if called in unknown modes return path_endpoint(start_point, end_point, cur_point, status); break; } } /** * @brief Compute progress towards endpoint. Deviation equals distance * @param[in] start_point Starting point * @param[in] end_point Ending point * @param[in] cur_point Current location * @param[out] status Structure containing progress along path and deviation */ static void path_endpoint( float * start_point, float * end_point, float * cur_point, struct path_status * status) { float path_north, path_east, diff_north, diff_east; float dist_path, dist_diff; // we do not correct in this mode status->correction_direction[0] = status->correction_direction[1] = 0; // Distance to go path_north = end_point[0] - start_point[0]; path_east = end_point[1] - start_point[1]; // Current progress location relative to end diff_north = end_point[0] - cur_point[0]; diff_east = end_point[1] - cur_point[1]; dist_diff = sqrtf( diff_north * diff_north + diff_east * diff_east ); dist_path = sqrtf( path_north * path_north + path_east * path_east ); if (dist_diff < 1e-6f ) { status->fractional_progress = 1; status->error = 0; status->path_direction[0] = status->path_direction[1] = 0; return; } status->fractional_progress = 1 - dist_diff / (1 + dist_path); status->error = dist_diff; // Compute direction to travel status->path_direction[0] = diff_north / dist_diff; status->path_direction[1] = diff_east / dist_diff; } /** * @brief Compute progress along path and deviation from it * @param[in] start_point Starting point * @param[in] end_point Ending point * @param[in] cur_point Current location * @param[out] status Structure containing progress along path and deviation */ static void path_vector( float * start_point, float * end_point, float * cur_point, struct path_status * status) { float path_north, path_east, diff_north, diff_east; float dist_path; float dot; float normal[2]; // Distance to go path_north = end_point[0] - start_point[0]; path_east = end_point[1] - start_point[1]; // Current progress location relative to start diff_north = cur_point[0] - start_point[0]; diff_east = cur_point[1] - start_point[1]; dot = path_north * diff_north + path_east * diff_east; dist_path = sqrtf( path_north * path_north + path_east * path_east ); if (dist_path < 1e-6f){ // if the path is too short, we cannot determine vector direction. // Fly towards the endpoint to prevent flying away, // but assume progress=1 either way. path_endpoint( start_point, end_point, cur_point, status ); status->fractional_progress = 1; return; } // Compute the normal to the path normal[0] = -path_east / dist_path; normal[1] = path_north / dist_path; status->fractional_progress = dot / (dist_path * dist_path); status->error = normal[0] * diff_north + normal[1] * diff_east; // Compute direction to correct error status->correction_direction[0] = (status->error > 0) ? -normal[0] : normal[0]; status->correction_direction[1] = (status->error > 0) ? -normal[1] : normal[1]; // Now just want magnitude of error status->error = fabs(status->error); // Compute direction to travel status->path_direction[0] = path_north / dist_path; status->path_direction[1] = path_east / dist_path; } /** * @brief Compute progress along circular path and deviation from it * @param[in] start_point Starting point * @param[in] end_point Center point * @param[in] cur_point Current location * @param[out] status Structure containing progress along path and deviation */ static void path_circle(float * start_point, float * end_point, float * cur_point, struct path_status * status, bool clockwise) { float radius_north, radius_east, diff_north, diff_east; float radius,cradius; float normal[2]; // Radius radius_north = end_point[0] - start_point[0]; radius_east = end_point[1] - start_point[1]; // Current location relative to center diff_north = cur_point[0] - end_point[0]; diff_east = cur_point[1] - end_point[1]; radius = sqrtf( radius_north * radius_north + radius_east * radius_east ); cradius = sqrtf( diff_north * diff_north + diff_east * diff_east ); if (cradius < 1e-6f) { // cradius is zero, just fly somewhere and make sure correction is still a normal status->fractional_progress = 1; status->error = radius; status->correction_direction[0] = 0; status->correction_direction[1] = 1; status->path_direction[0] = 1; status->path_direction[1] = 0; return; } if (clockwise) { // Compute the normal to the radius clockwise normal[0] = -diff_east / cradius; normal[1] = diff_north / cradius; } else { // Compute the normal to the radius counter clockwise normal[0] = diff_east / cradius; normal[1] = -diff_north / cradius; } status->fractional_progress = (clockwise?1:-1) * atan2f( diff_north, diff_east) - atan2f( radius_north, radius_east); // error is current radius minus wanted radius - positive if too close status->error = radius - cradius; // Compute direction to correct error status->correction_direction[0] = (status->error>0?1:-1) * diff_north / cradius; status->correction_direction[1] = (status->error>0?1:-1) * diff_east / cradius; // Compute direction to travel status->path_direction[0] = normal[0]; status->path_direction[1] = normal[1]; status->error = fabs(status->error); }